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Abstract. We investigate the large time behavior of N particles restricted to

a smooth closed curve in Rd and subject to a gradient flow with respect to
Euclidean hyper-singular repulsive Riesz s-energy with s > 1. We show that

regardless of their initial positions, for all N and time t large, their normalized

Riesz s-energy will be close to the N -point minimal possible energy. Further-
more, the distribution of such particles will be close to uniform with respect

to arclength measure along the curve.

1. Introduction. In this paper we consider the first-order N -particle model

żi = −N−s
∑
j 6=i

∇W (x(zi)− x(zj)) · x′(zi), (1.1)

where the particles are interacting through the potential

W (x) = W (|x|) =
|x|−s
s

, (1.2)

which is a power-law repulsion potential, assumed to be hyper-singular: s > 1.
Here x : R → Rd is a unit-length, smooth, closed, non-self-intersecting curve with
1-periodic arc-length parametrization; i.e., |x′(z)| = 1 and x(z + 1) = x(z) for all
z ∈ R. The N -particle configuration {x(zi)}Ni=1 is represented by the parameters
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Z = (z1, z2, . . . , zN ), where zi = zi(t) are real-valued functions of the time t ∈ R>0

for i = 1, 2, . . . , N . The system (1.1) can be rewritten as a gradient flow of the form

Ż = −N∇E(Z), (1.3)

for the energy

E = E(Z) := N−s−1
∑

16i<j6N

W (x(zi)− x(zj)), (1.4)

which satisfies the energy dissipation

Ė = ∇E(Z) · Ż = − 1

N

∑
i

|żi|2. (1.5)

Without loss of generality, we assume that an N -point configuration parametriza-
tion Z = (z1, z2, . . . , zN ) is ordered as

z1 < · · · < zN < z1 + 1, (1.6)

and observe that if the initial data (at t = 0) satisfies (1.6), then (1.6) holds for all
time due to the singularity of the interaction potential W at 0 and the fact that the
total energy is non-increasing, by (1.5). As a consequence, the ODE system (1.1) is
globally wellposed. Consistent with the periodicity of x, we extend zi to all i ∈ Z
by setting zi+N = zi + 1 so that x(zi+N ) = x(zi).

The determination of optimal N -point configurations confined to a curve or
more generally a manifold, whose pairwise interactions are governed by the Riesz
s-potential W in (1.2) is sometimes referred to when the manifold is the unit sphere
Sd ⊂ Rd and s > 0, as the “generalized Thomson problem.” Determining the mini-
mal energy positions for such points explicitly is a notoriously difficult problem for
which only some very special cases are known, even for “small” values of N (see [3],
[2]). One of these cases is that of the unit circle in R2, for which a simple convexity
argument shows that N distinct equally spaced points (N -th roots of unity) are
the unique (up to rotation) N -point configurations that minimize the energy for
all s > 0 and all N > 2. There are, however, several well-known theorems that
deal with the asymptotics as N → ∞ for optimal configurations on manifolds in
Euclidean space. For curves in Rd in the hyper-singular case s > 1, the following
theorem was proved by Martinez-Finkelstein et. al. in [5].

Theorem 1.1. If s > 1 and Γ is a rectifiable Jordan arc or closed curve embedded
in Rd of length one with arc length parametrization x(s), then

lim
N→∞

minE(Z) = ζ(s)/s,

where the minimum is taken over all N -point configurations {x(zi)}Ni=1 on Γ and
ζ(s) is the classical Riemann zeta function. Moreover, N -point minimizing con-
figurations {x(z∗i )}Ni=1 are asymptotically uniformly distributed with respect to arc
length and, with d∗i := z∗i+1 − z∗i , satisfy

N∑
i=1

∣∣∣∣d∗i − 1

N

∣∣∣∣→ 0 as N →∞. (1.7)

This theorem together with its refinement [1], which is one of the main mo-
tivations for the present work, is a special case of the so-called Poppy-seed bagel
theorem (see [2] and [4]) which applies to general d-rectifiable manifolds embedded
in Rp, d 6 p.
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As stated in Theorem 1.1, any minimizer of the energy E defined in (1.4) has
to be almost uniformly distributed. This paper studies the large time behavior of
(1.1); namely, whether {zi(t)}i∈Z are “close to equally spaced” as t→∞.

2. Main results. We will use the following quantities depending on s:

ζ(s) :=

∞∑
i=1

i−s, ζ̃(s) :=
ζ(s)

s
. (2.1)

Every constant C or c appearing in this paper depends only on s and the curve
x(z), if not stated otherwise.

2.1. Statement of main results. Our first main result is the following.

Theorem 2.1. Let x(z) be a non-self-intersecting C4 closed curve, and let s > 1.
For any ε > 0, there exists N0, depending on ε, s and the curve x(z), such that the
following holds for N > N0: for the solution to (1.1) with distinct initial data (see
1.6), there exists a positive constant C such that

E(t) 6 ζ̃(s)(1 + ε), ∀t > C

ε
. (2.2)

This theorem quantifies the convergence rate of the solution to (1.1) to an almost
minimal energy state. In fact, since Lemma 4.3 shows that the global minimum of
E is at least ζ̃(s)(1 − ε), Theorem 2.1 shows that, after time O(1/ε), the energy
will decay to the global minimum up to an error of O(ε). This can be viewed as
an energy decay rate of O(1/t) being independent of the number of particles N , as
long as N is large enough.

Our second main result shows that upper bounds on the energy of N -point con-
figurations such as provided by Theorem 2.1 impose geometrical constraints on the
distribution of these configurations showing that they are near optimal configura-
tions.

Theorem 2.2. For given ε > 0 and s > 1, there is some N0 depending on s and ε
such that if N > N0 and Z = {zi}Ni=1 satisfies

E(Z) 6 ζ̃(s)(1 + ε), (2.3)

then the mean absolute deviation of di = zi+1 − zi, i = 1, 2, . . . , N , satisfies

1

N

N∑
i=1

∣∣∣∣di − 1

N

∣∣∣∣ 6 2

(
2ζ̃(s)

s+ 1

)1/2
ε1/2

N
, (2.4)

and for all a ∈ R and 0 < L < 1, we have∣∣∣∣#{i : [zi, zi+1) ⊂ [a, a+ L)}
N

− L
∣∣∣∣ 6 [L(1− L)ζ̃(s)

]1/2
(2ε)1/2. (2.5)

Consequently, under the assumptions of Theorem 2.1, the conclusions (2.4) and
(2.5) hold for N sufficiently large and t > C/ε.

The proof of Theorem 2.1 is given in Sections 3-6. Below we discuss the moti-
vation for the argument used in its proof. The proof of Theorem 2.2 is given in
Section 7.
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2.2. Outline of the proof of Theorem 2.1. It is known that the global minimizer
of E defined in (1.4) converges to the uniform distribution as N → ∞; therefore
it is natural to expect that, for large N , the gradient flow (1.1) converges to some
limiting configuration which is nearly equally distributed. However, we encounter
the following difficulties:

• When the curve x(z) is not convex, the energy E is not necessarily a convex
function of {zi}.

• The global minimizer of E may not be unique, and there may be local mini-
mizers and saddle points.

To handle these difficulties, we manage to extract some ideas from the mean
field limit of (1.1). For a general recent treatment of integrable (s < 1 for curves)
Riesz interactions through their interplay with the mean-field limit, we refer to [7].
In fact, it is proved in [6] that the analog of (1.1) on the real line has the porous
medium equation

∂tρ = ζ(s)∂zz(ρ
s+1) (2.6)

as its mean field limit, under certain assumptions on the initial data. This mean
field limit can be understood intuitively as follows:

• Due to the fast decay of W (x) for large |x|, the particle interaction is localized
when N is large, meaning that typically the interaction between particles with
large distances can be neglected, at least for a fixed time interval [0, T ]. The
same holds for the curvature effect, i.e., the difference between (1.1) and its
analog on the real line.

• Due to the strong localized repulsion, particles tend to distribute locally in a
uniform way, similar to the local equilibrium in kinetic theory. This means,
in a short interval I of length δ (which is still long enough to contain a large
number of particles), the particles are approximately uniformly distributed.
However, the particle density may still have variation on a macroscopic scale,
according to some density profile ρ(t, z).

Since our current approach is based on the time evolution of the total
energy which is a global quantity, we do not expect it to capture delicate
local structure required for the mean field limit. A possible future direction
to address this issue is to analyze the time evolution of the functions Ek(Z)
that takes into account only the distances between points whose indices differ
by k , see Section 7.

• In a short interval I of length δ, if the particles inside are uniformly distributed
with density ρ (i.e., the distance between adjacent particles is approximately
1/(Nρ), and the total number of particles inside is approximately δNρ), then
the total energy of the particles inside is approximately

N−s−1
∑
zi∈I

∑
j 6=i

|zi − zj |−s
s

≈ N−s−1(δNρ)·
∑

j∈Z,j 6=0

|j/(Nρ)|−s
s

= 2ζ̃(s)ρs+1δ. (2.7)

Summing all the short intervals (and symmetrizing in i and j), this gives a
Riemann sum which approximates

E(Z) ≈ ζ̃(s)

∫
ρs+1 dz. (2.8)

Then notice that (1.1) is the gradient flow of E, while (2.6) is exactly the
Wasserstein-2 gradient flow of the above right-hand side [RHS].
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Although mean field limits are generally not true on the whole time axis [0,∞),
we can indeed get some ideas from the energy structure of (2.6). To motivate the
proof of Theorem 2.1, we start from the following two properties of the porous
medium equation (2.6):

• Suppose at time t, there are two points zM and zS such that ρ(t, zM ) > ρ(t, zS)
(assuming zM < zS without loss of generality). Then∫ zS

zM

(
− s+ 1

s
ζ(s)∂z(ρ

s)
)
· ρ(t, z) dz = ζ(s)(ρ(t, zM )s+1 − ρ(t, zS)s+1) > 0, (2.9)

where the term − s+1
s ζ(s)∂z(ρ

s) is the transport velocity of the porous medium

equation, by writing ∂zz(ρ
s+1) = s+1

s ∂z(ρ∂z(ρ
s)). This means that we have a

lower bound on the energy dissipation rate:

d

dt

∫
ρs+1 dz = −s+ 1

s
ζ(s)

∫
|∂z(ρs)|2ρdz

6 −s+ 1

s
ζ(s) ·

(∫
(−∂z(ρs))ρdz

)2∫
ρdz

.

(2.10)

Since the total amount of energy is finite, |ρ(t, zM )− ρ(t, zS)| will eventually
get small after a long time. In particular, for some large T , supz ρ(T, z) will
get close to the average density

∫
ρdz/

∫
dz.

• The porous medium equation (2.6) obeys the maximum principle:

sup
z
ρ(t, z) is decreasing in t. (2.11)

This means that, once supz ρ(T, z) gets close to the average density, it cannot
become large again, which means ρ(t, z) will be close to a uniform distribution
for all t > T .

To prove Theorem 2.1, we aim to find the analogues of the above two properties
for (1.1):

• In the case of a flat T, we prove Lemma 3.1 as the counterpart of the first
property. It says, once we have an interval in which the ‘density’ (number
of particles divided by interval length) is small, then we can find a place to
cut the interval, such that the total repulsion force between left and right is
small. This concept of ‘total repulsion force’ is the counterpart of the term
ρ(t, zS)s+1 in (2.9).

• We establish Lemma 5.2 as the counterpart of the second property. It says that
the distance δ between the closest pair of particles basically cannot decrease
(see (5.1), whose RHS is o(1)), in correspondence to the decreasing property.
In fact, the quantity ρM (t) := 1/(Nδ(t)), as defined in (4.1), is a discrete
analogue of ρ(t, zM ). Furthermore, for reasonable situations, we have the
lower bound (5.12) for the ‘total repulsion force’ at this closest pair of particles,
serving as the counterpart of the term ρ(t, zM )s+1 in (2.9).

Finally, we have to deal with the finite-N effect and the curvature effect from
x(z), which may produce errors to the above two properties. Therefore, we need to
keep track of the N -dependence of error terms, as well as using the smoothness of
curve x(z), to show that all such error terms are small enough.
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3. Lemmas on total repulsion cut. For a given set of points x0 < · · · < xN ∈ R,
we define the total repulsion of the cut at xk, xk+1 by

Pk = Pk(x0, . . . , xN ) :=
∑

i,j: 06i6k<j6N

(xj − xi)−s−1 (3.1)

The main purpose of this section is to prove the following lemma:

Lemma 3.1. For any 0 < ε 6 0.01, there exists N0 = N0(ε) such that if N >
N0, then for any 0 = x0 < · · · < xN = 1 there exists an index iS such that
(xiS , xiS+1)

⋂
(ε1, 1− ε1) 6= ∅ with ε1 = ε

3(1+s) , and

PiS 6 (1 + ε)ζ(s)Ns+1. (3.2)

Notice that the total repulsion between two infinite sets of equally distributed
points { iN }∞i=0 and {− j

N }∞j=1 is

∞∑
i=0

∞∑
j=1

( i+ j

N

)−s−1
= Ns+1

∞∑
i=1

i · i−s−1 = ζ(s)Ns+1. (3.3)

Therefore, Lemma 3.1 tells us that one can find an index iS such that the total
repulsion for k = iS there is at most slightly more than for equally distributed
points.

The proof of this lemma follows a min-max type argument. Let 0 6 iL < iR 6 N
be two indices. Define

Fm(xiL+1, . . . , xiR−1) := min
iL6k6iR−1

Pk, (3.4)

viewing those xi’s with i 6 iL or i > iR as fixed. Fm is defined on

RiR−iL−1sort (xiL , xiR)

= {(xiL+1, . . . , xiR−1) ∈ RiR−iL−1 : xiL < xiL+1 < · · · < xiR−1 < xiR},
(3.5)

which is a convex open set.
In the following lemma we describe the global maximum of Fm as a function of

xiL+1, . . . , xiR−1.

Lemma 3.2. The global maximum of Fm on RiR−iL−1sort (xiL , xiR) is achieved at the
same point X∗ = (x∗iL+1, . . . , x

∗
iR−1), which is the only point satisfying

PiL = · · · = PiR−1. (3.6)

Furthermore, X∗ is the unique global minimizer of the energy functional

E(xiL+1, . . . , xiR−1) :=
∑

i,j: 06i<j6N

(xj − xi)−s, (3.7)

and

Fm(X∗) =
1

xiR − xiL
∑

06i<j6N, i<iR, j>iL

(x∗min{j,iR} − x
∗
max{i,iL})(x

∗
j − x∗i )−s−1,

(3.8)
with x∗i := xi for 0 6 i 6 iL or iR 6 i 6 N .

Notice that the RHS of (3.8) is exactly E(X∗) if iL = 0, iR = N .
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Proof. Step 1: Show that the global maximum of Fm is achieved inside
RiR−iL−1sort (xiL , xiR).

In fact, one can extend the definition of Fm to the closure of RiR−iL−1sort (xiL , xiR)
by interpreting (xj −xi)−s−1 as infinity when xj = xi, and Fm remains continuous.

We show that the (global) maximum of Fm on the closure of RiR−iL−1sort (xiL , xiR) is
not achieved at boundary. In fact, at any boundary point, one has either xk1−1 <
xk1 = xk1+1 = · · · = xk2 < xk2+1 for some iL < k1 < k2 < iR − 1, or xiL = xiL+1,
or xiR = xiR−1. We show that maximum is not achieved in the first case, and the
other cases can be handled similarly.

In the first case, by replacing xk1 and xk2 by xk1 − δ and xk2 + δ respectively,
with δ > 0 small enough, we claim that Fm is decreased. First of all, Pk with
k1 6 k < k2 is much larger than Fm if δ is small, and thus the minimum in (3.4) is
achieved elsewhere. For any j with k2 < j 6 iR,

d

dδ

∣∣∣
δ=0

[(xj − (xk1 − δ))−s−1 + (xj − (xk2 + δ))−s−1]

=(−s− 1)[(xj − (xk1 − δ))−s−2 − (xj − (xk2 + δ))−s−2]|δ=0 > 0,
(3.9)

since −s− 1 < 0 and xj − xk1 > xj − xk2 . Similarly for any j with iL 6 j < k1,

d

dδ

∣∣∣
δ=0

[((xk1 − δ)− xj)−s−1 + ((xk2 + δ)− xj)−s−1] > 0. (3.10)

This shows that for any k with k2 6 k 6 iR − 1 or iL 6 k < k1, Pk is increased if
δ > 0 is small. Thus Fm is increased. By doing this [(k2−k1)/2] times, one reaches

the interior of RiR−iL−1sort (xiL , xiR) while making Fm increased.
Step 2: Show (3.6) for Xm, the global maximum of Fm.

From STEP 1, the maximum of Fm is achieved in the interior of RiR−iL−1
sort (xiL , xiR),

say at Xm = (xmiL+1, . . . , x
m
iR−1). Suppose on the contrary that (3.6) is not true,

then there exists k with iL 6 k 6 iR − 1 such that Pk > Fm. If iL < k < iR − 1,
then by replacing xk and xk+1 by xk − δ and xk+1 + δ respectively, with δ > 0
small enough, we can show similarly (see (3.9)) that Pk is slightly decreased, while
still being larger than Fm, and all other Pk′ , k

′ 6= k, are increased. Thus Fm is
increased, which is a contradiction against the maximality. If k = iL or k = iR − 1,
then adjusting xk or xk+1 respectively in a similar way will give the same conclusion.
Step 3: Show that (3.6) is exactly the characterizing condition of the unique global
minimizer of E .

Since E is convex and going to infinity near the boundary, the global minimizer
of E on RiR−iL−1sort (xiL , xiR) is clearly unique, calling it X∗, characterized by

∂kE = −s ·
( ∑
i: 06i<k

(xk − xi)−s−1

−
∑

i: k<i6N

(xi − xk)−s−1
)

= 0, ∀iL + 1 6 k 6 iR − 1.
(3.11)

Notice that the quantity in the above parenthesis is exactly Pk − Pk−1. Therefore
(3.11) is equivalent to (3.6). Since X∗ is the unique point satisfying (3.11), and Xm

satisfies (3.6), these two points coincide.
Step 4: Show (3.8).
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Notice that

iR−1∑
k=iL

(xk+1 − xk)Pk =

iR−1∑
k=iL

∑
i,j: 06i6k<j6N

(xk+1 − xk)(xj − xi)−s−1

=
∑

06i<j6N

min{j,iR}−1∑
k=max{i,iL}

(xk+1 − xk)(xj − xi)−s−1

=
∑

06i<j6N, i<iR, j>iL

(xmin{j,iR} − xmax{i,iL})(xj − xi)−s−1.

At X∗, we have Fm = Pk, iL 6 k 6 iR − 1. Thus (3.8) follows.

Proof of Lemma 3.1. We apply Lemma 3.2 with

iL = max{i : xi < ε1}, iR = min{i : xi > 1− ε1}. (3.12)

Then we get

Fm(X) 6 Fm(X∗)

=
1

xiR − xiL
∑

06i<j6N, i<iR, j>iL

(x∗min{j,iR} − x
∗
max{i,iL})(x

∗
j − x∗i )−s−1

6
1

xiR − xiL
∑

06i<j6N, i<iR, j>iL

(x∗j − x∗i )−s

6
1

1− 2ε1

∑
06i<j6N, i<iR, j>iL

(x∗j − x∗i )−s

(3.13)

for X = (xiL+1, . . . , xiR−1). Notice that∑
06i<j6N, i<iR, j>iL

(xj − xi)−s = E(xiL+1, . . . , xiR−1)− C0,

C0 :=
∑

iR6i<j6N or 06i<j6iL

(xj − xi)−s
(3.14)

for any X = (xiL+1, . . . , xiR−1), where C0 is independent of X. Therefore

Fm(X) 6
1

1− 2ε1
(E(X∗)− C0). (3.15)

To bound E(X∗) from above, we construct

x̃i = ε1 + (1− 2ε1)
i

N
, i = 0, . . . , N, (3.16)

and denote

˜̃xi =

{
x̃i, iL + 1 6 i 6 iR − 1,

xi, elsewhere.
(3.17)
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Then by the minimality of E(X∗),

E(X∗) 6E(x̃iL+1, . . . , x̃iR−1)

=C0 +
∑

06i<j6N, i<iR, j>iL

(˜̃xj − ˜̃xi)
−s

6C0 +
∑

06i<j6N, i<iR, j>iL

(x̃j − x̃i)−s

6C0 + (N + 1)

∞∑
i=1

(
(1− 2ε1)

i

N

)−s
=C0 + (1− 2ε1)−sζ(s)(N + 1)Ns,

(3.18)

where the second inequality is because when changing from ˜̃x to x̃, we have

˜̃xj − ˜̃xi =


x̃j − x̃i, iL + 1 6 i < j 6 iR − 1;

x̃j − xi > x̃j − ε1 > x̃j − x̃i i 6 iL < j 6 iR − 1;

xj − x̃i > (1− ε1)− x̃i > x̃j − x̃i iL + 1 6 i < iR 6 j;

xj − xi > (1− ε1)− ε1 > x̃j − x̃i i 6 iL < iR 6 j;

(3.19)

which includes all the cases appearing in the summation. Therefore we finish the
proof by

Fm(X) 6 (1 +
1

N
)(1− 2ε1)−s−1ζ(s)Ns+1

6 (1 +
1

N
)(1 + 2.5(s+ 1)ε1)ζ(s)Ns+1 6 (1 + ε)ζ(s)Ns+1

(3.20)

for ε1 = ε
3(s+1) 6

0.01
3(s+1) and N large enough, where the second inequality uses

(1− 2ε1)−s−1 6 (1 + 2.2ε1)s+1 6 e2.2ε1(s+1) 6 1 + 2.5(s+ 1)ε1. (3.21)

Remark 1. Under the same assumptions as in Lemma 3.1, one can show the
existence of an index iM such that PiM > (1− ε)ζ(s)Ns+1. We omit the details for
this result because it will not be used in the proof of Theorem 2.1.

4. Approximation by flat torus. For given z1(t), . . . , zN (t) satisfying (1.6), de-
fine the closest pairwise distance and the ‘maximal density’, respectively, by

δ(t) := min
16i6N

(zi+1(t)− zi(t)), ρM (t) :=
1

Nδ(t)
(4.1)

with zN+1 understood as z1. Furthermore, at a fixed time t, we set

iM := argmini(zi+1 − zi) (4.2)

as the index of the closest pair of particles. Finally, we define

d(y, z) := min
k∈Z
|y − z + k| (4.3)

as the distance between y and z on the flat torus. It is clear that d(y, z) = |y − z|
if |y − z| 6 1

2 .

Lemma 4.1. There exists r0 > 0 such that

|x(y)− x(z)| > min{1

2
d(y, z), r0}, ∀y, z. (4.4)
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r0

r0

Figure 1. The number r0 in Lemma 4.1 is the range for which
x(z) can be approximated by a local Taylor expansion near x(y)
for any fixed y.

See Figure 1 for an illustration of (4.4).

Proof. First, by the Taylor expansion

x(y)− x(z) = (y − z)x′(y) +O((y − z)2) (4.5)

we see that
1

2
|y − z| 6 |x(y)− x(z)| 6 3

2
|y − z| (4.6)

if |y − z| 6 r1 is small enough.
Consider the continuous function

F (y, z) = |x(y)− x(z)| (4.7)

defined on {(y, z) ∈ T2 : d(y, z) > r1} which is compact. Since x(z) is non-self-
intersecting, F is everywhere positive, and achieves its positive minimum on this
set, calling it r0.

To show (4.4), if d(y, z) > r1, then the definition of r0 gives

|x(y)− x(z)| > r0. (4.8)

If d(y, z) = |y − z| < r1, then (4.6) gives

|x(y)− x(z)| > 1

2
|y − z| = 1

2
d(y, z). (4.9)

Lemma 4.2. There exist CR > 0 and r0 > 0, depending on the curve x(z) and s,
such that for any y 6= z ∈ T with d(y, z) 6 r0, we have

|∇W (x(y)− x(z)) · x′(y)−W ′(y − z)(1 + κ(y)|y − z|2)| 6 CR|y − z|−s+2, (4.10)

where

κ(z) :=
s− 2

24
|x′′(z)|2. (4.11)

Furthermore,

sgn(∇W (x(y)− x(z)) · x′(y)) = sgn(W ′(y − z)). (4.12)
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If y, z and ỹ additionally satisfy ỹ − 1 < z < y < ỹ, then∣∣∣(∇W (x(y)− x(z)) · x′(y)−W ′(y − z)(1 + κ(y)|y − z|2)
)

−
(
∇W (x(ỹ)− x(z)) · x′(ỹ)−W ′(ỹ − z)(1 + κ(y)|ỹ − z|2)

)∣∣∣
6CR min{d(y, z), d(ỹ, z)}−s+1 · |y − ỹ|

(4.13)

and the same inequality holds if κ(y) is replaced by κ(ỹ).
Moreover, for any r1 > 0, there exists C0(r1) > 0 such that

|∇W (x(y)− x(z))| 6 C0(r1), ∀d(y, z) > r1. (4.14)

Proof. We assume hereafter that r0 is sufficiently small so that Lemma 4.1 applies.
Step 1: We first prove (4.10) and (4.12) with the assumption d(y, z) = |y−z| 6 r0.

By Taylor expansion for |y − z| small,

x(y)− x(z) = (y − z)x′(y)− (y − z)2
2

x′′(y) +
(y − z)3

6
x′′′(y) +O((y − z)4) (4.15)

where the error term involves ‖x(4)‖L∞ . Since the curve length parametrization
satisfies |x′(z)| = 1, one obtains

x′′(z) · x′(z) = 0, x′′′(z) · x′(z) + |x′′(z)|2 = 0 (4.16)

by differentiating with respect to z. Then we have

|x(y)− x(z)|2 =(y − z)2
[
1 + (y − z)2

(1

3
x′(y) · x′′′(y) +

1

4
|x′′(y)|2

)
+O((y − z)3)

]
=(y − z)2

[
1− (y − z)2 1

12
|x′′(y)|2 +O((y − z)3)

]
,

(4.17)

and

(x(y)− x(z)) · x′(y) =(y − z)
[
1 + (y − z)2 1

6
x′(y) · x′′′(y) +O((y − z)3)

]
=(y − z)

[
1− (y − z)2 1

6
|x′′(y)|2 +O((y − z)3)

]
.

(4.18)

Also, when r0 is small, we have O((y − z)2) 6 1/2, and thus (4.17) implies

|x(y)− x(z)|−s−2

= |y − z|−s−2
[
1− (y − z)2−s− 2

2
· 1

12
|x′′(y)|2 +O((y − z)3)

]
.

(4.19)

Multiplying this with (4.18) gives

∇W (x(y)− x(z)) · x′(y)

=|x(y)− x(z)|−s−2(x(y)− x(z)) · x′(y)

=|y − z|−s−2(y − z)
[
1 + (y − z)2 s− 2

24
|x′′(y)|2 +O((y − z)3)

]
and (4.10) with |y− z| 6 r0 follows. Then (4.12) follows from the fact that |W ′(y−
z)(1 + κ(y)|y− z|2)| > |y− z|−s−1/2 > CR|y− z|−s+2 when |y− z| is small enough.
Step 2: Here we prove (4.14).
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If |y−z| > r1, then by Lemma 4.1, there exists constant r′1 = min{r1/2, r0/2} > 0
such that

|x(y)− x(z)| > r′1. (4.20)

Then it follows that

|∇W (x(y)− x(z))| = |x(y)− x(z)|−s−1 6 (r′1)−s−1 =: C0(r1). (4.21)

This gives (4.14).
Step 3: Finally we prove (4.13).

We define a function1

φ(z) = ∇W (x(z)− x(z)) · x′(z)−W ′(z − z)(1 + κ(y)|z − z|2) (4.22)

and then the LHS of (4.13) is |φ(y)− φ(ỹ)| = |φ′(ξ)| · |ỹ − y| for some ξ ∈ (y, ỹ).
Write ξ = y+α(ỹ− y), 0 6 α 6 1. By assumption, d(y, z) = y− z 6 r0 is small.

Therefore

|ξ − z| = |y − z|+ α|ỹ − y| ∈ [ |y − z|, 2r0] (4.23)

since both y − z and ỹ − y are positive.
Then we compute

φ′(ξ) =x′(ξ)T · ∇2W (x(ξ)− x(z)) · x′(ξ) +∇W (x(ξ)− x(z)) · x′′(ξ)
−W ′′(ξ − z)(1 + κ(y)|ξ − z|2)−W ′(ξ − z)κ(y) · 2(ξ − z)

(4.24)

where

∇2W (x̄) = −|x̄|−s−2I + (s+ 2)|x̄|−s−4x̄x̄T , x̄ := x(ξ)− x(z). (4.25)

Therefore, using |x′(ξ)| = 1,

φ′(ξ) =− |x̄|−s−2 + (s+ 2)|x̄|−s−4(x′(ξ) · x̄)2 − |x̄|−s−2(x′′(ξ) · x̄)

− (s+ 1)|ξ − z|−s−2(1 + κ(y)|ξ − z|2)

+ |ξ − z|−s−2(ξ − z)κ(y) · 2(ξ − z)

=|x̄|−s−2
[
− 1 + (s+ 2)|x̄|−2(x′(ξ) · x̄)2 − (x′′(ξ) · x̄)

]
− (s+ 1)|ξ − z|−s−2(1 + κ(y)|ξ − z|2)

+ |ξ − z|−s−2(ξ − z)κ(y) · 2(ξ − z)

(4.26)

1As auxiliary functions, φ may refer to different functions in different proofs.
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(4.16), (4.18) and (4.19) with y replaced by ξ (which is allowed since |z − ξ| 6 2r0,
by replacing r0 with a smaller one if necessary), give

φ′(ξ)

= |ξ − z|−s−2 ·
[
1− (ξ − z)2−s− 2

2

1

12
|x′′(ξ)|2 +O

]
·
[
− 1 + (s+ 2)

(
1 + (ξ − z)2 1

12
|x′′(ξ)|2 +O

)
·
(
1− (ξ − z)2 1

6
|x′′(ξ)|2 +O

)2

+ (ξ − z)2 1
2
|x′′(ξ)|2 +O

]
− (s+ 1)|ξ − z|−s−2(1 + κ(y)|ξ − z|2) + |ξ − z|−s−2(ξ − z)κ(y) · 2(ξ − z)

= |ξ − z|−s−2 ·
[
(s+ 1)

+ (ξ − z)2 ·
(
(s+ 1)

s+ 2

24
+
s+ 2

12
− s+ 2

3
+

1

2

)
|x′′(ξ)|2 +O

]
− |ξ − z|−s−2

[
(s+ 1) + (ξ − z)2 ·

(
(s+ 1)κ(y)− 2κ(y)

)
+O

]
= |ξ − z|−s−2 ·

[
(ξ − z)2(s− 1)κ(ξ)− (ξ − z)2(s− 1)κ(y) +O

]
= O(|ξ − z|−s+1)

where O refers to O((ξ − z)3), and in the last equality we used |κ(y) − κ(ξ))| 6
‖κ′‖L∞ · |y − ξ| 6 ‖κ′‖L∞ · |y − ỹ|. This gives (4.13).

When replacing κ(y) by κ(ỹ), the total change on the LHS of (4.13) is no more
than O(|y − z|−s−1 · |y − z|2 · |y − ỹ|) since |κ(y) − κ(ỹ)| 6 ‖κ′‖L∞ · |y − ỹ|, thus
controled by the RHS.

Lemma 4.3. For any ε > 0, there exists (large) N0, depending on ε, s and the
curve x(z), such that the following holds for N > N0 and any positions of the
particles Z = {z1, . . . , zN}:

ζ̃(s)(1− ε) 6 E(Z) 6 ζ̃(s)(1 + ε)ρsM (4.27)

Proof. We first prove the right-hand inequality of (4.27). We rewrite (1.4)

2E(Z) = N−s−1
∑
i

∑
j 6=i

W (x(zi)− x(zj)). (4.28)

For each fixed i, let iL, . . . , iR be the indices j with |zi − zj | 6 r0, where r0 > 0 is
a small constant to be chosen such that Lemma 4.1 applies. From Lemma 4.2 we
can write

|x(zi)− x(zj)|−s = |zi − zj |−s(1 +O((zi − zj)2)), (4.29)

for j = iL, . . . , iR with j 6= i. Since zj+1 − zj > δ for all j, we have

|zi − zj | > |j − i|δ. (4.30)
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For those j with d(zi, zj) > r0, Lemma 4.1 gives |x(zi)− x(zj)| > r0/2. Therefore

s
∑
j 6=i

W (x(zi)− x(zj))

6
∑

iL6j6iR, j 6=i

|zi − zj |−s(1 +O((zi − zj)2)) + CNr−s0

6(1 +O(r20))
∑

iL6j6iR, j 6=i

(|j − i|δ)−s + CNr−s0

6(1 +O(r20))2ζ(s)δ−s + CNr−s0 .

(4.31)

Summing over i, this gives

E(Z) 6 (1 +O(r20))ζ̃(s)N−sδ−s + CN1−sr−s0

= (1 +O(r20))ζ̃(s)ρsM + CN1−sr−s0 ,
(4.32)

where ρM is defined in (4.1). We first take r0 small enough so that r20 6 cε, and
then N large enough so that CN1−sr−s0 6 ε, and the conclusion is obtained (since
ρM > 1).

Finally, inequalities (7.3) and (7.6) proved later in Section 7 imply that the left-
hand inequality in (4.27) holds for N for sufficiently large.

5. Control on the closest pair. In this section we analyze the evolution of the
closest pairwise distance δ as defined in (4.1). We first give an unconditional lower
bound of d

dtδ.

Lemma 5.1. There holds

d

dt
δ > −CN−sN∗δ−s+2, N∗ :=


1, s > 2;

logN, s = 2;

N−s+2, 1 < s < 2/

(5.1)

Proof. We first compute the time derivative of δ:

Ns d

dt
(ziM+1 − ziM )

= −
∑

j 6=iM+1

∇W (x(ziM+1)− x(zj)) · x′(ziM+1)

+
∑
j 6=iM

∇W (x(ziM )− x(zj)) · x′(ziM )

= ∇W (x(ziM )− x(ziM+1)) · x′(ziM )

+∇W (x(ziM )− x(ziM+1)) · x′(ziM+1)

+
∑

j 6=iM ,iM+1

(
∇W (x(ziM )− x(zj)) · x′(ziM )

−∇W (x(ziM+1)− x(zj)) · x′(ziM+1)
)
.

(5.2)

See Figure 2 left as an illustration.
Now we estimate the summand in the last term of (5.2) for each j, see Figure 2

top for an illustration. First notice that if d(z, ziM ) > r0 and d(z, ziM+1) > r0, then
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ziM

ziM+1

zj

�
ziM

ziM+1

· · ·
· · ·

a possible defect?

�

Figure 2. Lemmas 5.1 and 5.2. Left: the summand in the last
term of (5.2). The two terms representing the forces from zj acting
on ziM (red) and ziM+1 (blue), which decreases/increases δ respec-
tively. Right: a local uniform distribution like {z̃j} makes d

dtδ ≈ 0
up to errors from curvature. A possible defect will release the total
pushing force on δ, make d

dtδ positive, and thus violate (5.11).

Lemma 4.1 implies that |x(z) − x(u)| is uniformly bounded below by some r1 > 0
for any ziM 6 u 6 ziM+1. Then

|∇W (x(ziM )− x(z)) · x′(ziM )−∇W (x(ziM+1)− x(z)) · x′(ziM+1)|

=
∣∣∣ ∫ ziM+1

ziM

(
x′(u)T∇2W (x(u)− x(z))x′(u)

+∇W (x(u)− x(z)) · x′′(u)
)

du
∣∣∣

6 Cδ, ∀z with d(z, ziM ) > r0, d(z, ziM+1) > r0.

(5.3)

Then we deal with the case z ∈ (ziM − r0, ziM ). In view of (4.13), we need to
estimate the following quantity:

−φ(z) := W ′(ziM − z)(1 + κ(ziM )|ziM − z|2)

−W ′(ziM+1 − z)(1 + κ(ziM )|ziM+1 − z|2)

=
(
|ziM − z|−s−1 + κ(ziM )|ziM − z|−s+1

)
−
(
|ziM+1 − z|−s−1 + κ(ziM )|ziM+1 − z|−s+1

) (5.4)

whose derivative can be expressed as

φ′(z) = ψ(ziM+1, z)− ψ(ziM , z),

ψ(y, z) := (−s− 1)|y − z|−s−2 + κ(ziM )(−s+ 1)|y − z|−s.
(5.5)

Notice that

∂yψ(y, z) =(s+ 1)(s+ 2)|y − z|−s−3 + κ(ziM )(s− 1)s|y − z|−s−1

=|y − z|−s−3
(

(s+ 1)(s+ 2)− κ(ziM )(s− 1)s|y − z|2
)
> 0

(5.6)

if |y − z| is small. Thus φ′(z) > 0 since r0 < ziM < ziM+1 and all three points are
within a distance of r0 + δ 6 r0 + 1

N which is small.
Let iL, . . . , iR be the indices j with |ziM − zj | 6 r0. Define the uniform configu-

ration with spacing δ:

z̃j := ziM − (iM − j)δ, iL 6 j 6 iM − 1
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and notice that zj 6 z̃j by definition of iM . With Ij :=
∫ z̃j
zj
φ′(z) dz, we have

iM−1∑
j=iL

(
W ′(ziM − zj)(1 + κ(ziM )|ziM − zj |2)

−W ′(ziM+1 − zj)(1 + κ(ziM )|ziM+1 − zj |2)
)

=

iM−1∑
j=iL

((
W ′(ziM − z̃j)(1 + κ(ziM )|ziM − z̃j |2)

−W ′(ziM+1 − z̃j)(1 + κ(ziM )|ziM+1 − z̃j |2)
)

+ Ij

)
=

iM−1∑
j=iL

((
W ′((iM − j)δ)(1 + κ(ziM )|(iM − j)δ|2)

−W ′((iM + 1− j)δ)(1 + κ(ziM )|(iM + 1− j)δ|2)
)

+ Ij

)
= W ′(δ)(1 + κ(ziM )δ2)

−W ′((iM + 1− iL)δ)(1 + κ(ziM )|(iM + 1− iL)δ|2) +

iM−1∑
j=iL

Ij

=− δ−s−1(1− |iM + 1− iL|−s−1)

− δ−s+1κ(ziM )(1− |iM + 1− iL|−s+1) +

iM−1∑
j=iL

Ij ,

(5.7)

where the third equality follows from a telescoping summation. Now we have (5.3)
(together with a similar equality for iM + 2, . . . , iR) and (5.7) for the RHS of (5.2).
Combining with (4.10) and (4.13), we get

Ns d

dt
(ziM+1 − ziM )

= 2δ−s−1(1 + κ(ziM )δ2) +O(δ−s+2)

+
∑

iL6j6iR
j 6=iM , iM+1

[
W ′(ziM − zj)(1 + κ(ziM )|ziM − zj |2)

−W ′(ziM+1 − zj)(1 + κ(ziM )|ziM+1 − zj |2)

+O((ziM+1 − ziM )(|j − iM |δ)−s+1)
]

+O(Nδ)
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= 2δ−s−1(1 + κ(ziM )δ2) +O(δ−s+2)

+
[
− δ−s−1(1− |iM + 1− iL|−s−1)

− δ−s+1κ(ziM )(1− |iM + 1− iL|−s+1) +

iM−1∑
j=iL

Ij

]
+
[
− δ−s−1(1− |iR − iM |−s−1)

− δ−s+1κ(ziM )(1− |iR − iM |−s+1) +

iR∑
j=iM+2

Ij

]

+O
(
δ−s+2

N∑
j=1

j−s+1
)

+O(Nδ)

= δ−s−1(|iM + 1− iL|−s−1 + |iR − iM |−s−1)

+ δ−s+1κ(ziM )(|iM + 1− iL|−s+1 + |iR − iM |−s+1)

+

iM−1∑
j=iL

Ij +

iR∑
j=iM+2

Ij +O(δ−s+2N∗) +O(Nδ),

(5.8)

where N∗ ∼
∑N
j=1 j

−s+1 is defined in (5.1). In the last expression of (5.8), we can
absorb the second term by the first term, using

δ|iM + 1− iL| 6 δ · r0
δ

6 r0 (5.9)

and the smallness of r0. The two integrals of φ′ are positive. Therefore

Ns d

dt
(ziM+1 − ziM ) > −C(N∗δ

−s+2 +Nδ). (5.10)

Then (5.1) follows directly by Nδ 6 CN∗δ
−s+2 which can be easily checked in all

three cases, using Nδ 6 1.

Next we state the following lemma: either δ(t) is increasing very fast, or at iM
the total repulsion is as large as that of a uniform distribution of particles with
spacing δ(t), which is approximately the RHS of (5.12).

Lemma 5.2. Fix ε > 0. For N > N0(ε), if

d

dt
δ 6 1, (5.11)

then
iM∑
i=iL

iR∑
j=iM+1

|zi − zj |−s−1 > ζ(s)δ−s−1(1− ε), (5.12)

where iL, . . . , iM − 1 are the indices of particles zi ∈ (ziM − r0, ziM ), and iM +
2, . . . , iR are the indices of particles zi ∈ (ziM+1, ziM+1 + r0).

Proof. We will use the same notations as the previous proof. We claim that for any
fixed J , there exists N0(ε, J) such that, N > N0 and |iM + 2− j| 6 J imply

z̃j − zj 6 εδ, ∀j = iL, . . . , iM − 1 with |iM + 2− j| 6 J (5.13)

under the condition (5.11), see Figure 2 right for an illustration.
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Suppose on the contrary that z̃j − zj > εδ for some j in the range as in (5.13).
Then by (5.5) and (5.6), for any z ∈ [z̃j−1, z̃j ],

φ′(z) =

∫ ziM+1

ziM

∂yψ(y, z) dy

=

∫ ziM+1

ziM

|y − z|−s−3
(

(s+ 1)(s+ 2)− κ(ziM )(s− 1)s|y − z|2
)

dy

> c

∫ ziM+1

ziM

|y − z̃j |−s−3 dy > cδ|ziM+1 − z|−s−3

> cδ−s−2|iM + 2− j|−s−3,

(5.14)

where in the first inequality the second term in the integrand is absorbed by the
first term using the smallness of |y − z| 6 r0. Therefore

∫ z̃j

zj

φ′(z) dz >
∫ z̃j

max{zj ,z̃j−1}
φ′(z) dz > min{δ, z̃j − zj}φ′(z̃j−1)

>min{δ, z̃j − zj}δ−s−2|iM + 2− j|−s−3.
(5.15)

Therefore, if z̃j − zj > εδ, then

∫ z̃j

zj

φ′(z) dz > cεδ−s−1|iM + 2− j|−s−3 (5.16)

which gives

d

dt
(ziM+1 − ziM ) >N−s

(
cεδ−s−1|iM + 2− j|−s−3 +O(N∗δ−s+2) +O(Nδ)

)
=cε(Nδ)−s−1|iM + 2− j|−s−3N +O((Nδ)−sN∗δ

2) +O(N−s(Nδ))

(5.17)

in view of (5.8). Notice that Nδ 6 1, N∗δ 6 1, and |iM + 2 − j|−s−3 > J−s−3.
Therefore, by taking N large (in terms of ε and J), the first term can absorb the
other two terms and gives

d

dt
(ziM+1 − ziM ) > cε(Nδ)−s−1J−s−3N > 2 (5.18)

which contradicts (5.11) if N is large enough. Therefore we proved (5.13).
Similarly one can show that zj−z̃j 6 εδ for j = iM+2, . . . , iR with |j+1−iM | 6 J ,

and also iM − iL > J, iR − 1− iM > J .
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Now we aim to show (5.12). In fact, (5.13) gives

iM∑
i=iL

iR∑
j=iM+1

|zi − zj |−s−1

>
iM∑

i=iM−J+1

iM+J∑
j=iM+1

|(z̃j + εδ)− (z̃i − εδ)|−s−1

= δ−s−1
iM∑

i=iM−J+1

iM+J∑
j=iM+1

|j − i+ 2ε|−s−1

> δ−s−1
iM∑

i=iM−J+1

iM+J∑
j=iM+1

(|j − i|−s−1 − (s+ 1)|j − i|−s−22ε)

> δ−s−1

 iM∑
i=iM−J+1

iM+J∑
j=iM+1

|j − i|−s−1 − Cε



(5.19)

where in the second inequality we used the convexity of the function x 7→ |x|−s−1,
and in the third inequality we used the convergence of the series

∑iM
i=−∞

∑∞
j=iM+1 |j−

i|−s−2. Since
∑iM
i=−∞

∑∞
j=iM+1 |j − i|−s−1 = ζ(s), one can take J = J(ε) large

enough so that
iM∑

i=iM−J+1

iM+J∑
j=iM+1

|j − i|−s−1 > ζ(s)− ε,

and then (5.12) follows.

6. Proof of Theorem 2.1.

Proof of Theorem 2.1. Step 1: We aim to give a positive lower bound∑
iM+16i6iS

żi > λ(ρM )N (6.1)

(where ρM is defined in (4.1)) under the assumption (5.11), where

λ(ρM ) =

{
c(ρM − 1− ε), ρM 6 2

cρs+1
M

(6.2)

for some indices iM and iS . Notice that the assumption (5.11) is equivalent to

d

dt
ρM > −N−1δ−2 = −Nρ2M (6.3)

since ρM = 1
Nδ , see Figure 3 for an illustration.

Using the same notation as in the proof of Lemma 5.2 (with the same choice of
J), we have (5.13) from (5.11). We take i1 = iM − J and i2 = iM + J . Then we
have ∑
i16i6iM<j6i2

(zj − zi)−s−1 > ζ(s)δ−s−1(1− ε

100
) = ζ(s)(1− ε

100
)(NρM )s+1. (6.4)

Then we take i′1 = i2 + 1 and i′2 = i1 +N − 1, which satisfy

i′2 − i′1 > N − 2J − 2 >
N

2
(6.5)
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ziM
ziM+1

�

ziM
ziM+1

ziS

ziS+1

strong

total


repulsion

weak

total


repulsion

(1) (2)

(3)

(4)

zi1 zi2
zi01

zi02

Figure 3. Proof of Theorem 2.1. Left: when (5.11) does not hold,
δ is increasing very fast (i.e., ρM is decreasing very fast). Right:
when (5.11) holds, there is almost uniform distribution near ziM
(red parts) with average density near ρM , and the total repulsion
at ziM is strong (see (5.12)). The rest part has average density at
most 1 + ε, and Lemma 3.1 applies to give a weak total repulsion
cut. The strong/weak total repulsion ((1)-(2) good contribution,
I1, and (3)-(4) bad contribution, I2, see (6.9)) forces the green part
to rotate. The parameter r1 is to guarantee that (3) or (4) cannot
be too short, so that the possible bad contribution from (1)-(4) or
(2)-(3) (the term I3) can be neglected.

if N is large. Also, by (5.13) we have zi′1 − ziM 6 (J + 1 + ε)δ 6 J+1+ε
N and

ziM − (zi′2 − 1) 6 J+1+ε
N , which implies

zi′2 − zi′1 > 1− 2(J + 1 + ε)

N
> 1− ε

100
(6.6)

if N is large.
Then Lemma 3.1 (with suitable rescaling) applied to i′1, . . . , i

′
2 gives: there exists

an index iS such that ∑
i′16i6iS<j6i

′
2

(zj − zi)−s−1 6 (1 +
ε

100
)ζ(s)Ns+1 (6.7)

and

(ziS , ziS+1) ∩ (zi′1 + r1, zi′2 − r1) 6= ∅, r1 =
ε

600(s+ 1)
. (6.8)

Now we prove (6.1).∑
iM+16i6iS

żi =−N−s
∑

iM+16i6iS

∑
iS+16j6iM+N

∇W (x(zi)− x(zj)) · x′(zi)

=−N−s
( ∑
i16j6iM<i6i2

+
∑

i′16i6iS<j6i
′
2

+
∑
others

)
=:N−s(I1 + I2 + I3).

(6.9)
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Every term in I1 satisfies 0 < zi − zj 6 2Jδ 6 2J
N which is small. Thus by

applying (4.10),

I1 >
∑

i16j6iM<i6i2

((zi − zj)−s−1 +R1,ij) (6.10)

with |R1,ij | 6 CR(zi − zj)−s+1.
For the terms in I2, if zj−zi > 1

2 and d(zi, zj) < r0, then d(zi, zj) = d(zi, zj−1) =
zi − (zj − 1), and then by (4.12) applied to zi and (zj − 1), we have ∇W (x(zi) −
x(zj)) · x′(zi) < 0 which makes its contribution in (6.9) positive. If |zj − zi| > r0
then |∇W (x(zi)−x(zj)) ·x′(zi)| 6 C by (4.14). Combined with a similar argument
as above for the case d(zi, zj) = zj − zi < r0, we get

I2 > −
∑

i′16i6iS<j6i
′
2

((zj − zi)−s−1 +R2,ij)− CN2 (6.11)

with |R2,ij | 6 CR(zj − zi)−s+1.
We first bound I1 from below. In fact, there exists C = C(ε) such that

|R1,ij | 6 CR(zi − zj)−s+1 6
ε

100
(zi − zj)−s−1 + C(ε). (6.12)

Combining with (6.4) we get

I1 >
∑

i16j6iM<i6i2

(1− ε

100
)(zi − zj)−s−1 −C(ε)N2 > (1− ε

100
)2ζ(s)(NρM )s+1 −C(ε)N2.

Similarly

I2 > −(1 +
ε

100
)2ζ(s)(N(1 + ε))s+1 − C(ε)N2.

To bound I3, we recall the definition of r1 in (6.8). We notice that for i ∈
[iM+1, iS ] and j ∈ [iS+1, iM+N ], if d(zi, zj) 6 r1 and∇W (x(zi)−x(zj))·x′(zi) > 0,
then by (4.13) one necessarily has zj ∈ [zi, zi + r1]. The only possibility for this
to happen is when zi ∈ [ziS+1 − r1, ziS+1] and zj ∈ [ziS , ziS + r1]. But by (6.8),
[ziS+1 − r1, ziS+1] ⊂ [zi2 , ziS+1] and [ziS , ziS + r1] ⊂ [ziS , zi′1 ], and thus the term in
(6.9) with indices (i, j) is already included in I2. Therefore, every term in I3 has
either d(zi, zj) > r1 or ∇W (x(zi)− x(zj)) · x′(zi) 6 0, and thus

I3 > −C(ε)N2

by (4.14) (where the ε-dependence comes from that of r1).
In conclusion, we get∑
iM+16i6iS

żi >
(

(1− ε

100
)2ρs+1

M − (1 +
ε

100
)2(1 + ε)s+1

)
ζ(s)N − C(ε)N−s+2.

Now we show that the quantity in the big parenthesis above is bounded below. In
fact, using ε < 1,

(1− ε

100
)2ρs+1

M − (1 +
ε

100
)2(1 + ε)s+1

>
1

2
(ρM − 1− 2ε) + (1− ε

100
)2(1 + 2ε)s+1 − (1 +

ε

100
)2(1 + ε)s+1

>
1

2
(ρM − 1− 2ε) + (1 + ε)s+1((1− ε

100
)2(1 +

ε

2
)− (1 +

ε

100
)2)

>
1

2
(ρM − 1− 2ε).
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Therefore, we get∑
iM+16i6iS

żi >
1

2
(ρM − 1− 2ε)ζ(s)N − C(ε)N−s+2 >

1

4
(ρM − 1− 3ε)ζ(s)N

if N is large. Also, if ρM > 2, then

(1− ε

100
)2ρs+1

M − (1 +
ε

100
)2(1 + ε)s+1

>
1

4
ρs+1
M + 2s(1− ε

100
)2 − (1 +

ε

100
)2(1 + ε)s+1 >

1

4
ρs+1
M

and we get ∑
iM+16i6iS

żi > cρs+1
M N (6.13)

if N is large.
Step 2: We use (6.1) (under the condition (6.3)) to give energy dissipation rate,
and use it to define a Lyapunov-like functional.

If ρM − 1− ε > 0, then Cauchy-Schwarz gives

c2(ρM − 1− ε)2N2 6
( ∑
iM+16i6iS

żi

)2
6 (iS − iM )

∑
iM+16i6iS

|żi|2 6 N
∑
i

|żi|2.

Recalling the energy dissipation law (1.5), we get

d

dt
E(t) 6 −c2((ρM − 1− ε)>0)2, if

d

dt
ρM > −Nρ2M (6.14)

and similarly

d

dt
E(t) 6 −c2ρ2(s+1)

M , if
d

dt
ρM > −Nρ2M , ρM > 2. (6.15)

Since ρM = 1
Nδ , Lemma 5.1 gives

d

dt
ρM = − 1

Nδ2
· d

dt
δ 6 CN−1δ−2 ·N−sN∗δ−s+2 =

CN∗
N

ρsM . (6.16)

Define a Lyapunov-like functional

F (t) = E(t) + ρM (t)s. (6.17)

Then at any time t with ρM (t) > 1 + 2ε, at least one of the following three options
must hold:

• When d
dtρM < −Nρ2M , using d

dtE 6 0,

d

dt
F 6 −sNρs+1

M . (6.18)

• When d
dtρM > −Nρ2M and ρM > 2, (6.15) and (6.16) give

d

dt
F 6 −cρ2s+2

M +
CN∗
N

ρ2s−1M 6 −cρ2s+2
M (6.19)

by taking N large, since ρM > 1 always holds and limN→∞
N∗
N = 0.

• When d
dtρM > −Nρ2M and 1+2ε 6 ρM < A (with A > 2 an absolute constant

to be determined), (6.14) and (6.16) give

d

dt
F 6 −c(ρM − 1− ε)2 +

CN∗
N

ρ2s−1M 6 −c(ρM − 1− 2ε)2 (6.20)

by taking N large (which may depend on A).
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Step 3: We use the functional F to give convergence rate of ρM to 1 up to an error
of O(ε).

Let T1 be the first time such that ρM 6 2, and we aim to estimate T1. For
0 6 t 6 T1, either (6.18) or (6.19) happens. Recall that E 6 CρsM from Lemma
4.3, and therefore we have

d

dt
F 6 −cF s+1

s . (6.21)

Since s+1
s > 1, there exists an absolute constant CT,1 (independent of F (0)) such

that F (CT,1) 6 1/2 if the above ODE holds for 0 6 t 6 CT,1, which contradicts the
fact that F > 1. Therefore there must hold

T1 6 CT,1. (6.22)

Then we have the estimate

F (T1) 6 CρM (T1)s 6 C2s =: As (6.23)

where A is the constant appeared in the condition of (6.20).
Let T2 be the first time such that ρM 6 1 + Bε, where B > 2 is a positive

constant to be determined. For T1 6 t 6 T2, if ρM (t) 6 A, then either (6.18) or
(6.20) happens, and we have

d

dt
F 6 −c(ρM − 1− 2ε)2. (6.24)

This in particular implies F (t) 6 As for T1 6 t 6 T2, which in turn implies the
assumption ρM (t) 6 A. Then

ρM − 1− 2ε > c
(

(1 + ε)ζ̃(s) + 1
)(
ρsM − (1 + 2ε)s

)
> c

[(
(1 + ε)ζ̃(s) + 1

)(
ρsM − (1 + 2ε)s

)
+
(
E − (1 + ε)ζ̃(s)ρsM

)]
= c[F − ((1 + ε)ζ̃(s) + 1)(1 + 2ε)s]

(6.25)

where the second inequality uses Lemma 4.3. Therefore F̃ := F − ((1 + ε)ζ̃(s) +
1)(1 + 2ε)s satisfies

d

dt
F̃ 6 −cF̃ 2, T1 6 t 6 T2 (6.26)

which implies

F̃ (t) 6
1

c(t− T1) + 1
F̃ (T1)

6
1

c(t− T1) +A−s
. (6.27)

Therefore if t− T1 > C
ε with T1 6 t 6 T2, then F̃ (t) 6 ε, which implies

F (t) 6 ((1 + ε)ζ̃(s) + 1)(1 + 2ε)s + ε. (6.28)

On the other hand ρM (t) 6 1 +Bε. This together with Lemma 4.3 implies

F (t) > (1− ε)ζ̃(s) + (1 +Bε)s (6.29)

which is a contradiction against (6.28) if B is large enough (only depending on s).
Therefore we get

T2 6
C

ε
(6.30)

and then Lemma 4.3 gives

E(T2) 6 (1 + ε)ζ̃(s)ρM (T2)s 6 (1 + ε)ζ̃(s)(1 +Bε)s 6 (1 + Cε)ζ̃(s). (6.31)
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E(t) also satisfies the last inequality if t > T2, since E(t) is non-increasing.

7. Energy and distribution. Recall that the energy of a configuration parama-
trized by Z is

E = E(Z) :=
1

sNs+1

N∑
16i<j6N

|x(zj)− x(zi)|−s,

and observe that

E(Z) =
1

2sNs+1

N∑
i=1

i+N−1∑
j=i+1

|x(zj)− x(zi)|−s =
1

2sNs+1

N∑
i=1

N−1∑
k=1

|x(zi+k)− x(zi)|−s

=
1

2

N−1∑
k=1

Ek(Z),

where

Ek(Z) :=
1

sNs+1

N∑
i=1

|x(zi+k)− x(zi)|−s.

One may easily verify that Ek(Z) = EN−k(Z) for 1 6 k < N and thus

E(Z) =

{∑N−1
2

k=1 E
k(Z), for N odd,∑N

2 −1
k=1 Ek(Z) + (1/2)EN/2(Z), for N even.

(7.1)

For 1 6 k 6 N − 1, we define

Ẽk(Z) :=
1

sNs+1

N∑
i=1

(zi+k − zi)−s,

and

Ẽ(Z) =

{∑N−1
2

k=1 Ẽ
k(Z), for N odd,∑N

2 −1
k=1 Ẽk(Z) + (1/2)ẼN/2(Z), for N even.

(7.2)

Since x(z) is an arc-length parametrization, we have |x(z)− x(z′)| 6 |z − z′| for
all z, z′ ∈ R and thus

Ẽ(Z) 6 E(Z), (7.3)

for any Z. Let

ζ(s;N) :=

bN−1
2 c∑

k=1

k−s. (7.4)

Lemma 7.1. For k,N ∈ N and s > 0,

s−1k−s 6 Ẽk(Z) 6 k−sẼ1(Z), (7.5)

and
s−1ζ(s;N) 6 Ẽ1(Z) + s−1(ζ(s;N)− 1) 6 Ẽ(Z). (7.6)

Proof. By Jensen’s inequality,

sNs+1Ẽ1(Z) =

N∑
i=1

(zi+1 − zi)−s =
1

k

k−1∑
j=0

N∑
i=1

(zi+j+1 − zi+j)−s

=

N∑
i=1

1

k

k−1∑
j=0

(zi+j+1 − zi+j)−s > sNs+1ksẼk(Z),
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and

Ẽk(Z) = s−1N−s
N∑
i=1

(zi+k − zi)−s
1

N
> s−1

(
N∑
i=1

(zi+k − zi)
)−s

= s−1k−s,

proving (7.5). From (7.2), it follows that Ẽ(Z) >
∑bN−1

2 c
k=1 Ẽk(Z) which together

with (7.5) establishes (7.6).

In the next lemma we show that the mean absolute deviation of the neighbor ar-
clength distances di := zi+1−zi is small on the microscopic scale. As a consequence
we derive a macroscopic result showing that the density of points is nearly uniform
when N is sufficiently large and the energy is sufficiently close to its minimal value.

Lemma 7.2. Let ε > 0, s > 1, N > 2, and define

∆ := 2

(
2ζ(s)

s(s+ 1)

)1/2

. (7.7)

If Z = (z1, z2, . . . , zN ) satisfies

Ẽ(Z) 6 s−1ζ(s;N)(1 + ε), (7.8)

then the mean absolute deviation of di := zi+1 − zi, i = 1, 2, . . . , N , satisfies

1

N

N∑
i=1

∣∣∣∣di − 1

N

∣∣∣∣ 6 ∆ε1/2

N
. (7.9)

Proof. Inequalities (7.6) and (7.8) imply

sẼ1(Z) 6 1 + ζ(s;N)ε. (7.10)

We write Ẽ1(Z) as

Ẽ1(Z) =
1

Ns+1

∑
i

W (di), W (x) :=
x−s

s
. (7.11)

The Taylor expansion of W at 1
N gives

W (di) = W (
1

N
) +W ′(

1

N
)(di −

1

N
) +

1

2
W ′′(ξi)(di −

1

N
)2, (7.12)

where ξi is between di and 1
N . Substituting into the previous equation gives

sẼ1(Z) =
s

Ns+1

∑
i

(
W (

1

N
) +W ′(

1

N
)(di −

1

N
) +

1

2
W ′′(ξi)(di −

1

N
)2
)

=
s

Ns+1

∑
i

W (
1

N
) +W ′(

1

N
)

s

Ns+1

∑
i

(di −
1

N
)

+
s

2Ns+1

∑
i

W ′′(ξi)(di −
1

N
)2

=1 +
1

2
· s

Ns+1

∑
i

W ′′(ξi)(di −
1

N
)2,

(7.13)

using
∑
i di = 1 =

∑
i

1
N . Combined with (7.10), we get

1

2
· s

Ns+1

∑
i

W ′′(ξi)(di −
1

N
)2 6 ζ(s;N)ε. (7.14)



5534 DOUGLAS HARDIN, EDWARD B. SAFF, RUIWEN SHU AND EITAN TADMOR

Notice that for every i with di < 1/N , we have ξi ∈ (di,
1
N ), and thus

W ′′(ξi) = (s+ 1)ξ−s−2i > (s+ 1)Ns+2. (7.15)

Therefore,

1

N

∑
i: di<1/N

∣∣∣∣di − 1

N

∣∣∣∣ 6
 1

N

∑
i: di<1/N

∣∣∣∣di − 1

N

∣∣∣∣2
1/2

6

 1

(s+ 1)Ns+3

∑
i: di<1/N

W ′′(ξi)

∣∣∣∣di − 1

N

∣∣∣∣2
1/2

6

(
1

(s+ 1)Ns+3
· 2Ns+1

s
ζ(s;N)ε

)1/2

=

(
2ζ(s;N)

s(s+ 1)

)1/2
ε1/2

N
.

(7.16)

Combined with the fact that

1

N

∑
i

∣∣∣∣di − 1

N

∣∣∣∣ = 2 · 1

N

∑
i: di<1/N

∣∣∣∣di − 1

N

∣∣∣∣ , (7.17)

we obtain the conclusion.

We next show that the macroscopic density must be nearly uniform when the
energy is nearly optimal.

Lemma 7.3. Let 0 < ε < 1, s > 1, and N > 2−s+1(s+1)ε−1. If Z = (z1, z2, . . . , zN )
satisfies

Ẽ(Z) 6 s−1ζ(s;N)(1 + ε), (7.18)

then for all a ∈ R and 0 < L < 1,∣∣∣∣#{i : [zi, zi+1) ⊂ [a, a+ L)}
N

− L
∣∣∣∣ 6 [L(1− L)ζ̃(s)

]1/2
(2ε)1/2. (7.19)

Proof. First, we may assume L 6 1/2, since one can reduce the case L > 1/2 to
L 6 1/2 by replacing [a, a+ L) by [a+ L, a+ 1).

Let M := #{i : zi ∈ [a, b]}, J1 := {i ∈ Z : a 6 zi < zi+1 < b}, J2 := {i ∈ Z : b 6
zi < zi+1 < a+ 1)}, N1 := #J1, N2 := #J2, and α = N1/N . If 0 < M < N , then
N1 = M − 1 and N2 = N −M − 1 so that N1 +N2 = N − 2. If M = 0 or M = N ,
then N1 +N2 = N −1. Thus, N −N1−2 6 N2 6 N −N1−1. Using the conditions
ε < 1 and L 6 1/2, it is straightforward to show that N2 is always positive for
sufficiently large N . We also observe that

∑
i∈J1 di 6 L and

∑
i∈J2 di 6 1 − L.
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Therefore, by Jensen’s inequality, when N1 > 0,

sẼ1(Z) >
1

Ns+1

∑
i∈J1

d−si +
1

Ns+1

∑
i∈J2

d−si

>
N1

Ns+1

(
1

N1

∑
i∈J1

di

)−s
+

N2

Ns+1

(
1

N2

∑
i∈J2

di

)−s

>
N1

Ns+1

(
L

N1

)−s
+

N2

Ns+1

(
1− L
N2

)−s
=αs+1L−s + (1− 2

N
− α)s+1(1− L)−s

>αs+1L−s + (1− α)s+1(1− L)−s − 2(s+ 1) · 2−s
N

and it is clear that the last inequality is also true when N1 = 0. Using now the
convexity of x→ xs, we have

sẼ1(Z) +
2(s+ 1) · 2−s

N

> α(α/L)s + (1− α)((1− α)/(1− L))s >

(
α2

L
+

(1− α)2

1− L

)s
=

(
1 +

(α− L)2

L(1− L)

)s
> 1 +

s

L(1− L)
(α− L)2.

(7.20)

As in the proof of Lemma 7.2, inequalities (7.6) and (7.18) imply that (7.10)

holds. By assumption, 2(s+1)·2−s

N 6 ε 6 ζ(s;N)ε. So, in light of (7.20), we obtain

(α− L)2 6 2εζ(s;N)L(1− L)/s 6 ζ̃(s)L(1− L) · 2ε,
which, gives (7.19).

Theorem 2.2 follows directly from Lemmas 7.2 and 7.3.

Proof of Theorem 2.2. Let N0 be large enough so that (1 + ε)ζ(s)/ζ(s;N0) 6 (1 +
2ε). From (7.3), we have

Ẽ(Z) 6 E(Z) 6 ζ̃(s)(1 + ε) 6 s−1ζ(s;N)(1 + 2ε).

Then Lemma 7.2 implies (2.4) while Lemma 7.3 shows that (2.5) holds.
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