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Abstract
Slope limiters play an essential role in maintaining the non-oscillatory behavior of high-
resolution methods for nonlinear conservation laws. The family of minmod limiters 
serves as the prototype example. Here, we revisit the question of non-oscillatory behavior 
of high-resolution central schemes in terms of the slope limiter proposed by van Albada 
et  al. (Astron Astrophys 108: 76–84, 1982). The van Albada (vA) limiter is smoother 
near extrema, and consequently, in many cases, it outperforms the results obtained using 
the standard minmod limiter. In particular, we prove that the vA limiter ensures the one-
dimensional Total-Variation Diminishing (TVD) stability and demonstrate that it yields 
noticeable improvement in computation of one- and two-dimensional systems.

Keywords High resolution · Limiters · Total-Variation Diminishing (TVD) stability · 
Central schemes

Mathematics Subject Classification 35L65 · 65M10

1 Introduction

We revisit the class of high-resolution, non-oscillatory schemes for the approximate solu-
tion of nonlinear conservation laws. This class of schemes went through an intense period 
of development during the 1980s and 1990s. By high resolution, we refer to the class of 
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schemes which are formally second-order or higher-order methods at all computational 
cells, except perhaps for finitely many critical cells, thus breaking the first-order accuracy 
barrier of Godunov for monotone schemes [16]. By non-oscillatory, we refer to classes 
of schemes which satisfy certain types of stability bounds—weaker than monotonicity yet 
strong enough to exclude spurious oscillations. In this context, we mention the canoni-
cal example of Total-Variation Diminishing (TVD) schemes of Harten [5, 14, 39, 40, 49]. 
Other classes of non-oscillatory stable schemes followed, including finite-volume, finite-
element, Discontinuous Galerkin (DG), and spectral schemes; as examples, we mention the 
Total-Variation Bounded (TVB) schemes [20, 34, 43, 52, 57], the One-Sided Lip Condition 
(OSLC) bounded E-schemes [37, 50], and entropy stable schemes [8, 54]. We also men-
tion the notable class of Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) 
schemes [15, 32, 45, 46] and their sign property stability bound [8–10].

In this paper, we focus on second-order Godunov-type methods. The key step of such 
methods is the second-order accurate reconstruction. To fix our notations, we consider the 
one-dimensional, piece-wise constant scalar numerical solution at time level tn ∶= nΔt , 
which is realized in terms of its cell averages {ūn

𝛼
= ū(x𝛼 , t

n)} over equi-spaced mesh 
{x�: x� = �Δx}

The key ingredient of Godunov-type schemes is a piece-wise linear reconstruction, 
uΔx(x, tn) ≈ u(x, tn) , which conserves the underlying cell averages, 1

Δx ∫
x
j+

1
2

x
j−

1

2

uΔx(x, tn)dx = ūn
j
 . 

Thus, uΔx(x, tn) takes the form

Here, 
u�
j

Δx
 is an approximate slope that satisfies the second order of accuracy condition

The approximate slopes {u�
j
} are reconstructed from the known cell averages {ūn

j
} , so that 

they maintain second-order accuracy (2), while at the same time, they maintain a non-
oscillatory property of the piece-wise linear reconstruction uΔx(x, tn) . A canonical example 
for such reconstructed slopes is given by the so-called minmod limiter 

where minmod (⋅, ⋅) is given by

It follows that the corresponding reconstruction uΔx(x, tn) satisfies the second-order accu-
racy at all by but the critical cells where �

�x
u(xj, t

n) = 0 , while satisfying the TVD stability 
property

un =
∑
j

ūn
j
1[

x
j−

1
2

, x
j+

1
2

], ū(xj, t
n) ∶=

1

Δx ∫
x
j+

1
2

x
j−

1
2

u(x, tn)dx, j ∈ ℤ.

(1)uΔx(x, tn) =
∑
j

pn
j
(x)1[

x
j−

1
2

, x
j+

1
2

], pn
j
(x) = ūn

j
+

u�
j

Δx
(x − xj).

(2)
u�
j

Δx
=

�

�x
u(xj, t

n) +O(Δx).

(3a)u�
j
= minmod

(
Δūn

j−
1

2

,Δūn
j+

1

2

)
, Δun

j+
1

2

∶= un
j+1

− un
j
,

(3b)minmod (a, b) ∶=
sgn(a) + sgn(b)

2
⋅min{|a|, |b|}.
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We now put this second-order, TVD minmod-based reconstruction into action, in the con-
text of approximate solution for one-dimensional nonlinear systems of conservation laws

where f is the k-vector of smooth flux functions. To this end, the reconstructed solution 
uΔx(⋅, tn) is evolved to time tn+1 = tn + Δt by solving (5) subject to the piece-wise linear 
data u(⋅, tn) = uΔx(⋅, tn) and the resulting solution, u(x, tn+1) is then realized by its cell aver-
ages un+1 =

∑
𝛼
ūn+1
𝛼

1[x
𝛼+

1
2

, x
𝛼−

1
2

] . This completed the cycle of Godunov-type scheme: it 

consists of the reconstruction step

for simplicity, we assume that the reconstruction step is carried out by implementing the 
piece-wise linear reconstruction (1), (2) component-wise1. This then is followed by the 
evolution step:

and ending with averaging

It is well known that shock discontinuities—and in most cases of generic data—will be 
formed at the finite time with entropic solutions of (5). Thus, one must accept that the 
underlying solution is discontinuous, and a high-resolution numerical scheme should be 
designed, so that it prevents the spurious (Gibbs) oscillations associated with such discon-
tinuities, particularly when high-order (order > 1 ) accuracy is involved. Since the averaging 
operator is inherently stable, it is the primary role of a non-oscillatory reconstruction step 
R to keep the stability compatible with the evolution step, e.g., [53]. Back to the scalar 
case k = 1 , the stability is interpreted in the sense of satisfying the TVD property; then, if 
the reconstruction is TVD, (4) would imply the TVD stability of the overall scheme

(4)||uΔx(⋅, tn)||TV ⩽ ||un||TV ∶=
∑
j

|||||
Δun

j+
1

2

|||||
.

(5)
𝜕

𝜕t
u(x, t) +

𝜕

𝜕x
f(u(x, t)) = 0, u(x, t): 𝛺 ×ℝ+ ↦ ℝ

k, 𝛺 ⊆ ℝ,

R: ū
n

𝛼
=
∑
𝛼

ū
n

𝛼
1[

x
𝛼−

1

2

, x
𝛼+

1

2

]
↦ u

Δx(⋅, tn); (6)R

E(tn,Δt): uΔx(⋅, tn) ↦ u
n+1(⋅, tn+1), (6)E

A: u
n+1(⋅, tn+1) ↦ u

n+1 =
∑
𝛼

ū
n+1
𝛼

1[
x
𝛼−

1

2

, x
𝛼+

1

2

]. (6)A

�����
�
𝛼

ūn+1
𝛼

1�
x
𝛼+

1
2

, x
𝛼−

1
2

������TV
⩽ ‖E(tn,Δt)uΔx(⋅, tn)‖TV
⩽ ‖uΔx(⋅, tn)‖TV
⩽

�����
�
𝛼

ūn
j
1�

x
𝛼−

1
2

, x
𝛼+

1
2

������TV
⩽ ⋯ ⩽

�����
�
𝛼

ū0
𝛼
1�

x
𝛼−

1
2

, x
𝛼+

1
2

������TV
.

1 In general, one makes use of local characteristic decomposition.
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Remark 1 (Staggered grids) The last argument occupied an arbitrary index � to emphasize 
that it may vary over the integers � ↔ j ∈ ℤ or over the half integers � = j + 1∕2 , or we 
can even allow staggered grids with time-dependent shifts � ↦ �n = j + (

1

2
)n−2[n∕2], j ∈ ℤ.

The TV stability encoded in the successive inequalities above highlights the pivotal role 
of the minmod limiter in securing the TVD stability of the overall scheme. This line of 
argument extends to a general class of non-oscillatory limiters which take the form

The corresponding Godunov-type scheme un+1(x) = AERun(x) based on such �-limiter 
amounts to a 5-cell stencil2. The essential feature of these limiters-based reconstructions 
is forming difference stencils in the direction of smoothness, rather than in the direction of 
flow. Put differently, limiters include adaptive edge detectors which are necessary to secure 
a non-oscillatory reconstruction, by avoiding “crossing” of the discontinuous data. Higher 
order accuracy requires numerical derivatives with limiters which occupy even wider sten-
cils, e.g., [5]

which eventually led to the class of adaptive-based stencils in (W)ENO schemes [15, 18, 
45]. Back to second-order resolution, the TVD criteria have a profound influence on the 
development of high-resolution numerical schemes, starting with the second-order flux-
limiter MUSCL schemes [26, 27] and following the systematic framework for TVD stabil-
ity offered in [14]. A variety of limiters have been proposed in the 1970s and have been 
studied in the context of TVD limiters since the 1980s. We mention two examples from 
the systematic study of second-order limiters found in [49]. First is the class of minmod � 
limiters

where minmod � is given by a one-parameter family of limiters

The case � = 1 recovers the vanilla version of minmod (3b). As a second example, we men-
tion the van Albada (vA) limiter

u�
j
= 𝜓

(
Δūn

j−
1

2

,Δūn
j+

1

2

)
.

𝜓

(
⋯ ,Δūn

j−
3

2

,Δūn
j−

1

2

,Δūn
j+

1

2

,Δūn
j+

3

2

,⋯

)
,

u�
j
= minmod 𝜃

(
Δūn

j−
1

2

,Δūn
j+

1

2

)
, Δun

j+
1

2

∶= un
j+1

− un
j
,

(7)

minmod �(a, b) ∶=

⎧⎪⎨⎪⎩

s ⋅min

�
��a�, �a + b�

2
, ��b�

�
, if sgn(a) = sgn(b) ∶= s,

0, if sgn(a) + sgn(b) = 0,

1 ⩽ � ⩽ 2.

(8)��
vA
(a, b) =

(a2 + �2)b + (b2 + �2)a

a2 + b2 + 2�2
, �2 = O(Δx3).

2 To be precise, the resulting scheme is “essentially 3-point” stencil in the sense that the corresponding 
minmod-based numerical flux F

j+
1

2

= F(uj−1, uj, uj+1, uj+2) satisfies F(⋅, ū, ū, ⋅) = f (ū) [39].
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This limiter was first proposed by van Albada et al. [1] in 1982 and has been successfully 
applied in computations (see, e.g., [35, 42, 47]), although a rigorous study of its TVD sta-
bility was overshadowed by widespread applications of minmod limiter. A main aspect of 
this paper is to prove the TVD properties of the vA limiter �vA . In fact, we demonstrate 
that when applied to the class of high-resolution central schemes, the vA limiter yields 
comparable and in certain cases superior performance over the minmod limiter. This is 
attributed to the smoothness of the vA limiter at critical cells of local extrema3, in contrast 
to the minmod limiters, where minmod 𝜃(Δūj− 1

2

,Δū
j+

1

2

) = 0 whenever Δū
j−

1

2

⋅ Δū
j+

1

2

< 0 . 
Thus, the minmod-based polynomial reconstruction degenerates to first-order piece-wise 
constant interpolation at extrema cells, whereas the vA limiter still extracts more accurate 
information in the direction of smoothness; see (23) and (24).

2  Brief Review of Second‑Order Central Schemes

We distinguish between two classes of Godunov-type schemes, depending on the averaging 
step in (6)A . In one approach, averaging at t = tn+1 is taken at the same grid as in t = tn with 
� ↔ j, j ∈ ℤ . This leads to the class of upwind schemes which employ upstream-biased 
information to approximate spatial derivative. The class of the upwind scheme requires the 
solution of a sequence of non-interacting Riemann solvers to realize the evolution step (6)E . 
Wherever a second-order limiter is “turned off”, the upwind scheme is reduced to the first-
order Godunov scheme [11] which evolves the piece-wise constant approximate solution, 
based on cell averages {ūn

j
},

where � ∶=
Δt

Δx
 is the fixed mesh ratio. The states u∗

j±
1

2

 are obtained with exact or approxi-

mate Riemann solvers; see, e.g., [6, 7, 16, 41, 56]. When applied to systems of equations, 
both left- and right-running waves may exist at interfaces. Hence, the local characteristic 
decomposition of the flux f is required for the upwind constructions, based on the “direc-
tion of the wind” identified by characteristic decomposition into local eigen-fields.

The class of central schemes keeps the averaging over the staggered grid, 
� ↔ j + 1∕2, j ∈ ℤ , so that it processes the information from upstream and downstream in 
an averaged, “central” manner, [36, 55]. The evolution step in the class of central schemes 
requires simple quadrature; no Riemann solvers are needed. However, wherever a second-
order limiter is “turned off”; it is reduced to the diffusive Lax-Friedrichs (LxF) scheme 
[25]:

(9)
ūn+1
j

= ūn
j
−

1

Δx ∫
tn+1

tn

[
f
(
uΔx(x

j+
1

2

, t)
)
− f

(
uΔx(x

j−
1

2

, t)
)]

dt

= ūn
j
− 𝜆

(
f

(
u∗
j+

1

2

)
− f

(
u∗
j−

1

2

))
,

(10)ūn+1
j+

1

2

=
ūn
j
+ ūn

j+1

2
− 𝜆

(
f
(
un
j+1

)
− f

(
un
j

))
.

3 Specifically, the Lipschitz smoothness of �vA(1, r) as a function of r =
Δū

j−
1
2

Δū
j+

1
2

.
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In contrast to the Godunov scheme (9), the LxF solver computes the cell averages on the 

staggered mesh, ū(x
j+

1

2

, t) ∶=
1

Δx ∫
xj+1

xj

u(x, t)dx , recalling Remark 1. The integration of 

(5) over the staggered control volume [xj, xj+1] × [tn, tn+1] yields

It is clear that the LxF scheme is a first-order approximation to (11). Compared with the 
upwind framework, the advantage of central differencing is that the solution is smooth in 
the neighborhood of points {xj} . Indeed, under a sufficiently small time step Δt , the Rie-
mann waves initiating from x

j+
1

2

 do not affect the adjacent cell centers within the time slab, 
t ∈ [tn, tn+1] . Hence, the costly characteristic decompositions can be avoided.

In spite of its simplicity, the main disadvantage of the LxF scheme is the excessive 
numerical dissipation which reduces its resolution at discontinuities and smooth extrema. 
The situation is dramatically improved by applying higher order piece-wise polynomial 
interpolations, leading to the second-order Nessyahu-Tadmor (NT) scheme4. Still, wher-
ever a minmod limiter is “turned off”, the second-order central scheme is reduced to the 
diffusive LxF scheme. This is precisely why the gain of a smooth vA limiter over the min-
mod limiter is more noticeable in the context of central schemes. We turn to briefly review 
the second-order fully discrete and semi-discrete central schemes.

2.1  The Nessyahu‑Tadmor (NT) Scheme

The second-order fully discrete central scheme was first proposed in 1990 [36]. The 
second order of accuracy is obtained by combining the REA steps. First, we evolve a 
reconstructed piece-wise linear solution u(x, tn) (1): integration of (5) over the rectangle 
[xj, xj+1] × [tn, tn+1] yields

Then, the time integral of the flux function can be approximated by the midpoint rule at the 
expense of O(Δt3) local truncation error. This results in the NT scheme

The midpoint values u
n+

1

2

j
 are predicted by Taylor expansions

(11)ū
(
x
j+

1

2

, tn+1
)
=

1

Δx ∫
xj+1

xj

u(x, tn)dx −
1

Δx ∫
tn+1

tn
[f(u(xj+1, t)) − f(u(xj, t))]dt.

ūn+1
j+

1

2

=
1

Δx

⎡
⎢⎢⎣∫

x
j+

1
2

xj

pn
j
(x)dx + ∫

xj+1

x
j+

1
2

pn
j+1

(x)dx

⎤
⎥⎥⎦

−
1

Δx ∫
tn+1

tn

�
f
�
uΔx(xj+1, t)

�
− f

�
uΔx(xj, t)

��
dt.

(12)ūn+1
j+

1

2

=
ūn
j
+ ūn

j+1

2
+

1

8
(u�

j
− u�

j+1
) − 𝜆

[
f

(
u
n+

1

2

j+1

)
− f

(
u
n+

1

2

j

)]
.

u
n+

1

2

j
= ūn

j
−

𝜆

2
f�
j
,

4 At the end, all fully discrete second-order accurate schemes are one version of another of the Lax-Wen-
droff scheme.
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where the numerical derivative f ′
j
 satisfies the second-order accuracy condition

Different options of evaluating f′
j
 were proposed in [36]. For example, the numerical deriv-

ative can be computed in terms of the exact flux Jacobian

Alternatively, one can apply Jacobian-free approximations when the characteristic decom-
position is computationally expensive (even sometimes inaccessible), for example,

Numerical results in [19, 33] have shown that the Jacobian-free version of the central 
scheme does not deteriorate the high resolution. When applied to systems of equations, 
the NT scheme inherits the simplicity of the LxF solver, i.e., the constructions can be 
extended in a component-wise manner without the use of Riemann solvers or characteristic 
decompositions.

The multidimensional formulation of the NT scheme was obtained with similar integra-
tion procedures, and details can be found in [2, 4, 19]. The order of accuracy can be further 
improved by applying higher order piece-wise polynomial interpolants; see, e.g., [28–30, 33]. 
Related references can be found in [3].

2.2  The Semi‑discrete Formulation

It can be shown that the numerical dissipation of the NT scheme has order O((Δx)4∕Δt) . In 
the convective problems where Δt ∼ Δx , the NT scheme achieves higher resolution than the 
first-order LxF scheme due to the reduced numerical viscosity. However, it is noticed that the 
NT scheme and its higher order extensions do not admit any semi-discrete limits, and hence, 
they are not appropriate for small time step computations or steady-state calculations. This 
motivated the development of semi-discrete central schemes. We sketch the derivations along 
the lines of [23, 24].

We start with a piece-wise polynomial approximation uΔx(x, tn) ≈ u(x, tn) of the form

The polynomials pn
j
(x) should have desired order of accuracy and conserve the cell aver-

ages ūn
j
∶= ū(xj, t

n) , that is

We denote the reconstructed variables at x
j+

1

2

 from the left and the right by

(13)
f�
j

Δx
=

𝜕

𝜕x
f(ūn

j
) +O(Δx).

(14)f�
j
= A(ūn

j
)u�

j
, A(u) ∶=

𝜕f(u)

𝜕u
.

(15)f�
j
= minmod

(
Δf

j−
1

2

,Δf
j+

1

2

)
, Δf

j+
1

2

∶= f
(
ūn
j+1

)
− f(ūn

j
).

uΔx(x, tn) =
∑
j

pn
j
(x)1[x

j−
1
2

, x
j+

1
2

].

1

Δx ∫
x
j+

1
2

x
j−

1
2

pn
j
(x)dx = ūn

j
.

(16)u−
j+

1

2

∶= pn
j

(
x
j+

1

2

)
, u+

j+
1

2

∶= pn
j+1

(
x
j+

1

2

)
.
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In particular, when the MUSCL interpolant (1) is applied, we have

To obtain a semi-discrete formulation, the key idea is to take cell averaging over narrower 
control volumes. Assume that the maximal forward and backward wave speeds at x

j+
1

2

 are 
estimated by a+

j+
1

2

⩾ 0 and a−
j+

1

2

⩽ 0 . At the next time level tn+1 ∶= tn + Δt , the region 

influenced by the Riemann fan originating at x
j+

1

2

 is approximated with the interval 

I
j+

1

2

∶=
[
x−
j+

1

2

, x+
j+

1

2

]
 , where

It is clear that under a sufficiently small time step, the non-smooth regions I
j+

1

2

 are sepa-
rated due to the finite wave speeds. In this way, the width of Riemann fan is bounded by (
a+
j+

1

2

− a−
j+

1

2

)
Δt , in contrast to the fixed width Δx in the fully discrete counterpart.

Now, we reconstruct a non-oscillatory, conservative, piece-wise polynomial interpolant at 
t = tn+1,

The polynomials w̃n+1

j
 and w̃n+1

j+
1

2

 conserve the cell averages, w̄n+1
j

 and w̄n+1

j+
1

2

 , over the smooth 

and non-smooth domains. The values of w̄n+1
j

 and w̄n+1

j+
1

2

 are computed by integrating (5) 

over the rectangular domains, 
[
x+
j−

1

2

, x−
j+

1

2

]
× [tn, tn+1] and 

[
x−
j+

1

2

, x+
j+

1

2

]
× [tn, tn+1] , 

respectively.
Finally, the cell average at tn+1 is computed with

Passing the limit Δt → 0 yields a semi-discrete conservative scheme 

where the numerical fluxes F
j+

1

2

(t) are given by

There are different options to estimate the wave speeds a±
j+

1

2

 . The Kurganov-Tadmor (KT) 

scheme proposed in [24] uses the spectral radius of the Jacobian A(u) ∶= �f(u)

�u
,

(17)u−
j+

1

2

∶= ūn
j
+

1

2
u�
j
, u+

j+
1

2

∶= ūn
j+1

−
1

2
u�
j+1

.

x+
j+

1

2

∶= x
j+

1

2

+ a+
j+

1

2

Δt, x−
j+

1

2

∶= x
j+

1

2

+ a−
j+

1

2

Δt.

(18)w̃
n+1

(x) =
∑
j

[
w̃

n

j
(x)1[

x+

j−
1
2

, x−
j+

1
2

] + w̃
n

j+
1

2

(x)1[
x−
j+

1
2

, x+
j+

1
2

]
]
.

ūn+1
j

=
1

Δx ∫
x
j+

1
2

x
j−

1
2

�w
n+1

(x)dx.

(19a)d

dt
ūj(t) ∶= lim

Δt→0

ūn+1
j

− ūn
j

Δt
= −

F
j+

1

2

(t) − F
j−

1

2

(t)

Δx
,

(19b)
F
j+

1

2

(t) ∶=

a+
j+

1

2

f

(
u
−

j+
1

2

)
− a−

j+
1

2

f

(
u
+

j+
1

2

)

a+
j+

1

2

− a−
j+

1

2

+

a+
j+

1

2

a−
j+

1

2

a+
j+

1

2

− a−
j+

1

2

(
u
+

j+
1

2

− u
−

j+
1

2

)
.
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where �(⋅) represents the spectral radius of a matrix. Then, the numerical flux can be 
expressed in terms of the Rusanov flux

For strictly hyperbolic problems, the flux Jacobian �f

�u
 has N distinct eigenvalues 

𝜆1 < ⋯ < 𝜆N . The semi-discrete central-upwind scheme version of KNP [23] employs a 
more accurate estimate of the wave speeds

In this way, the scheme reduces the numerical dissipation by employing the HLL flux [17].
In the computations, the set of ODEs (19) is integrated with an appropriate ODE solver. To 

preserve the overall high order of accuracy as well as the non-oscillatory property, one may apply 
a higher order Strong Stability Preserving (SSP) Runge-Kutta method; see, e.g., [12, 13, 44, 48].

The semi-discrete central schemes retain the advantage of being Riemann-solver-free, and 
hence, the component-wise extension is allowed when solving systems of equations. In mul-
tidimensional problems, the second-order constructions can be extended in a dimension-by-
dimension manner. Third-order extensions have also been derived with the help of piece-wise 
parabolic interpolants; we refer to the details in [22, 24].

3  Analysis of the Smooth vA Limiter

In this section, we study the analytical properties of the smooth vA limiter (8). To get more 
insight, the limiter can be written as [26]

In the smooth regions where a ≈ b , the limiter tends to recover the second-order central 
finite differencing a + b

2
 . Across the discontinuities, however, the averaged slope is biased 

to the smallest value among the two one-sided slopes. These mechanisms are expected to 
ensure the second-order accuracy and prevent the undesirable numerical oscillations. We 
will provide rigorous proofs for these advantages. For convenience of discussion, we will 
consider the simplified version without �,

a+
j+

1

2

= −a−
j+

1

2

= a
j+

1

2

∶= max

{
�

(
A

(
u−
j+

1

2

))
, �

(
A

(
u+
j+

1

2

))}
,

(20)
F
j+

1

2

(t) = FRus

(
u−
j+

1

2

, u+
j+

1

2

)
∶=

f

(
u−
j+

1

2

)
+ f

(
u+
j+

1

2

)

2

−
a
j+

1

2

2

(
u+
j+

1

2

− u−
j+

1

2

)
.

(21)

⎧⎪⎨⎪⎩

a+
j+

1

2

= max

�
�N

�
A

�
u−
j+

1

2

��
, �N

�
A

�
u+
j+

1

2

��
, 0

�
,

a−
j+

1

2

= min

�
�1

�
A

�
u−
j+

1

2

��
, �1

�
A

�
u+
j+

1

2

��
, 0

�
.

��
vA
(a, b) =

a + b

2

(
1 −

(a − b)2

a2 + b2 + 2�2

)
.
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Indeed, as reported in [1], the computed solutions are not sensitive to the specific value of 
�.

3.1  The Second‑Order Accuracy

We show that the vA limiter (22) ensures a second-order spatial accuracy. Back in the sca-
lar framework, we first consider the reconstruction based on the point values uj ∶= u(xj) . 
Denote the left- and the right-sided slopes by

The numerical derivative constructed with the vA limiter (22) is given by

The Taylor expansion yields

The second-order condition (2) is satisfied in regions away from critical points |𝜕xuj| ≫ Δx . 
In the framework of finite-volume methods, the slope reconstruction is based on the cell 

averages ūj ∶=
1

Δx ∫
x
j+

1
2

x
j−

1
2

u(x)dx . Then, the Taylor expansion is slightly modified

For both point-value-based and cell-average-based reconstructions, the numerical deriva-
tive u�

j
∕Δx , approximates the exact derivative �xuj with order O(Δx2) in the non-critical 

regions. Near the critical points, the second-order condition (2) is satisfied up to �xu ≈ Δx . 
Hence, it is expected that the vA limiter introduces less dissipation than the minmod lim-
iter at discontinuities and smooth extrema. Their numerical performances will be compared 
in Sect. 4.

3.2  The Non‑oscillatory Property

We are going to show that the vA limiter, as applied to the central schemes, generates non-
oscillatory solutions. We begin with the following lemma.

(22)�vA(a, b) =
a2b + ab2

a2 + b2
, a2 + b2 ≠ 0.

�−
x
uj ∶=

uj − uj−1

Δx
and �+

x
uj ∶=

uj+1 − uj

Δx
.

u�
j

Δx
=

(�−
x
uj)(�

+
x
uj)

2 + (�+
x
uj)(�

−
x
uj)

2

(�+
x
uj)

2 + (�−
x
uj)

2
.

(23)
u�
j

Δx
= �xuj +

(
1

6
�3
x
uj −

1

2

(�2
x
uj)

2

�xuj

)
Δx2 +O(Δx3).

(24)

u�
j

Δx
= 𝜕xuj +

(
1

6
𝜕3
x
uj +

1

24
𝜕4
x
uj −

1

2

𝜕2
x
uj

𝜕xuj

)
Δx2 +O(Δx3), |𝜕xuj| ≫ Δx.
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Lemma 1 The approximate slope u�
j
= 𝜓vA(Δūj− 1

2

,Δū
j+

1

2

) satisfies the following estimates: 

Proof Denote r ∶=
Δū

j−
1

2

Δū
j+

1

2

 , then we can write

We will show that 
1 −

√
2

2
⩽

r2 + r

r2 + 1
,
r + 1

r2 + 1
⩽

1 +
√
2

2
.

Assume that r
2 + r

r2 + 1
 is bounded from below and above by m and M ∈ ℝ , respectively,

This can be equivalently expressed as

The upper bound M should satisfy the conditions

Solving these inequalities yields M ⩾
1 +

√
2

2
 , and hence, 

1 +
√
2

2
 gives the supremum of 

r2 + r

r2 + 1
 . On the other hand, the lower bound m should satisfy

These conditions yield m ⩽
1 −

√
2

2
 and hence 

1 −
√
2

2
 gives the infimum of r

2 + r

r2 + 1
 . Com-

bining these results, we have

(25a)
1 −

√
2

2
⩽

u�
j

Δū
j±

1

2

⩽
1 +

√
2

2
,

(25b)
�u�

j+1
− u�

j
�

�Δū
j+

1

2

� ⩽

√
2.

u�
j
=

r2 + r

r2 + 1
Δū

j+
1

2

=
r + 1

r2 + 1
Δū

j−
1

2

.

m ⩽
r2 + r

r2 + 1
⩽ M, ∀r ∈ ℝ.

(26)

⎧⎪⎨⎪⎩

(M − 1)r2 − r +M ⩾ 0,

(m − 1)r2 − r + m ⩽ 0,

∀r ∈ ℝ.

⎧⎪⎨⎪⎩

M > 1,

Δ = 1 − 4M(M − 1) ⩽ 0.

⎧⎪⎨⎪⎩

m < 1,

Δ = 1 − 4m(m − 1) ⩽ 0.
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With similar argument, we can show that 
1 −

√
2

2
⩽

r + 1

r2 + 1
⩽

1 +
√
2

2
 , and therefore

This completes the proof of (25a). The second estimate (25b) is a direct consequence of 
(25a).

With the help of Lemma 1, we discuss the non-oscillatory property of the fully discrete 
and the semi-discrete schemes separately.

3.2.1  The Fully Discrete Scheme

We consider the fully discrete NT scheme (12). The scheme can be written in a conserva-
tive form [36]5

with the so-called modified numerical flux gj given by

The NT scheme combined with the vA limiter (22) can be shown to be TVD following 
similar approach in [36, 39]. The proof is based on the following lemma.

Lemma 2 ([36]) The scheme (12) is TVD if the numerical flux gj satisfies the following gen-
eralized CFL condition:

Proof By (27), the difference ūn+1
j+

1

2

− ūn+1
j−

1

2

 amounts to

Condition (30) implies that the coefficients in the parenthesis are positive. Hence

1 −
√
2

2
⩽

u�
j

Δū
j+

1

2

=
r2 + r

r2 + 1
⩽

1 +
√
2

2
.

1 −
√
2

2
⩽

u�
j

Δū
j−

1

2

=
r + 1

r2 + 1
⩽

1 +
√
2

2
.

(27)ūn+1
j+

1

2

=
ūn
j
+ ūn

j+1

2
− 𝜆(gj+1 − gj), 𝜆 =

Δt

Δx

(28)gj = f

(
u
n+

1

2

j

)
+

1

8�
u�
j
.

(29)𝜆
|||||
Δg

j+
1

2

Δūn
j+

1

2

|||||
⩽

1

2
, Δg

j+
1

2

∶= gj+1 − gj.

ūn+1
j+

1

2

− ūn+1
j−

1

2

=

(
1

2
− 𝜆

Δg
j+

1

2

Δū
j+

1

2

)
Δū

j+
1

2

+

(
1

2
+ 𝜆

Δg
j−

1

2

Δū
j−

1

2

)
Δū

j−
1

2

.

5 Recall that � is the fixed mesh-ratio � =
Δt

Δx
 , which should be distinguished from the eigenvalues in (21), 

𝜆1 < ⋯ < 𝜆N.
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We conclude TV(ūn+1) ⩽ TV(ūn).

Equipped with Lemmas 1 and 2, we prove the NT scheme is TVD.

Theorem 1 (TVD Stability of NT Scheme with the vA Limiter) Consider the scalar NT 
scheme (27) using the numerical slope u′

j
 constructed with the vA limiter (22), and let the 

flux numerical derivative be chosen by f �
j
= a(ūn

j
)u�

j
 with a(u) ∶= f �(u) . Assume that the fol-

lowing CFL condition is satisfied:

Then, the NT scheme (27) is TVD.

Proof Denote CFL ∶= �max
u

|a(u)| . By (28), we have

By definition, the first term on the right of (31) is bounded by

Notice that (25a) implies ���
u�
j

Δū
j±

1

2

��� ⩽
1 +

√
2

2
 , we can estimate the second term on the right 

of (31),

∑
j

|||||
ū
n+1

j+
1

2

− ū
n+1

j−
1

2

|||||
⩽
∑
j

(
1

2
− 𝜆

Δg
j+

1

2

Δū
j+

1

2

)
|Δū

j+
1

2

| +
(
1

2
+ 𝜆

Δg
j−

1

2

Δū
j−

1

2

)
|Δū

j−
1

2

|

=
∑
j

(
1

2
− 𝜆

Δg
j+

1

2

Δū
j+

1

2

)
|Δū

j+
1

2

| +
(
1

2
+ 𝜆

Δg
j+

1

2

Δū
j−

1

2

)
|Δū

j+
1

2

|

=
∑
j

|Δū
j+

1

2

|.

(30)�max
u

�a(u)� ⩽
−1 +

�
3

2
+

3
√
2

4

1 +
√
2

≈ 0.24.

(31)𝜆
|||||
Δg

j+
1

2

Δū
j+

1

2

|||||
⩽ 𝜆

|||||

f

(
u
n+

1

2

j+1

)
− f

(
u
n+

1

2

j

)

u
n+

1

2

j+1
− u

n+
1

2

j

|||||
�����������������������������������

I

|||||
u
n+

1

2

j+1
− u

n+
1

2

j

Δū
j+

1

2

|||||
���������������

II

+
1

8

|||||

Δu�
j+

1

2

Δū
j+

1

2

|||||
�������

III

.

(32)�

|||||||||

f

(
u
n+

1

2

j+1

)
− f

(
u
n+

1

2

j

)

u
n+

1

2

j+1
− u

n+
1

2

j

|||||||||
⩽ �max

u
|a(u)| ∶= CFL.

(33)

�����
u
n+

1

2

j+1
− u

n+
1

2

j

Δū
j+

1

2

�����
⩽ 1 +

𝜆

2

�����

Δf �
j+

1

2

Δū
j+

1

2

�����
⩽ 1 +

𝜆

2

�aj+1u�j+1� + �aju�j �
�Δū

j+
1

2

�

⩽ 1 +
𝜆maxu �a(u)�

2
⋅

�u�
j+1

� + �u�
j
�

�Δū
j+

1

2

� ⩽ 1 +
1 +

√
2

2
CFL.
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As a direct consequence of (25b), the third term on the right of (31) does not exceed

Using (32), (33), and (34), the TVD condition (29) boils down to

which in turn recovers the CFL condition (30).

Remark 2 The TVD stability is not sharp in the sense that the CFL condition (30) is too 
restrictive, and serves here only as a theoretically sufficient bound. The numerical exper-
iments reported in Sect.  4 indicate that the computed NT solutions with the vA limiter 
remain non-oscillatory as long as CFL ⩽ 1∕2.

3.2.2  The Semi‑discrete Scheme

The TVD stability of the vA limiter as applied to the non-staggered semi-discrete schemes 
(19) can be shown following the lines of [38, 51]. The key ingredient is to represent the 
scheme in an appropriate incremental form which meets a certain positive condition. We 
prove the following result with the help of Lemma 1.

Theorem 2 (TVD Stability of Semi-discrete MUSCL Scheme with the vA Limiter) Let the 
states u±

j+
1

2

 be computed from the MUSCL reconstruction (17) with the numerical slope u′
j
 

constructed with the vA limiter (22). Consider a generalized scalar MUSCL scheme

and let the numerical flux F(⋅, ⋅) be monotone and consistent 

Then, the scheme (35) is TVD

Proof We argue along the lines of [51], expressing the scheme (35) in the incremental form

where

(34)1

8

�����

Δu�
j+

1

2

Δū
j+

1

2

�����
⩽

√
2

8
.

CFL

�
1 +

1 +
√
2

2
CFL

�
+

√
2

8
⩽

1

2
,

(35)
d

dt
ūj(t) = −

1

Δx

[
F

(
u−
j+

1

2

, u+
j+

1

2

)
− F

(
u−
j−

1

2

, u+
j−

1

2

)]
,

(36a)
�

�u
F(u, v) ⩾ 0 and

�

�v
F(u, v) ⩽ 0,

(36b)F(u, u) = f (u).

d

dt
[TV(ū(t))] ⩽ 0.

(37)
d

dt
ūj = −

1

Δxj
C
j−

1

2

Δū
j−

1

2

+
1

Δxj
D

j+
1

2

Δū
j+

1

2

,
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We denote

Forward differencing of (37) gives

Multiplying (39) by s
j+

1

2

 and summing by parts, we have

Here, we use the property that s2
j+

1

2

≡ 1 . Since �j ⩾ 0 , it suffices to show that C
j−

1

2

 , 

D
j+

1

2

⩾ 0 . Indeed, we find that

where ũ1 is between u−
j−

1

2

 and u−
j+

1

2

 , and ũ2 is between u+
j−

1

2

 and u+
j+

1

2

 . From (25b), we know 

that the terms in the parentheses are positive. Hence, the non-negativity of C
j−

1

2

 and D
j+

1

2

 
follows from (36a).

The semi-discrete central scheme (19) can be considered as a generalized MUSCL 
scheme, and the associated numerical flux (19b) can expressed in the form 
F
j+

1

2

(t) ∶= F(u−
j+

1

2

, u+
j+

1

2

) with

(38)

⎧⎪⎨⎪⎩

C
j−

1

2

=
1

Δū
j−

1
2

�
F

�
u−
j+

1

2

, u+
j−

1

2

�
− F

�
u−
j−

1

2

, u+
j−

1

2

��
,

D
j+

1

2

= −
1

Δū
j+

1
2

�
F

�
u−
j+

1

2

, u+
j+

1

2

�
− F

�
u−
j+

1

2

, u+
j−

1

2

��
.

s
j+

1

2

∶= sgn(Δū
j+

1

2

) =

⎧
⎪⎨⎪⎩

1, Δū
j+

1

2

> 0,

±1, Δū
j+

1

2

= 0,

−1, Δū
j+

1

2

< 0,

𝜒j ∶= 1 − s
j−

1

2

s
j+

1

2

=

�
2, Δū

j−
1

2

⋅ Δū
j+

1

2

⩽ 0,

0, Δū
j−

1

2

⋅ Δū
j+

1

2

> 0.

(39)

d

dt
Δū

j+
1

2

=

(
1

Δxj+1
D

j+
3

2

Δū
j+

3

2

−
1

Δxj+1
C
j+

1

2

Δū
j+

1

2

)

−

(
1

Δxj
D

j+
1

2

Δū
j+

1

2

−
1

Δxj
C
j−

1

2

Δū
j−

1

2

)
.

d

dt
TV(ū(t)) =

∑
j

s
j+

1

2

d

dt
Δū

j+
1

2

= −
∑
j

1

Δx

[(
s
j−

1

2

− s
j+

1

2

)
C
j−

1

2

Δū
j−

1

2

+
(
s
j+

1

2

− s
j−

1

2

)
D

j+
1

2

Δū
j+

1

2

]

= −
∑
j

𝜒j

Δx

[
C
j−

1

2

|Δū
j−

1

2

| + D
j+

1

2

|Δū
j+

1

2

|
]
.

(40)

⎧⎪⎨⎪⎩

C
j−

1

2

= 𝜕uF

�
ũ1, u

+

j−
1

2

��
1 +

u�
j
−u�

j−1

2Δū
j−

1
2

�
,

D
j+

1

2

= −𝜕vF

�
u−
j+

1

2

, ũ2

��
1 −

u�
j+1

−u�
j

2Δū
j+

1
2

�
,
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The monotonicity of F(⋅, ⋅) is clear, since a− ⩽ f �(u), f �(v) ⩽ a+ . Hence, the TVD sta-
bility of the vA limiter as applied to the semi-discrete central scheme (19) follows from 
Theorem 2.

Remark 3 The semi-discrete scheme (19) [or equivalently (35)] advanced with forward 
Euler time-stepping reads

where u+
j+

1

2

∶= ūn
j
−

1

2
u�
j+1

 and u−
j+

1

2

∶= ūn
j
+

1

2
u�
j
 . With similar incremental representation in 

Theorem 2, it can be proved that the vA limiter as applied to the fully discrete non-stag-
gered scheme (41) generates TVD solutions. Applying a higher order SSP time integration 
method would achieve a higher order of accuracy in time without deteriorating the 
stability.

4  Numerical Experiments

In this section, we examine the performance of the vA limiter (8) with the small6 bias, 
� = (Δx)3 , compared vs. the minmod limiter (7) which is taken, unless otherwise stated, 
in its vanilla version � = 1 . The advantage of the vA limiter over minmod1 is apparent for 
both—the fully discrete NT scheme (12) and the semi-discrete central-upwind version of 
KNP, (19), (21).

In all the simulations of the NT scheme, the numerical slope of flux f′
j
 is evaluated with 

the exact flux Jacobian (14), and the CFL number is taken to be 0.45. The implementation 
of the semi-discrete scheme requires a high-order time discretization. We use the third-
order, explicit SSPRK3 method for the time integration of method-of-lines ODEs (19a) 
with the CFL number chosen to be 0.7. To better ensure the robustness in the strong shock 
problems, the MUSCL reconstruction for systems of equations is performed on the charac-
teristic variables, e.g., [36, (4.7)–(4.11)], [45, Procedure 2.8]7.

4.1  One‑Dimensional Linear Advection Equation

We consider the one-dimensional linear advection equation

F(u, v) =
a+f (u) − a−f (v)

a+ − a−
+

a+a−

a+ − a−
(v − u).

(41)ūn+1
j

= ūn
j
− 𝜆

(
F

(
u−
j+

1

2

, u+
j+

1

2

)
− F

(
u−
j−

1

2

, u+
j−

1

2

))
,

6 Even smaller than the one indicated in (8); this does not seem to affect the results.
7 Here, we use standard characteristic decomposition, Δu

j+
1

2

=
∑

k �̂
k

j+
1

2

R̂

k

j+
1

2

 , where {R̂
k

j+
1

2

}k is the eigen-

system of an intermediate Jacobian: for convenience, R̂
k

j+
1

2

 are computed as the eigensystems at the arithme-

tic average, A
(

1

2
(uj + uj+1)

)
 , rather than the Roe average, Δf

j+
1

2

= ARoe

j+
1

2

Δu
j+

1

2

 , as it does not seem to affect 
the MUSCL results in this context.
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subject to the initial data

and 2π periodic boundary conditions (BCs). We compute the solution after one period of 
revolution using N = 400 equi-spaced mesh grids. Figure  1 displays the solutions com-
puted with the NT scheme. Both the vA limiter and the minmod limiter generate non-oscil-
latory solutions with the comparable resolution at the shocks and smooth extrema. Figure 2 
compares the solutions computed with different limiters as applied to the semi-discrete 
central-upwind scheme. In this case, applying the smoother vA limiter improves the notice-
able “clipping” of the minmod1 that occurred at the peaks of the sinusoidal wave and the 
triangular wave.

Remark 4 (On the superior resolution of NT with the vA limiter) It is instructive to com-
pare the NT results in Fig. 1 which are found to be superior to the corresponding results 
of the central-upwind KT scheme in Fig.  2. In particular, a direct comparison in Fig.  3 
shows that the “clipping” phenomenon in the three peaks is clearly stronger in the KT 
computation, whereas the NT scheme produces sharper peaks. We recall that the NT with 
minmod limiter is reduced at peaks to a diffusive LxF scheme. Thus, the vA limiter helps 
improve the NT resolution at peaks. Of course, the truncation error of NT schemes of order 

�u

�t
+

�u

�x
= 0, 0 ⩽ x ⩽ 2π,

u(x, 0)

⎧
⎪⎨⎪⎩

= sin4(πx), 0 ⩽ x ⩽ 1,

≡ 1, 2.09 ⩽ x ⩽ 3.09,

= hat function with height = 1, 4.18 ⩽ x ⩽ 5.18,

≡ 0, elsewhere in (1, 2π),

Fig. 1  Linear advection. NT scheme, N = 400 , periodic BCs, t = 2π
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O((Δx)2∕�) implies that the NT resolution decreases for small(er) CFL. However, for near 
optimal CFL = 0.45, the resolution of the NT scheme with the vA limiter offers a competi-
tive alternative to central-upwind schemes. This conclusion will be confirmed with linear 
contact waves studied in Sect. 4.3.

Fig. 2  Linear advection. Semi-discrete central-upwind scheme, N = 400 , periodic BCs, t = 2π

Fig. 3  Linear advection. NT vs. semi-discrete KT scheme with vA limiter with N = 400 mesh points, peri-
odic BCs at t = 2π
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4.2  One‑Dimensional Burgers’ Equation

We show the results for the one-dimensional Burgers’ equation

�u

�t
+

�

�x

(
u2

2

)
= 0

Fig. 4  One-dimensional Burger’s equation, NT scheme, N = 200 , t = 2

Fig. 5  One-dimensional Burgers’ equation, semi-discrete central-upwind scheme, N = 200 , t = 2
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over the domain [0, 2π] . In this test case, the solution comprises of an expansion wave and 
a compression wave. Figures 4 and 5 present the solutions computed with N = 200 mesh 
grids at t = 2 . In both fully discrete and semi-discrete test cases, the solutions generated 
with the vA limiter capture the expansion wave and the shock wave with the sharp resolu-
tion and without generating numerical oscillations. The results based on the vA limiter are 
essentially comparable to those based on the minmod limiter.

4.3  One‑Dimensional Euler Equations

We consider the one-dimensional Euler equations of gas dynamics

where � , u, and p are the density, velocity, and pressure, respectively, and E is the total 
energy per unit volume given by

As the first test case, we consider the Sod’s shock tube problem: the computational domain 
is [0, 1] with an interface at x = 0.5 , and subject to initial states on the two sides of the 
interface given by

Figures  6 and 7 show the computed density at t = 0.2 with N = 400 mesh grids, com-
puted with the NT and, respectively, semi-discrete central-upwind schemes. The numerical 
results comparing the vA and minmod1 limiters show that the high resolution of the com-
putation based on the vA limiter is on par with those based on the minmod limiter. In fact, 
we observe that the contact wave in Fig. 6 is even slightly better resolved by the NT+vA 
limiter compared with the central-upwind KNP+vA limiter in Fig. 7. This agrees with the 
improved resolution of the NT+vA limiter of linear advection discussed in Remark 4 and 
similar remark regarding the diffusion of the semi-discrete central-upwind KT schemes 
which goes back to [24, p. 268].

Next, we turn to a second test case of the Osher-Shu problem. The computational 
domain is [−5, 5] with the interface placed at x = −4 , subject to the initial data

�

�t

⎡⎢⎢⎣

�

�u

E

⎤⎥⎥⎦
+

�

�x

⎡⎢⎢⎣

�u

�u2 + p

(E + p)u

⎤⎥⎥⎦
= 0,

E =
p

� − 1
+

�u2

2
, � = 1.4.

⎧⎪⎨⎪⎩

pL = 1.0, pR = 0.1,

�L = 1.0, �R = 0.125,

uL = 0.0, uR = 0.0.

⎧⎪⎨⎪⎩

pL = 10.333 33, pR = 1.0,

�L = 3.857 143, �R = 1 + 0.2 sin(5x),

uL = 2.629 369, uR = 0.0.
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In this problem, the solution of density consists of a discontinuity and a smooth harmonic 
waves. Figures 6 and 9 present the solutions of density given by the NT scheme and the 
semi-discrete central-upwind scheme computed with N = 600 mesh grids at t = 1.8 . We 

Fig. 6  Sod’s problem—density computed with NT scheme and vA limiter, N = 400 , t = 0.2

Fig. 7  Sod’s problem—density computed with semi-discrete central-upwind scheme and vA limiter, 
N = 400 , t = 0.2
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observe that the solutions computed with the vA limiter resolve the smooth extremum bet-
ter than those computed with the minmod limiter; in particular, the solutions do not intro-
duce spurious numerical oscillations at the location of the shock.

4.4  Two‑Dimensional Euler Equations

We examine the performance of the vA limiter in two-dimensional problems. We consider 
the double Mach reflection problem [58] for the two-dimensional Euler equations

The problem is initiated with a Mach 10 oblique shock positioned at (1/6, 0) which makes 
a 60◦ angel with x-axis. The computational domain is set to [0, 4] × [0, 1] . The bottom 
boundary ( y = 0 ) consists of a reflecting wall beginning at x = 1∕6 , and the short region 
from x = 0 to x = 1∕6 is imposed with the initial post-shock conditions. The left bound-
ary (x = 0) is also assigned with the initial post-shock values, and at the right boundary 
(x = 4) , all the gradients are set to zero. The values along the top boundary (y = 1) are 
set to describe the exact motion of the Mach 10 shock. We refer to [58] for more detailed 
descriptions. We compute the solution of density at t = 0.2 with 480 × 120 mesh grids. 
Figure  10 shows the reference solution given by the fifth-order WENO finite difference 
method [45].

Figures 11 and 12 display the solutions computed with the NT scheme. It is clear from 
the results that the solution generated by the vA limiter has obviously better quality. The 
shock waves and the slip lines underneath are characterized by much sharper transitions. 
The computational results of the semi-discrete scheme are presented in Figs. 13 and 14. 
Still, the numerical scheme captures more information of the near-wall flow when used in 
conjunction with the vA limiter. These results confirm the advantage of the vA limiter (8) 
in terms of resolving multidimensional complex flow structures.

4.5  Incompressible Euler Equations

We consider the two-dimensional double shear layer problem for incompressible Euler 
equations

where p denotes the pressure and u = (u, v) is the velocity field. The initial data are given 
by

�

�t

⎡⎢⎢⎢⎣

�

�u

�v

E

⎤⎥⎥⎥⎦
+

�

�x

⎡⎢⎢⎢⎣

�u

�u2 + p

�uv

(E + p)u

⎤⎥⎥⎥⎦
+

�

�y

⎡⎢⎢⎢⎣

�v

�uv

�v2 + p

(E + p)v

⎤⎥⎥⎥⎦
= 0, p = (� − 1) ⋅

�
E −

�

2
(u2 + v2)

�
.

⎧⎪⎨⎪⎩

𝜕tu + ∇ ⋅ (u⊗ u) = −∇p,

∇ ⋅ u = 0,
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over the rectangular domain [0, 2π] × [0, 2π] . We take � =
π

15
 and � = 0.05 . The equations 

are solved with the finite difference projection method (see, e.g., [21, 31, 60]), which con-
sists of a predictor step and a corrector step

The divergence free constraint ∇ ⋅ un+1 = 0 leads to a Poisson equation for pressure

In the predictor step, we reconstruct the convection fluxes un ⊗ un with the Rusanov-type 
flux (20) coupled with the second-order MUSCL reconstructions (17). In the corrector 
step, assuming the uniform mesh size is employed, Δx = Δy = h , the gradient, divergence, 
and Laplace operators are approximated with the second-order central difference operators

To achieve a higher order of accuracy in time, we apply the explicit SSPRK3 method for 
time marching. The time step is taken according to the CFL condition

Figure 15 presents the solutions of vorticity at t = 8 . We observe that the solution contours 
given by the vA limiter are more concentrated than those by the minmod limiter. Figure 16 
compares the solutions of v along the line x = π . The vA limiter shows clear advantage 
over the minmod limiter in terms of capturing sharp extrema.

4.6  Concluding Remarks

The vA limiter dates back to the 1982 work [1]. Its TVD stability and related non-oscilla-
tory properties were overshadowed by extensive studies of the class of minmod limiters [5, 

u(x, y, 0) =

⎧
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tanh

��
y −

π

2

��
𝜌

�
, y ⩽ π,

tanh

��
3π

2
− y

��
𝜌

�
, y > π,

v(x, y, 0) = 𝛿 sin (x)

u∗ − un

Δt
+ ∇ ⋅ (un ⊗ un) = 0,

un+1 − u∗

Δt
+ ∇pn+1 = 0 with ∇ ⋅ un+1 = 0.

−Δpn+1 = −
1

Δt
∇ ⋅ u∗.
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�i+1,j − �i−1,j

2Δx
�i,j+1 − �i,j+1

2Δy

⎞⎟⎟⎟⎠
,
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2Δx
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, u = (u, v),
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.
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+
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14, 26, 27, 36, 39, 49]. In this work, we revisit the vA limiter in the context of high-res-
olution central schemes, showing that its non-oscillatory properties improve correspond-
ing computations using the minmod limiter, or are at least on par with the minmod-based 
results in other computations. This was demonstrated in the one-dimensional Osher-Shu 

Fig. 8  Osher-Shu problem—density, NT scheme, N = 600 , t = 1.8

Fig. 9  Osher-Shu problem—density, semi-discrete central-upwind scheme, N = 600 , t = 1.8
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problem depicted in Figs. 8 and 9 and more noticeably, in the two-dimensional problems 
reported in Sects. 4.4 and 4.5. We do not claim that the use of the vA limiter always out-
performs the class of minmod limiters: the vA limiter is found on par with the minmod 

Fig. 10  Double Mach reflection density, fifth-order WENO, Nx = 480 , Ny = 120 , t = 0.2

Fig. 11  Double Mach reflection density, NT scheme, minmod limiter, Nx = 480 , Ny = 120 , t = 0.2

Fig. 12  Double Mach reflection density, NT scheme, vA limiter, Nx = 480 , Ny = 120 , t = 0.2

Fig. 13  Double Mach reflection density, semi-discrete central-upwind scheme, minmod limiter, Nx = 480 , 
Ny = 120 , t = 0.2
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results for the one-dimensional Sod problem reported in Figs. 6 and 7; indeed, this is fur-
ther highlighted in Fig. 17, where we zoom on the density variation of the Sod problem and 
observe comparable results for the vA limiter which is compared with the less diffusive 
minmod� with � =

1

2
(1 +

√
2) (corresponding to the upper bound on the right of (25a)). 

The main point here is to shed light on the smoother vA limiter, showing that it produces 

Fig. 14  Double Mach reflection density, semi-discrete central-upwind scheme, vA limiter, Nx = 480 , 
Ny = 120 , t = 0.2

Fig. 15  Double shear layer, contours of vorticity. Nx = Ny = 128 , CFL = 0.5 , t = 8
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equal or even better results than the class of minmod limiters. The vA limiter was added to 
the minmod limiter in the Python code [59] (solver scheme “sd3”).

Acknowledgements Research was supported in part by the ONR Grant N00014-2112773.

Fig. 16  Double shear layer, solutions of v along x = π , Nx = Ny = 128 , CFL = 0.5 , t = 8

Fig. 17  Sod’s problem. Zoom on density computed by NT scheme, N = 400 at t = 0.2 using vA limiter vs. 
minmod� limiter with � = 1.2
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