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Abstract. We study the long-time hydrodynamic behavior of systems of multi-species

which arise from agent-based description of alignment dynamics. The interaction between

species is governed by an array of symmetric communication kernels. We prove that the

crowd of different species flocks towards the mean velocity if (i) cross interactions form a

heavy-tailed connected array of kernels, while (ii) self-interactions are governed by kernels

with singular heads. The main new aspect here is that flocking behavior holds without

closure assumption on the specific form of pressure tensors. Specifically, we prove the

long-time flocking behavior for connected arrays of multi-species, with self-interactions

governed by entropic pressure laws (see E. Tadmor [Bull. Amer. Math. Soc. (2023),

to appear]) and driven by fractional p-alignment. In particular, it follows that such

multi-species hydrodynamics approaches a mono-kinetic description. This generalizes

the mono-kinetic, “pressure-less” study by He and Tadmor [Ann. Inst. H. Poincaré C

Anal. Non Linéaire 38 (2021), pp. 1031–1053].

Contents

1. Introduction — alignment dynamics of multi-species 260

2. Swarming and long-time flocking behavior 263

3. Self-interactions based on fractional p-alignment 266

Appendix A. From agent-based to hydrodynamic description 270

Received August 26, 2022, and, in revised form, September 3, 2022.
2020 Mathematics Subject Classification. Primary 35Q35, 76N10, 92D25.
Key words and phrases. Swarming, p-alignment, multi-species, connectivity, flocking.
This research was supported by ONR grant N00014-2112773.
The corresponding author is Eitan Tadmor.
Email address: jlu1@umd.edu
Email address: tadmor@umd.edu

c©2022 Brown University

259

Licensed to Univ of Maryland, College Park. Prepared on Fri Mar 10 23:32:26 EST 2023 for download from IP 129.2.90.146.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

https://www.ams.org/qam/
https://doi.org/10.1090/qam/1639


260 JINGCHENG LU AND EITAN TADMOR

Appendix B. Flocking of strong solutions — proof of theorem 2.1 275

Appendix C. An improved dispersion bound 276

References 277

1. Introduction — alignment dynamics of multi-species.

1.1. Hydrodynamic description of multi-species. We study the long-time behavior of

the multi-species hydrodynamics{
∂tρα +∇x · (ραuα) = 0,

∂t(ραuα) +∇x · (ραuα ⊗ uα + Pα) = Aα(ρ,u),
(t,x) ∈ (Rt,R

d), (1.1a)

subject to initial data (ρα,uα,Pα)|t=0
= (ρα0,uα0,Pα0). The different species, tagged by

the (possibly infinite) index-set α ∈ I, are quantified by their density, ρα : Rt×R
d �→ R+,

momentum, ραuα : Rt × R
d �→ R

d, and pressure tensor, Pα : Rt × R
d �→ R

d × R
d. Each

species occupies a distinct ‘patch’ of mass Mα(t) supported on Sα(t),

Mα(t) =

∫
Sα(t)

ρα(t,x) dx, Sα(t) := suppρα(t, ·).

The dynamics is driven by inter-species interactions due to alignment, dictated by a

symmetric array of symmetric communication kernels, Φ = {φαβ(x,x
′)},

Aα(ρ,u) :=
∑
β∈I

∫
Sα(t)

φαβ(x,x
′)(uβ(t,x

′)− uα(t,x))ρα(t,x)ρβ(t,x
′) dx′. (1.1b)

Thus, what distinguishes species α is the way it communicates with the other species,

through symmetric kernels φαβ , β ∈ I,

φαβ(x,x
′) = φαβ(x

′,x), φαβ(x,x
′) = φβα(x,x

′), (1.1c)

while self-interactions within the same species are governed by φαα, α ∈ I. There is a

special role for metric kernels where communication is dictated by the distance |x−x′|. In
this context we assume the existence of a symmetric array of radially decreasing kernels,

K := {kαβ(r)}, such that

φαβ(x,x
′) � kαβ(|x− x′|), kβα = kβα � 0, α, β ∈ I. (1.1d)

We use the standard notation Φ � K to abbreviate (1.1d). This covers the prototypical

case ofmetric kernels, φαβ(x,x
′) = kαβ(|x−x′|), with decreasing intensity of communica-

tion as a function of the distance, e.g., φαβ(r) = (1+r)−η in [CS2007a]. In particular, we

address general non-decreasing metric kernels, φαβ(| · |), in terms of their decreasing enve-

lope kαβ(r) := min{φαβ(|x|) | |x| � r}. The variety of different classes of communication

kernels reflects large literature on collective dynamics which arises in different disciplines

[Aok1982, VCBCS1995, CF2003, CS2007a, CDMBC2007, Bal2008, CFL2009, Ka2011,

MT2011,GWBL2012,MCEB2015,JJ2015,LZTM2019,MLK2019,ST2020b,ST2021]. The

different species are viewed as moving ‘patches’ of different crowds with mass and mo-

mentum which interact according to the alignment protocol (1.1). We make the following
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HYDRODYNAMIC ALIGNMENT WITH PRESSURE II. MULTI-SPECIES 261

three assumptions about these ‘patches’. We assume that the density of species inside

their ‘patch’ remains strictly bounded away from vacuum,

min
x∈Sα(t)

ρα(t,x) � ρ− > 0, ∀α ∈ I. (H1)

Further, we assume that

Sα(t) have smooth boundary satisfying a Lipschitz or a cone condition, ∀α ∈ I.
(H2)

Finally, we assume that the boundary of each patch forms a contact discontinuity, gov-

erned by Neumann boundary conditions

uα · nα|∂Sα
= 0, Pαnα|∂Sα

= 0 and qα · nα|∂Sα
= 0, ∀α ∈ I. (H3)

In particular, it follows that there is no flux of mass for each species: integration of

(1.1a)1 implies the mass of each species is conserved

Mα(t) = Mα0, Mα(t) =

∫
Sα

ρα(t,x) dx. (1.2)

In particular, the total mass is also conserved M :=
∑
α

Mα(t) =
∑
α

Mα0. In contrast,

the momentum of each species need not necessarily be conserved due to the cross align-

ment terms between different species on the right of (1.1a)2. Instead, the symmetry of

φαβ(·, ·) implies that the total momentum is conserved1

d

dt

∑
α

∫
Sα

ραuα dx

= −
∫

∂Sα

(uα · nαuα + Pαnα) dS

+
∑
α,β

∫∫
(x,x′)∈Sα×Sβ

φαβ(x,x
′)(u′

β − uα)ραρ
′
β dx dx′ = 0,

and hence

m :=
∑
α

mα(t) =
∑
α

mα0, mα(t) :=

∫
Sα

ρα(t,x)uα(t,x) dx. (1.3)

1.2. The class of entropic pressure laws. The multi-species system (1.1a) requires a

closure for the pressure tensors Pα(t,x), α ∈ I. In this context, we recall the notion of

entropic pressure [Tad2022]. We refer to Pα as an entropic pressure tensor associated

with species α in (1.1a) if its non-negative trace ραeα(t,x) := 1
2 trace(Pα(t,x)) � 0

satisfies

∂t(ραeα)+∇x · (ραeαuα+qα)+ trace(Pα∇uα) � −2
∑
β

∫
Sβ

φαβ(x,x
′)eαραρ

′
β dx

′. (1.4)

1Here and below we abbreviate �′ := �(t,x′).
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262 JINGCHENG LU AND EITAN TADMOR

Here qα(t,x) is a C1-flux. The motivation for (1.4) stems from the large-crowd dynamics

of the agent-based model proposed in [HT2021], in which different species, each of which

consists of Nα agents with position/velocity (xα
i (t),v

α
i (t)) : R+ �→ R

d × R
d, are driven

by the Cucker-Smale alignment [CS2007a]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dt
xα
i (t) = vα

i (t),

d

dt
vα
i (t) =

∑
β∈I

1

Nβ

Nβ∑
j=1

φαβ(x
β
j (t),x

α
i (t))(v

β
j (t)− vα

i (t)),
i = 1, 2, . . . Nα. (1.5)

The passage from the agent-based to the hydrodynamic description goes through an inter-

mediate kinetic description which is realized by the empirical distribution, fα(t,x,v) :=

1

Nα

Nα∑
i=1

δxα
i (t)⊗δvα

i (t). Indeed, the hydrodynamic description (1.1a) is recovered in terms

of the first-two limiting moments of {fα} which are assumed to exist,

ρα(t,x) = lim
Nα→∞

∫
Rd

fα(t,x,v) dv, ραuα(t,x) = lim
Nα→∞

∫
Rd

vfα(t,x,v) dv.

This process of large-crowd limit as Nα → ∞ recovers (1.1a) with pressure, Pα, given by

the second-order moments

Pα(t,x) = lim
Nα→∞

∫
Rd

(v − uα)⊗ (v − uα)fα(t,x,v) dv. (1.6)

The formal derivation is outlined in appendix A and it follows the different deriva-

tions with different level of rigor in case of single species [HT2008,CFTV2010,CCR2011,

FK2019,NP2021, Shv2021,NS2022]. The kinetic description of the pressure in terms of

second-order, rank-one moments in (1.6) leads to the notion of internal energy which

quantifies microscopic fluctuations around the bulk velocity uα,

ραeα =
1

2
trace(Pα) = lim

Nα→∞

∫
Rd

1

2
|v − uα|2fα(t,x,v) dv.

This kinetic description of internal energy formally yields the equality

∂t(ραeα) +∇x · (ραeαuα + qα) + trace(Pα∇uα) = −2
∑
β

∫
Sβ

φαβ(x,x
′)eαραρ

′
β dx

′,

with heat flux qα := lim
Nα→∞

∫
Rd

1

2
|v − uα|2(v − uα)fα(t,x,v) dv. Thus, we arrive at the

special case of equality in (1.4). In particular, it covers the “pressure-less” case — the

special case of mono-kinetic closure

fα(t,x,v)
Nα→∞−→ ρα(t,x)δ(v− uα(t,x)),

which is realized in terms of zero pressure, Pα = 0,{
∂tρα +∇x · (ραuα) = 0,

∂t(ραuα) +∇x · (ραuα ⊗ uα) = Aα(ρ,u),
(t,x) ∈ (Rt,R

d). (1.7)
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HYDRODYNAMIC ALIGNMENT WITH PRESSURE II. MULTI-SPECIES 263

Most of the literature on swarming hydrodynamics of single species assumes mono-kinetic

closure. The corresponding “pressure-less” multi-species hydrodynamics was studied in

[HT2021]. The definition of pressure in terms of the entropy inequality (1.4) is not

concerned, however, with the precise details of internal energy, as it lacks a reference

to the specific closure with respect to a preferred state of thermal equilibrium. In fact,

(1.4) applies to a large class of tensors beyond those which are realizable as second-order

moments.

1.3. Energy dissipation in entropic alignment. A main consequence of the notion of

entropic pressure is to secure the dissipativity of the total energy Eα :=
|uα|2
2

+ eα.

Indeed, manipulating the mass and momentum equations we find

∂t
(ρα
2
|uα|2

)
+∇x ·

(ρα
2
|uα|2uα + Pαuα

)
− trace

(
Pα∇uα

)
= −

∑
β

∫
Sβ

φαβ(x,x
′)(|uα|2 − uα · u′

β)ραρ
′
β dx

′.
(1.8)

Adding the entropic description of the pressure postulated in (1.4) we end up with

∂t
(
ραEα

)
+∇x ·

(
ραEαuα + Pαuα + qα

)
� −

∑
β

∫
Sβ

φαβ(x,x
′)
(
|uα|2 − uα · u′

β + 2eα
)
ραρ

′
β dx

′.
(1.9)

Thus, the role of entropic pressure is to complement the energy balance (1.8) in forming

an entropy inequality (1.9), which augments the system of hyperbolic balance laws (1.1);

we refer to the authoritative book of [Daf2016]. This implies dissipativity of the total

energy. Indeed, by the zero Neumann boundary conditions assumed in (H3), it follows

that

d

dt

∑
α

∫
Sα(t)

ραEα dx

� −
∑
α,β

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)
(
|uα|2 − uα · u′

β + 2eα
)
ραρ

′
β dx dx′

= −1

2

∑
α,β

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)
(
|u′

β − uα|2 + 2eα + 2e′β
)
ραρ

′
β dx dx′.

(1.10)

For further discussion we refer to [Tad2022, §1].

2. Swarming and long-time flocking behavior. We discuss the behavior of a

large crowd, possibly infinite number of species, {ρα,uα,Pα}, each of which consists of

a large crowd of agents, {xα
i ,v

α
i } in (1.5). A crowd of species (or agents) is viewed as a

swarm when it is driven by collective dynamics which coordinates its species (or agents)

to aggregate together with emergence of large-scale formations. In the present context

of dynamics governed by alignment (1.1), we are concerned with the long-time flocking
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264 JINGCHENG LU AND EITAN TADMOR

behavior of the multi-species system (1.1). Flocking refers to the emergence of coherent

structure with limiting velocities u∞
α such that

uα(t,x)− u∞
α (t,x)

t→∞−→ 0,

with the corresponding limiting densities, ρ∞α = ρ∞(x − u∞
α t). Since we ignore attrac-

tion, repulsion or external forcing, the limiting behavior of pure alignment should be

particularly simple — the different species governed by (1.1a) can only approach the

same time-invariant mean velocity

uα(t, ·) t→∞−→ u, u :=

∑
α mα∑
α Mα

,

with a limiting density carried out as a traveling wave ρ∞α (x−ut). Ideally, we seek uniform

convergence. In the present context multi-species with pressure, we have no access to

uniform bounds on the velocities. Instead a more relaxed notion of L2
ρ-convergence

becomes accessible by studying energy fluctuations,

δE (t) :=
∑
α

∫
Sα

{
1

2
|uα(t,x)− u|2 + eα(t,x)

}
ρα(t,x) dx. (2.1)

Observing that

δE (t) =
∑
α

∫
Sα

ραEα dx− 〈u,
∑
α

mα〉+
1

2
|u|2M =

∑
α

∫
Sα

ραEα dx− 1

2
|u|2M, (2.2)

we conclude that energy fluctuations decay at the same rate as the total energy in (1.10)

d

dt
δE (t) � −1

2

∑
α,β

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)
(
|u′

β − uα|2 + 2eα + 2e′β
)
ραρ

′
β dx dx′. (2.3)

Our flocking results will be quantified in terms of the decay of energy/energy fluctua-

tions, which in turn implies the decay of both — the macroscopic velocity fluctuations

around the mean velocity u and the microscopic (kinetic) fluctuations of the different

species around their bulk velocities, ραeα = lim
Nα→∞

∫
Rd

1

2
|v−uα|2fα(t,x,v) dv. A second

component of flocking behavior requires that alignment is strong enough to keep the

dynamics contained in a finite ball, forming the ‘flock’

D(t) :=
∑
α

Dα(t) � D+ < ∞, Dα(t) := max
x,x′∈Sα(t)

|x− x′|.

In practice we may need to address a relaxed notion of flocking which allows a slow time

growth, D(t) � CD(1 + t)γ with some fixed γ > 0.

2.1. Statement of main results. The multi-species alignment dynamics (1.1a) is dic-

tated by the array of communication kernels Φ = {φαβ}. Our flocking results require

Φ to form a connected array. To this end, it will suffice to consider the radial lower

bounds φαβ(x,x
′) � kαβ(|x − x′| assumed in (1.1d). The array K = {kαβ} is viewed
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HYDRODYNAMIC ALIGNMENT WITH PRESSURE II. MULTI-SPECIES 265

as the adjacency matrix of a weighted graph, with a weighted graph Laplacian, ΔMK(r)

[HT2021],

(ΔMK(r))αβ :=

⎧⎪⎪⎨
⎪⎪⎩

−kαβ(r)
√
MαMβ, α �= β,

∑
γ �=α

kαγ(r)Mγ, α = β.

Algebraic connectivity is quantified in terms of the spectral gap, λ2(ΔMK) [Fie1973,

Fie1989],

λ2(ΔMK) := M min
y

⎧⎨
⎩
∑
α

∑
β �=α

kαβ |yα − yβ |2MαMβ

∣∣∣ ∑
α

∑
β �=α

|yα − yβ |2MαMβ = 1

⎫⎬
⎭ .

(2.4)

The graph associated with K is connected if and only if λ2(ΔMK) > 0. Since the spectral

gap is a non-decreasing function of the non-negative entries [HT2021, §3], λ2(ΔMK) > 0

also controls the connectivity of the communication kernels, λ2(ΔMΦ) � λ2(ΔMK) > 0.

Our flocking results require heavy-tailed connectivity in the sense that λ2(ΔMK(r)) has

slow enough decay in a manner made precise in theorem 2.1.

Notations. Below, we use CK and CD to denote constants which characterize the

heavy-tailed behavior of K and the dispersion of diameter D(t). We let CR denote a

constant, with different values in different contexts, depending on a spatial scale R, as

well as on the other fixed parameters on the problem η, γ, . . . . Finally, we let C1, C2, . . .

denote related parameters which arise from computations with these constants.

Theorem 2.1. Consider the multi-species system (1.1) with two or more species. Let

(ρα,uα,Pα) be a non-vacuous strong solution2 of (1.1), subject to compactly supported

initial data (ρα0,uα0,Pα0) with D(0) < ∞, and boundary conditions (H3). Assume that

K(r) has heavy-tailed connectivity of order η � 0, namely, there exist CK , R > 0 such

that

λ2(ΔMK(r)) � CK(1 + r)−η, r � R. (2.5)

Moreover, assume that the crowd disperses at the rate of order γ � 0, namely, there

exists CD > 0 such that for all t � 0,

D(t) � CD(1 + t)γ , γ � 0. (2.6)

If the heavy-tail condition holds in the sense that

ηγ < 1, (2.7)

then there is a large time flocking behavior with fractional exponential decay rate

δE (t) � CR exp
{
− Cζt

(1−ηγ)
}
δE (0), Cζ := 2ζCKC−η

D , ζ := 1− maxα Mα

M
> 0.

(2.8)

Theorem 2.1 extends the mono-kinetic, pressure-less case [HT2021, Theorem 4.1]. It

applies to general entropic pressure laws (1.6), and general symmetric communication

protocol satisfying (2.5): the kernels φαβ need not be metric nor upper-bounded. At the

2That is, (H1) holds for (ρα(t, ·),uα(t, ·),Pα(t, ·)) ∈ (L∞∩L1
+(Rd))×W 1,∞(Rd)×W 1,∞(Rd), α ∈ I.
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266 JINGCHENG LU AND EITAN TADMOR

same time, it extends the heavy-tail condition for flocking of a single species asserted

in [Tad2022, corollary 4.2]. The decay estimate (2.8) reflects a competition between the

possible dispersion of the crowd as its diameter D(t) may grow in time and the decay

rate in the strength of communication strength, λ2

(
ΔMK(r)

)
, as the ‘edge of the crowd’

may grow with r. Theorem 2.1 tells us that if their composition has a non-integrable tail

so that
t∫

0

λ2

(
ΔMK(D(τ )

)
dτ � CRe

−Cζ1t
(1−ηγ) t→∞−→ 0, ηγ < 1,

then the different species flock towards the mean velocity u∞∑
α∈I

∫
|uα(t,x)− u∞|2ρα(t,x) dx � e−Cζ1t

(1−ηγ)

δE (0);

moreover, there is a (fractional) exponential decay of internal fluctuations,∑
α

∫
‖Pα(t,x)‖2 dx =

∑
α∈I

∫
|v − uα(t,x)|2fα(t,x,v) dv dx � e−Cζt

(1−ηγ)

δE (0).

2.2. The example of “pressure-less” equations. A key aspect of theorem 2.1 is a dis-

persion bound which controls the spatial diameter, D(t) � (1 + t)γ . As a prototypical

example we consider the mono-kinetic “pressure-less” closure, Pα = 0 [HT2021]. In this

case, the alignment dynamics (1.1a)2 decouples into scalar transport equations for the

components of uα = (u1
α, . . . , u

d
α),

∂tu
i
α + uα · ∇xu

i
α =

∑
β

∫
Sβ(t)

φαβ(x,x
′)
(
ui
β(t,x

′)− ui
α(t,x)

)
ρ′β dx

′.

Assume η < 1, then a maximum principle of the scalar velocity components eventually

leads to the uniform bound D(t) � D+ < ∞, i.e., theorem 2.1 applies with γ = 0,

leading to exponential decay δE (t) � CRe
−CζtδE (0). In fact, there is exponential decay

of velocity fluctuations in the uniform norm [HT2021, step #3 in the proof of theorem

1.1]

max
α

max
x∈Sα(t)

|uα(t,x)− u| � CRe
−Cζt max

α
max

x∈Sα(t)
|uα0(x)− u|.

We conclude that flocking of pressure-less dynamics is dictated for any heavy-tailed

connectivity of order η < 1, (2.5)

λ2(ΔMK(r)) � CK(1 + r)−η, η < 1, r � R.

3. Self-interactions based on fractional p-alignment. We now turn our atten-

tion to the main aspect of this work — multi-species alignment with pressure. In this

case, one does not have access to pointwise bounds on the velocities uα, which in turn

imply the desired pointwise bound on the diameters, Dα(t), propagating with these veloc-

ities. Instead, we follow the single-species arguments of [Tad2022, §6], in order to secure

direct bounds on the dispersion of Dα(t). To this end, observe that the heavy-tailed

flocking scenario in theorem 2.1 is quantified in terms of the spectral gap (2.4) which is

independent of self-interactions, {φαα}. The desired dispersion bound will be obtained

when we consider enhanced self-interactions; specifically, we consider self-interactions
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HYDRODYNAMIC ALIGNMENT WITH PRESSURE II. MULTI-SPECIES 267

based on singular communication kernels, φαα(x,x
′) = |x− x′|d+2sp, 0 < s < 1, p � 1.

Such kernels greatly emphasize the alignment with immediate neighbors over far away

neighbors, leading to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ραuα) +∇x · (ραuα ⊗ uα + Pα)

=

∫
Sα

|u′
α − uα|2p−2(u′

α − uα)

|x′ − x|d+2sp
ραρ

′
αdx

′

+
∑
β �=α

∫
Sβ

φαβ(x,x
′)(u′

β − uα)ραρ
′
βdx

′.

(3.1)

Self-interactions in this case amount to weighted fractional 2p-Laplacians ; more precisely,

the first integrand on the right of (3.1) is the subdifferential of the weighted Gagliardo

fractional energy (suppressing the time dependence) [DPV2012]

J2p,s(uα) =

∫∫ |uα(x
′)− uα(x)|2p

|x′ − x|d+2sp
ραρ

′
α dx dx′, 0 < s < 1, p � 1.

Interactions based on p-alignment, p > 1 in the context of a single species, were intro-

duced in [HKK2014,CCH2014] and further developed in [Tad2022]. We note that (3.1)

corresponds to the multi-species agent-based description with self-interactions based on

p-alignment

d

dt
vα
i =

1

Nα

Nα∑
j=1

φαα(x
α
j ,x

α
i )|vα

j − vα
i |2p−2

(
vα
j − vα

i

)

+
∑
β �=α

1

Nβ

Nβ∑
j=1

φαβ(x
β
j ,x

α
i )(v

β
j − vα

i ),

(3.2)

with singular kernels φαα(x,x
′) = |x − x|−(d+2sp). The passage from (3.2) to (3.1)

can be justified only in the case of bounded (or at least integrable) φαα and remains

formal in the singular case. We close this section noting that since the flocking bound in

(2.8) is independent of self-interactions, the main theorem 2.1 still applies to the case of

self-interactions based on fractional p-alignment in (3.1).

3.1. Energy dissipation in entropic p-alignment. The notion of ‘entropic pressure’ in

(1.4) requires an adjustment for p-alignment. Following [Tad2022, remark 6.1], we refer

to Pα as an entropic pressure tensor associated with species α in (3.1) with C1 ‘heat-flux’

qα if its non-negative trace ραeα := 1
2 trace(Pα) � 0 satisfies

∂t(ραeα) +∇x · (ραeαuα + qα) + trace(Pα∇uα)

� −1

2
D−(d+2sp)

α (t)

∫
Sα

(
(2eα)

p + (2e′α)
p
)
ραρ

′
α dx′

− 2
∑
β �=α

∫
Sβ

φαβ(x,x
′)eαραρ

′
β dx

′.

(3.3)
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268 JINGCHENG LU AND EITAN TADMOR

The self-interaction terms in (3.3) and (1.4) for ‘pure’ alignment p = 1 end with the

same energy dissipation statement. Specifically, manipulating (1.1a)1 and (3.1) yields,

corresponding to (1.8),

∂t
(ρα
2
|uα|2

)
+∇x ·

(ρα
2
|uα|2uα+Pαuα

)
− trace

(
Pα∇uα

)
=−

∫
Sα

|u′
α − uα|2p−2uα · (uα − u′

α)

|x′ − x|d+2ps
dx

−
∑
β �=α

∫
Sβ

φαβ(x,x
′)(|uα|2 − uα · u′

β)ραρ
′
β dx

′.

Adding the entropic description of the pressure postulated in (3.3) we find, arguing along

the lines of (2.3),

d

dt
δE (t) � −1

2

∑
α

∫∫
Sα(t)×Sα(t)

( |u′
α − uα|2p

|x′ − x|d+2sp
+Dd+2sp

α (t)
(
(2eα)

p + (2e′α)
p
))

ραρ
′
α dx dx′

− 1

2

∑
β �=α

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)
(
|u′

β − uα|2 + 2eα + 2e′β
)
ραρ

′
β dx dx′.

In particular, ignoring the negative contributions coming from internal energy and from

cross interactions terms yields

d

dt
δE (t) � −1

2

∑
α

∫∫
Sα(t)×Sα(t)

|u′
α − uα|2p

|x′ − x|d+2sp
ραρ

′
α dx dx′. (3.4)

Thus, the contribution coming from self-interactions based on singular p-alignment im-

plies that the velocities uα are bounded in the (homogeneous) Sobolev spaces Ẇ s,2p(Sα).

Specifically, taking into account the non-vacuous bound assumed in (H1) then integration

of (3.4) yields

t∫
0

∑
α

‖uα(τ,x)‖2pẆ s,2p(Sα)
dτ

� C2
ρ

t∫
0

∑
α

∫∫
Sα(t)×Sα(t)

|uα(t,x
′)− uα(t,x)|2p

|x′ − x|d+2sp
ραρ

′
α dx dx′dτ

� C2
ρC

2
0 , C2

0 := 2
∑
α

∫
Sα(0)

ρα0Eα0 dx, Cρ :=
1

ρ−
.

(3.5)

3.2. Multi-species with entropic pressure and fractional p-alignment. The enstrophy

bound (3.5) implies a dispersion bound sought in (2.6). We follow the argument in

[Tad2022]. The mass propagation by (1.1a)1 implies

d

dt
Dα(t) � δuα(t), δuα(t) := max

x,x′∈Sα(t)
|u(t,x)− u(t,x′)|.
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Gagliardo-Nirenberg inequality implies for all d/2p < s < 1 there holds3 [DPV2012,

MRR2013]

|u(t,x)− u(t,x′)| � Cs‖uα(t, ·)‖Ẇ s,2p(Sα(t))
|x− x′|s−θ, θ :=

d

2p
< s < 1,

and hence
d

dt
Dα(t) � Cs‖uα(t, ·)‖Ẇ s,2p(Sα)D

s−θ
α (t). It follows that

d

dt

∑
α

D1+θ−s
α (t) � C ′

s

∑
α

‖uα(t, ·)‖Ẇ s,2p(Sα), C ′
s = (1 + θ − s)Cs. (3.6)

Now, since 1 + θ − s < 1, then D1+θ−s
α �

∑
α D1+θ−s

α , and integration of (3.6) yields

D1+θ−s(t) �
∑
α

D1+θ−s
α0 +

( t∫
0

∑
α

‖uα(τ, ·)‖2pẆ s,2p(Sα)
dτ
) 1

2p
( t∫

0

1dτ
) 1

(2p)′

�
∑
α

D1+θ−s
α0 + C ′

s(CρC0)
1
p t

1
(2p)′ .

We conclude that multi-species crowd driven by self-interaction of p-alignment dynamics

(3.1) can be dispersed at a rate no faster than

D(t) � CD(1 + t)γp , γp =
2p− 1

2p(1 + θ − s)
, θ =

d

2p
< s < 1. (3.7)

This bound can be improved: in appendix C we use a bootstrap argument to show a

slower rate of order

D(t) � C ′
D(1 + t)γ∗ , γ∗ =

2p− 1

2p(1 + θ − s) + η
, θ =

d

2p
< s < 1.

Theorem 2.1 applies, leading to flocking behavior of order � exp{−t1−ηγ∗} which we

summarize in the following.

Theorem 3.1. Let (ρα,uα,Pα) be a non-vacuous strong solution of (1.1a)1, (3.1) sat-

isfying (H1)–(H3), with cross interactions, Φ(x,x′) � K(|x − x′|), and self-interactions

based on p-alignment of order p > d
2 . Assume that K(r) has tail connectivity of order

η � 0, (2.5)

λ2(ΔMK(r)) � CK(1 + r)−η, r � R.

If the heavy-tail condition (2.7) holds,

ηγp < 1, γp :=
2p− 1

2p(1 + θ − s)
, θ =

d

2p
< s < 1,

then there is a large time flocking behavior with fractional exponential decay rate

δE (t) � CR exp
{
− Cζt

μ
}
δE (0), μ =

2p(1 + θ − s)− 2(p− 1)η

2p(1 + θ − s) + η
> 0, (3.8)

with constant Cζ = 2ζCK(C ′
D)−η.

3It is here that we use the assumed smoothness of the boundaries of Sα in (H2).
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Remark 3.2 (Lack of exponential decay bound). We leave open the question of

a uniform dispersion bound, D(t) � D+ < ∞ corresponding to γ∗ = 0, which in turn

would imply the exponential decay δE (t) � CRe
−Cζt. This will require an improved

bootstrap argument in appendix C, along the lines of [Tad2022, Appendix E].

3.3. Multi-species with entropic pressure in one-dimension. The methodology leading

to theorem 3.1 consists of two main parts: (i) an η-tailed array of cross interactions

which enforces flocking of multi-species dynamics; and (ii) self-interactions based on p-

alignment with singular head which dictate the dispersion rate γp. Observe that this line

of argument requires d/2p < 1, and therefore flocking of self-interactions based on ‘pure’

alignment, p = 1, is restricted to the d = 1-case,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t(ραuα) + ∂x(ραu
2
α + Pα)

=

∫
Sα

(u′
α − uα)

|x′ − x|1+2s
ραρ

′
αdx

′ +
∑
β �=α

∫
Sβ

φαβ(x, x
′)(u′

β − uα)ραρ
′
βdx

′,
(t, x) ∈ (Rt,R)

(3.9)

with scalar entropic pressures, Pα, satisfying (assuming no heat flux qα = 0)

∂tPα + ∂x(Pαu) + 2Pα∂xu � −2PαD
1+2s
α (t)M. (3.10)

Theorem 3.1 applies with γ1 =
1

3− 2s
.

Corollary 3.3 (Multi-species in one-dimension). Consider the one-dimensional

multi-species system (1.1a)1, (3.9) with entropic pressure (3.10) and satisfying (H1),

(H3). If the heavy-tail connectivity condition holds

η + 2s < 3,
1

2
< s < 1,

then there is a large time flocking behavior with fractional exponential rate

δE (t) � exp
{
− 2Cζt

μ
}
δE (0), μ =

3− 2s

3− 2s+ η
> 0. (3.11)

Singular interactions of a single species in one dimension with mono-kinetic closure

were extensively studied in [ST2017a, ST2017b,DKRT2018, ST2018a, ST2020b] and we

refer to the review [MMPZ2019] and the additional references therein. Corollary 3.3

extends these flocking results to multi-species in one dimension with entropic pressure

laws. Going beyond the one-dimensional corollary 3.3 clarifies the motivation for our

discussion of self-interactions based on fractional p-alignment, p > 1, which extend the

discussion to higher dimensions.

Appendix A. From agent-based to hydrodynamic description. We begin with

the derivation of the multi-species hydrodynamic description (1.1a) from the agent-based

dynamics (1.5).

The large crowd dynamics of the different species can be encoded in terms of their

empirical distribution fα(t,x,v) :=
1

Nα

Nα∑
i=1

δxα
i (t)(x)⊗ δvα

i (t)(v), which are governed by
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the kinetic Valsov equation in state variables (t,x,v) ∈ R+ × Ω× R
d, e.g., [HT2021],

∂tfα + v · ∇xfα +∇v ·Qα(fα,F) = 0, F = {fβ}, (A.1)

where different species are interconnected through pairwise communication protocol on

the right (we abbreviate fα = fα(t,x,v), f
′
β = fβ(t,x

′,v′) and likewise � = �(t,x), �′ =

�(t,x′) etc.)

Qα(fα,F) :=
∑
β

∫
Sβ

φαβ(x,x
′)(v′ − v)fαf

′
β dv

′ dx′.

The large crowd dynamics of fα’s is captured by their first two moments which we

assume to exist — the density ρα(t,x) := lim
Nα→∞

∫
Rd

fα(t,x,v) dv and the momentum

ραuα(t,x) := lim
Nα→∞

∫
Rd

vfα(t,x,v) dv. Integration of (A.1) yields the mass equation

(1.1a)1

∂tρα +∇x · (ραuα) = 0.

The first v-moment of (A.1) yields

∂t

∫
Rd

vfα dv = −∇x ·
∫
Rd

vv�fα dv +

∫
Rd

Qα(fα,F) dv. (A.2)

For the first term on the right of (A.2) vv� ≡ −uαu
�
α+(vu�

α+uαv
�)+(v−uα)(v−uα)

�,

where the first two moments of fα add up to uα(ρu)
�
α = ραuα⊗uα, and the third yields

the pressure tensor (1.6),∫
Rd

vv�fα dv = ραuα ⊗ uα + Pα, Pα =

∫
Rd

(v − uα)(v − uα)
�fα dv;

the second term on the right of (A.2) yields∫
Rd

Qα(fα,F) dv =
∑
β

∫
Sβ(t)

φαβ(x,x
′)
(
(ρu)′βρα − (ρu)αρ

′
β

)
dx′ = Aα(ρ,u),

and we recover the momentum equation (1.1a)2

∂t(ραuα) +∇x · (ραuα ⊗ uα + Pα) = Aα(ρ,u).

Observe that the system (1.1) is not a purely hydrodynamic description since the pressure

in (1.6) still requires a closure of the v-dependent second-order moments of fN . This

is our point of departure from the flocking analysis in [HT2021]: the hydrodynamic

description of alignment in (1.1) is left open. Following [Tad2022], we will trace the

decay of energy fluctuations, showing that it applies to general entropic pressure stress

tensors (1.6).
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A.1. Energy balance. We derive the energy balance as preparation for studying the

long-time behavior of hydrodynamics (1.1). The total energy is given by the second

moment which is assumed to exist

ραEα(t,x) = lim
Nα→∞

∫
Rd

|v|2
2

fα(x,v, t) dv,

and is decomposed into kinetic and internal energy corresponding to the decomposition
1

2
|v|2 =

1

2
|uα|2 +

1

2
|v − uα|2 + uα · (v− uα). Noticing that

∫
Rd

(v − uα)fα dv = 0,

ραEα =
ρα
2
|uα|2 + ραeα, ραeα :=

1

2

∫
Rd

|v − uα|2fα dv.

The balance of energy can be obtained by integrating (A.1) against
|v|2
2

, obtaining

∂t(ραEα) + Iα = IIα.

Here Iα is the transport-based term which we express as

Iα =

∫
Rd

|v|2
2

(v · ∇xfα) dv

≡ ∇x ·
∫
Rd

|v|2
2

uαfα dv +∇x ·
∫ |v|2

2
(v − uα)fα dv

≡ ∇x ·

⎛
⎝∫

Rd

|v|2
2

fα dv

⎞
⎠uα

+∇x ·
∫
Rd

[
|uα|2
2

+ (v − uα) · uα +
|v − uα|2

2

]
(v − uα)fα dv

= ∇x · (ραEαuα) +∇x ·
∫
Rd

(v − uα)(v− uα)
�uαfα dv

+∇x ·
∫
Rd

|v − uα|2
2

(v − uα)fα dv

= ∇x · (ραEαuα + Pαuα + qα),

involving the pressure tensor Pα, (1.6), and a heat-flux vector, qα,

qα :=
1

2

∫
Rd

|v − uα|2(v − uα)fα dv, (A.3)
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and IIα is the alignment-based enstrophy term given by

IIα =

∫
Rd

v ·Qα(fα,F) dv = −
∑
β∈I

∫
Sβ(t)

φαβ(x,x
′)
( ∫∫
Rd×Rd

v · (v − v′)fαf
′
β dv dv′

)
dx′

= −
∑
β∈I

∫
Sβ(t)

φαβ(x,x
′)(2Eα − uα · u′

β)ραρ
′
β dx

′.

Combining, we formally end up with the energy balance

∂t(ραEα) +∇x · (ραEαuα + Pαuα + qα)

= −
∑
β∈I

∫
Sβ(t)

φαβ(x,x
′)(|uα|2 − uα · u′

β + eα)ραρ
′
β dx

′. (A.4)

Thus, the energy equality which arises from a kinetic description is viewed here as a

special case of the inequality (1.10) associated with the general class of entropic pressures,

∂t(ραEα) +∇x · (ραEαuα + Pαuα + qα)

= −
∑
β∈I

∫
Sβ

φαβ(x,x
′)(|uα|2 − uα · u′

β + eα)ραρ
′
β dx

′. (A.5)

A.2. Energy fluctuations. Integrating (A.5) and summing over α ∈ I we find

d

dt

∑
α∈I

∫
Sα(t)

ραEα dx

� −
∑
α

∫
∂Sα(t)

(
ραEαuα · nα + Pαuα · nα + qα · nα

)
dS

−
∑

α,β∈I

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)(|uα|2 − uα · u′

β + eα)ραρ
′
β dx dx′

= −
∑

α,β∈I

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)

(
1

2
|uα − u′

β |2 + eα + e′β

)
ραρ

′
β dx dx′.

(A.6)

The boundary conditions assumed in (H3) imply there is no energy flux and hence the

boundary integrals on the right vanish,4 while the symmetrization assumed in (1.1c)

implies, upon change of variables (α,x) ↔ (β,x′), that the second term admits the

symmetric form of the integrals on the right.

The inequality (A.6) quantifies the energy dissipation in terms of the negative total

enstrophy on the right. This is better expressed in an equivalent symmetric form, in

terms of the energy fluctuations

δE (t) =
1

2M

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

{
1

2
|uα(t,x)− uβ(t,x

′)|2 + eα(t,x) + eβ(t,x
′)

}
ραρ

′
β dx dx′.

(A.7)

4In fact, here one can consider a larger class of energy dissipative boundary condition.

Licensed to Univ of Maryland, College Park. Prepared on Fri Mar 10 23:32:26 EST 2023 for download from IP 129.2.90.146.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



274 JINGCHENG LU AND EITAN TADMOR

Remark A.1. Observe that the definition of energy fluctuation in (A.7) coincides

with the one we had in (2.1). Indeed, since the total mass in (1.2) and momentum in

(1.3) are conserved in time, then the mean velocity is invariant in time,

u =

∑
α mα∑
α Mα

=

∑
α mα0∑
α Mα0

,

and the macroscopic portion of the energy fluctuations (A.7) can be expressed as fluctu-

ations around that mean velocity,

∑
α,β

∫∫
Sα(t)×Sβ(t)

(
1

2
|uα(t,x)− uβ(t,x

′)|2
)
ραρ

′
β dx dx′

∑
α,β

∫∫
Sα(t)×Sβ(t)

(
1

2
|uα(t,x)− u|2 + (uα − u) · (u− u′

β) +
1

2
|uβ(t,x

′)− u|2
)
ραρ

′
β dx dx′

= M
∑
α

∫
Sα(t)

|uα(t,x)− u|2ρα(t,x) dx.

Hence, the energy fluctuation (A.7) coincides with its equivalent definition (2.1) stated

in theorem 2.1

δE (t) =
∑
α

∫
Sα(t)

|uα(t,x)− u|2ρα(t,x) dx.

Noting that

δE (t) =
∑
α

∫ {
1

2
ρα|uα|2 + ραeα

}
dx− 1

2M

∣∣∣∑
α

mα

∣∣∣2, mα :=

∫
uαρα dx,

with a total mass, M :=
∑

α Mα, and total momentum,
∑

α mα, which are conserved in

time we end up with the symmetric version of the dissipation statement (A.6), expressed

in terms of energy fluctuations,

d

dt

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

{
1

2
|uα − u′

β |2 + eα + e′β

}
ραρ

′
β dx dx′

=
d

dt

∑
α∈I

∫
Sα(t)

ραEα dx (A.8)

� −
∑

α,β∈I

∫∫
Sα(t)×Sβ(t)

φαβ(x,x
′)

{
1

2
|uα − u′

β |2 + eα + e′β

}
ραρ

′
β dx dx′.
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Appendix B. Flocking of strong solutions — proof of theorem 2.1. Recall

that the metric kernels kαβ(r) are assumed to decrease with the distance r and hence

(A.8) implies

d

dt
δE (t) � −

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

kαβ(|x− x′|)
(
1

2
|uα − u′

β |2 + eα + e′β

)
ραρ

′
β dx dx′

� −
∑

α,β∈I
kαβ(D(t))

∫∫
Sα(t)×Sβ(t)

(
1

2
|uα − u′

β |2 + eα + e′β

)
ραρ

′
β dx dx′

For the first term on the right we use the weighted Poincare inequality [HT2021, Lemma

3.2]

∑
α,β∈I

kαβ(D(t))

∫∫
Sα(t)×Sβ(t)

1

2
|uα − u′

β |2ραρ′β dx dx′

� ζ

M
λ2(ΔMK(D(t))

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

1

2
|uα − u′

β |2ραρ′β dx dx′, ζ = 1− maxα Mα

M
.

For the remaining terms

∑
α,β∈I

kαβ(D(t))

∫∫
Sα(t)×Sβ(t)

(
eα + e′β

)
ραρ

′
β dx dx′

=
∑
β

degβ(K)
∑
α

∫
Sα(t)

eαρα dx+
∑
α

degα(K)
∑
β

∫
Sβ(t)

e′βρ
′
β dx

′,

where degα, the degree of connectivity of species α, has the lower bound [HT2021, eq.

(3.10)]

degα(K) :=
∑
γ �=α

kαγ(D(t))Mγ � ζλ2(ΔMK(D(t)).

We end up with

∑
α,β∈I

kαβ(D(t))

∫∫
Sα(t)×Sβ(t)

(
eα + e′β

)
ραρ

′
β dx dx′

� ζ

M
λ2(ΔMK(D(t))

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

(
eα + e′β

)
ραρ

′
β dx dx′.
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Adding the last two inequalities we conclude the dissipation statement of energy fluctu-

ations

d

dt
δE (t)

� −2ζλ2(ΔMK(D(t))× 1

2M

∑
α,β∈I

∫∫
Sα(t)×Sβ(t)

(
1

2
|uα − u′

β |2 + eα + e′β

)
ραρ

′
β dx dx′

− 2ζλ2(ΔMK(D(t))× δE (t).

(B.1)

We now turn to address the main flocking bound in (2.8).

Proof of theorem 2.1. Integrating the decay of energy fluctuations (B.1),

d

dt
δE (t) � −2ζλ2(ΔMK(D(t))× δE (t),

combined with the assumed bounds (2.5) and (2.6),

λ2(ΔMK(D(t)) � CK

(
1 + CD(1 + t)γ

)−η
, r � R,

implies the desired bound

δE (t) � CR exp
{
− 2ζCKC−η

D t1−ηγ
}
δE (0), ηγ < 1,

with a constant CR > 0. �

Appendix C. An improved dispersion bound. Assume that we secured the dis-

persion boundD(t) � CD(1+t)γ . Then, theorem 2.1 applies, leading to flocking behavior

with fractional exponential decay rate which we rewrite as

δE (t) � CR
1

χ(t)
δE (0), χ(t) := exp

{
Cζt

(1−ηγ)
}
. (C.1)

This bound, which was shown to hold with γ = γp = 2p−1
2p(1+θ−s) , can be improved. To

this end, we rewrite (3.4), (C.1) in the form

d

dt
χ(t)δE (t) � −ρ2−

2
χ(t)

∑
α

‖uα(t, ·)‖2pẆ s,2p(Sα)
+ CR

χ̇(t)

χ(t)
δE (0)

� −
ρ2−
2
χ(t)

∑
α

‖uα(t, ·)‖2pẆ s,2p(Sα)
+ C2t

−ηγδE (0), C2 = 2Cζ(1− ηγ)CR.

This implies

t∫
0

χ(τ )
∑
α

‖uα(τ, ·)‖2pẆ s,2p(Sα)
dτ � 2C2

ρδE (0) + C3t
1−ηγδE (0), C3 = 2C2

ρC2
1

1− ηγ
.
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Now we revisit (3.6) with the last weighted bound, obtaining

D1+θ−s(t) �
∑
α

D1+θ−s
α0

+
( t∫

0

∑
α

χ(t)‖uα(τ, ·)‖2pẆ s,2p(Sα)
dτ
) 1

2p
( t∫

0

( 1

χ1/2p(τ )

)(2p)′
dτ
) 1

(2p)′

�
∑
α

D1+θ−s
α0 + C4t

1−ηγ
2p , C4 =

(
C3δE (0)

) 1
2p

∞∫
0

χ
− 1

2p−1 (τ )dτ.

Thus, we end up with the improved dispersion bound

D(t) � C ′
D(1 + t)γ

′
, γ′ =

1− ηγ

2p(1 + θ − s)
.

This argument can be repeated: since ηγp < 1 then
η

2p(1 + θ − s)
=

ηγp
2p− 1

< 1

and hence the iterations γ �→ γ′ converge to γ∞ =
1

2p(1 + θ − s) + η
. In particular,

since 2p − 1 > 1 then after finitely many iterations we will reach the improved rate,

γ∗ = (2p− 1)γ∞,

D(t) � C ′
D(1 + t)γ∗ , γ∗ =

2p− 1

2p(1 + θ − s) + η
.
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