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Abstract

We prove in this paper new velocity-averaging results for second-order multi-

dimensional equations of the general form L(∇x , v) f (x, v) = g(x, v) where

L(∇x , v) := a(v) · ∇x − ∇�
x · b(v)∇x . These results quantify the Sobolev regu-

larity of the averages,
∫
v f (x, v)φ(v)dv, in terms of the nondegeneracy of the set

{v : |L(iξ, v)| ≤ δ} and the mere integrability of the data, ( f, g) ∈ (L p
x,v, Lq

x,v).

Velocity averaging is then used to study the regularizing effect in quasi-linear

second-order equations, L(∇x , ρ)ρ = S(ρ), which use their underlying kinetic

formulations, L(∇x , v)χρ = gS . In particular, we improve previous regularity

statements for nonlinear conservation laws, and we derive completely new regu-

larity results for convection-diffusion and elliptic equations driven by degenerate,

nonisotropic diffusion. c© 2007 Wiley Periodicals, Inc.

1 Introduction

We study the regularity of solutions to multidimensional quasi-linear scalar

equations of the form

(1.1)

d∑
j=0

∂

∂xj
Aj (ρ) −

d∑
j,k=1

∂2

∂xj∂xk
Bjk(ρ) = S(ρ)

where ρ : R1+d → R is the unknown field and Aj , Bjk , and S are given functions

from R to R.

This class of equations governs time-dependent solutions ρ(t = x0, x) of non-

linear conservation laws where A0(ρ) = ρ and Bjk ≡ 0, time-dependent solutions

of degenerate diffusion and convection-diffusion equations where {B ′
jk} ≥ 0, and

spatial solutions ρ(x) of degenerate elliptic equations where Aj ≡ 0. The notion

of solution should be interpreted here in an appropriate weak sense, since we focus

our attention on the degenerate diffusion case, which is too weak to enforce the
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smoothness required for a notion of a strong solution. Instead, a common feature

of such problems is the (limited) regularity of their solutions, which is dictated by

the nonlinearity of the governing equations. A prototype example is provided by

discontinuous solutions of nonlinear conservation laws. In [36], Lions, Perthame,

and Tadmor have shown that entropy solutions of such laws admit a regularizing

effect of a fractional order, dictated by the order of nondegeneracy of the equations.

In this paper we extend this result for the general class of second-order equations

(1.1). In particular, we improve the regularity statement in [36] for nonlinear con-

servation laws, and we derive completely new regularity results for convection-

diffusion and elliptic equations driven by degenerate, nonisotropic diffusion.

The derivation of these regularity results employs a kinetic formulation of (1.1).

To describe this formulation let us proceed formally, seeking an equation that gov-

erns the indicator function associated with ρ, χρ(x)(v) := sgn(v)(|ρ| − |v|)+; it

depends on an auxiliary, so-called velocity variable v ∈ R, borrowing the terminol-

ogy from the classical kinetic framework. To this end, we consider the distribution

g = g(x, v), defined via its velocity derivative ∂vg using the formula

(1.2) ∂vg(x, v) := (
a(v) · ∇x − ∇�

x · b(v)∇x + S(v)∂v

)
χρ(x)(v),

where the convection vector a and diffusion matrix b are given by aj := A′
j and

bjk := B ′
jk ≥ 0. Observe that the nonlinear quantities �(ρ) can be expressed as

the v-moments of χρ , �(ρ) ≡ ∫
v
�′(v)χρ(v)dv, �(0) = 0. Therefore, by velocity

averaging of (1.2), we recover (1.1). Moreover, for a proper notion of weak solution

ρ, one augments (1.1) with additional conditions on the behavior of �(ρ) for a

large enough family of entropies �. These additional entropy conditions imply

that g is in fact a positive distribution g = m ∈ M+ that measures the entropy

dissipation of the nonlinear equation.

We arrive at the kinetic formulation of (1.1)

(1.3) L(∇x , v) f (x, v) = ∂vm − S(v)∂vχρ(x)(v), f = χρ, m ∈ M
+,

where L is identified with the linear symbol L(iξ, v) := a(v) · iξ −〈b(v)ξ, ξ〉. We

recall that ρ(x) itself can be recovered by velocity averaging of f (x, v) = χρ(v)

via the identity ρ(x) = ∫
f (x, v)dv. In Section 2 we discuss the regularity gained

by such velocity averaging.

There is a relatively short yet intense history of such regularity results, com-

monly known as “velocity-averaging lemmas.” We mention the early works of

[20, 24] and their applications, in the context of nonlinear conservation laws, in

[29, 35, 36, 37]; a detailed list of references can be found in [39] and is revisited

in Section 2 below. Almost all previous averaging results dealing with (1.3) are

restricted to the first-order transport equation, degL(iξ, · ) = 1. In Section 2.2

we present an extension to general symbols L that satisfy the so-called truncation
property; luckily, as shown in Section 2.4 below, all L with degL(iξ, · ) ≤ 2 sat-

isfy this property. If L satisfies the truncation property and it is nondegenerate in
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the sense that there exist α ∈ (0, 1) and β > 0 such that1

sup
|ξ |∼J

|{v : |L(iξ, v)| ≤ δ}| �

(
δ

J β

)α

,

then, by velocity averaging of the kinetic solution f in (1.3), ρ(x) = ∫
v

f (x, v)dv

is shown to have W s,r -regularity of order s < βα/(3α + 2) with an appropriate

r = rs > 1; consult (2.25) below. In the particular case of a truncation property

satisfying L with homogeneous symbol of order k, the nondegeneracy requirement

amounts to having an α ∈ (0, 1) such that

sup
|ξ |=1

|{v : |L(iξ, v)| ≤ δ}| � δα,

so we may take β = k, and velocity averaging implies a W s,r
loc -regularity with expo-

nent s < kα/(3α+2). The main results are summarized in Averaging Lemmas 2.2

and 2.3.

In Section 3 we turn to the first application of these averaging results in the

context of nonlinear conservation laws, ρt + ∇x · A(ρ) = 0, subject to L∞-initial

data ρ0. If the equation is nondegenerate of order α in the sense that for all τ 2 +
|ξ |2 = 1, there holds

|{v : |τ + a(v) · ξ | ≤ δ}| � δα and sup
{v:|τ+a(v)·ξ |≤δ}

|a′(v) · ξ | � δ1−α,

then for t > 0, the corresponding entropy solution ρ(t, · ) ∈ W s,1
loc (Rd

x ) gains

Sobolev regularity of order s < sα = α/(2α + 1). This improves the Sobolev-

regularity exponent of order α/(α + 2) derived at [36] (while facing the same

barrier of s1 = 1
3

discussed in [15]).

Section 4 is devoted to convection-diffusion equations. We begin, in Sec-

tion 4.1, with second-order degenerate diffusion ρt − ∑
∂2

xj xk
Bjk(ρ) = 0. The

emphasis here is on nonisotropic diffusion, beyond the prototype case of the porous

medium equation (which corresponds to the case when Bjk is a scalar multiple of

the identity Bjk = Bδjk). The regularizing effect is determined by the smallest

nonzero eigenvalue λ(v) = λ(b(v)) �≡ 0 of b(v) := B ′(v) such that

(1.4) |{v : 0 ≤ λ(v) ≤ δ}| � δα and sup
|ξ |=1

sup
{v: λ(v)≤δ}

|〈b′(v)ξ, ξ〉| � δ1−α.

Starting with initial conditions ρ0 ∈ L∞, the corresponding kinetic solution ρ(t >

0, · ) gains W s,1
loc -regularity of order s < 2α/(2α + 1). In Section 4.2 we take into

account the additional effect of nonlinear convection. The resulting convection-

diffusion equations, coupling degenerate and possibly nonisotropic diffusion with

nonconvex convection governing capillarity effects, are found in a variety of appli-

cations.

1 We use X � Y to denote the estimate X ≤ CY where C is a constant that can depend on

exponents such as α, β, and p and on symbols such as L, Aj , and Bjk but is independent of fields

such as ρ, coordinates such as x , t , and v, and scale parameters such as δ. We use X ∼ Y to denote

the assertion that X � Y � X .
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Consider the prototype one-dimensional case

ρt + A(ρ)x − B(ρ)xx = 0, A′(ρ) ∼ ρ�, B ′(ρ) ∼ |ρ|n.
The regularizing effect is dictated by the strength of the degenerate diffusion versus

the convective degeneracy. If n ≤ � we find W s,1
loc -regularity of order s < 2/(n+2),

which is the same Sobolev-regularity exponent we find with the “purely diffusive”

porous-medium equation, i.e., when A = 0. On the other hand, if the diffusion is

too weak so that n ≥ 2�, we then conclude with a Sobolev regularity exponent of

order s < 1/(� + 2), which is dominated by the convective part of the equation.

In Section 4.2 we present similar results for multidimensional convection-diffusion

equations with increasing degree of degeneracy.

In particular, consider the two-dimensional equation

ρt + (∂x1
+ ∂x2

)A(ρ) − (∂x1
− ∂x2

)2 B(ρ) = 0.

If we set A = 0, the equation has a strong, rank-1 parabolic degeneracy with no

regularizing effect coming from its purely diffusion part, since 〈b(v)ξ, ξ〉 ≡ 0

∀ξ1 − ξ2 = 0, indicating the persistence of steady oscillations ρ0(x + y); moreover,

if B = 0 then the equation has no regularization coming from its purely convection

part, since a(v) ·ξ ≡ 0 ∀ξ1 +ξ2 = 0 indicates the persistence of steady oscillations

ρ0(x − y). Nevertheless, the combined convection-diffusion with A(ρ) ∼ ρ�+1 and

B(ρ) ∼ |ρ|nρ does have a W s,1-regularizing effect of order s < 6/(2+2n − �) for

n ≥ 2�; consult Corollary 4.5 below.

Finally, in Section 5 we consider degenerate elliptic equations,

−
∑

∂2
xj xk

Bjk(ρ) = S(ρ).

Assuming that the nondegeneracy condition (1.4) holds, then the kinetic formula-

tion of bounded solutions for such equations, ρ ∈ W s,1(D), have interior regularity

of order s < min(α, 2α/(2α + 1)). We conclude by noting that it is possible to

adapt our arguments in more general setups, for example, when a suitable source

term S(ρ) is added to the time-dependent problem when dealing with degenerate

temporal fluxes, ∂t A0(ρ), A′
0 ≥ 0, or when lower-order convective terms ∇x · A(ρ)

are added in the elliptic case.

2 The Averaging Lemma

We are concerned with the regularity of averages of solutions for differential

equations of the form

(2.1) L(∇x , v) f = 
η
x∂

N
v g, 
x := (−�2

x)
1/2.

Here, f = f (x, v) ∈ W σ,p
loc (Rd

x × Rv) and g = g(x, v) ∈ Lq
loc(R

d
x × Rv) are

real-valued functions of the spatial variables x = (x1, . . . , xd) ∈ Rd and an ad-

ditional parameter v ∈ R, called velocity by analogy with the kinetic framework,

and L(∇x , v) is a differential operator on Rd
x of order ≤ k, whose coefficients are

smooth functions of v.
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The velocity-averaging lemma asserts that if L( · , v) is nondegenerate in the

sense that its null set is sufficiently small (to be made precise below), then the

v-moments of f (x, · ),

f (x) :=
∫
v

f (x, v)φ(v)dv, φ ∈ C∞
0 ,

are smoother than the usual regularity associated with the data of f (x, · ) and

g(x, · ). That is, by averaging over the so-called microscopic v-variable, there is a

gain of regularity in the macroscopic x-variables.

There is a relatively short yet intense history of such results, motivated by ki-

netic models such as Boltzmann, Vlasov, radiative transfer, and similar equations

where the v-moments of f represent macroscopic quantities of interest. We re-

fer to the early works of Agoshkov [1] and Golse, Lions, Perthame, and Sentis

[24, 25] treating first-order transport operators with f and g integrability of order

p = q > 1. The work of DiPerna, Lions, and Meyer [20] provided the first treat-

ment of the general case p �= q, followed by Bézard [4], the improved regularity

in [34], and an optimal Besov regularity result of DeVore and Petrova [16].

Extensions to more general streaming operators were treated by DiPerna and

Lions in [18, 19] with applications to Boltzmann and Vlasov-Maxwell equations,

and by Lions, Perthame, and Tadmor in [36] with applications to nonlinear con-

servation laws and related parabolic equations. Gérard [22] together with Golse

[23] provided an L2-treatment of general differential operators. A different line

of extensions consists of velocity-averaging lemmas that take into account dif-

ferent orders of integrability in x and v, leading to sharper velocity regulariza-

tion results sought in various applications. We refer to the results in [20] for

f ∈ L p1(Rv, L p2(Rd
x )), g ∈ Lq1(Rv, Lq2(Rd

x )) and to Jabin and Vega [30] for f ∈
W N1,p1(Rv, L p2(Rd

x )), g ∈ W N2,q1(Rv, Lq2(Rd
x )). Westdickenberg [54] analyzed a

general case of the form f ∈ Bσ
p1,p2

(Rd
x , Lr1(Rv)), g ∈ Bσ

q1,q2
(Rd

x , Lr2(Rv)). Jabin,

Perthame, and Vega [29, 31] used a mixed integrability of

f ∈ L p(Rd
x , W N1,p(Rv)), g ∈ Lq(Rd

x , W N2,q(Rv)),

to improve the regularizing results for nonlinear conservation laws [36, 37, 35],

Ginzburg-Landau, and other nonlinear models. Golse and Saint-Raymond [26]

showed that a minimal requirement of equi-integrability, say f ∈ L1(Rd
x , L�(Rv))

and g ∈ L1(Rd
x ×Rv) measured in Orlicz space L� with superlinear �, is sufficient

for relative compactness of the averages f , which otherwise might fail for mere

L1-integrability [24].

The derivation of velocity averaging in the above works was accomplished by

various methods. The main approach, which we use below, is based on decom-

position in Fourier space, carefully tracking f̂ (ξ, v) in the “elliptic” region where

{v : L(iξ, v) �= 0} and the complement region, which is made sufficiently small

by a nondegeneracy assumption. Other approaches include the use of microlocal
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defect measures and H -measures [22, 48], wavelet decomposition [16], and “real-

space methods”—in time [5, 52] and in space-time using Radon transform [12, 54],

X-transform [30, 31], and duality-based dispersion estimates [26]. Almost all of

these results are devoted to the phenomena of velocity averaging in the context of

transport equations, k = 1.

Our study of velocity averaging applies to a large class of L’s satisfying the

so-called truncation property: in Section 2.4 we show that all L’s of order k ≤ 2

satisfy this truncation property. In particular, we improve the regularity statement

for first-order velocity averaging and extend the various velocity-averaging results

of the above works from first-order transport to general second-order transport-

diffusion and elliptic equations. The results are summarized in Averaging Lem-

mas 2.1 and 2.2 for homogeneous symbols and in Averaging Lemma 2.3 for gen-

eral, truncation-property-satisfying L’s. Our derivation is carried out in Fourier

space using Littlewood-Paley decompositions of f ∈ W σ,p
loc (Rd

x × Rv) and g ∈
Lq

loc(R
d
x × Rv). To avoid an overload of indices, we leave for future work possible

extensions for more general data with mixed (x, v)–integrability of f and g.

2.1 The Truncation Property

We now come to a fundamental definition.

DEFINITION 2.1 Let m(ξ) be a complex-valued Fourier multiplier. We say that m
has the truncation property if, for any locally supported bump function ψ on C and

any 1 < p < ∞, the multiplier with symbol ψ(m(ξ)/δ) is an L p-multiplier uni-

formly in δ > 0, that is, its L p-multiplier norm depends solely on the support and

C� size of ψ (for some large � that may depend on m) but otherwise is independent

of δ.

In Section 2.4 we will describe some examples of multipliers with this trunca-

tion property. Equipped with this notion of a truncation property, we turn to discuss

the L p-size of parametrized multipliers. Let

Mψ f (x, v) := F
−1
x ψ

(
m(ξ, v)

δ

)
f̂ (ξ, v)

denote the operator associated with the complex-valued multiplier m( · , v), trun-

cated at level δ, where f̂ (ξ, v) = Fx f (ξ, v) := ∫
Rd e−2π iξ ·x f (x, v)dx is the

Fourier transform of f ( · , v). Our derivation of the averaging lemmas below is

based on the following straightforward estimate for such parameterized multipli-

ers.

LEMMA 2.2 (Basic L p-Estimate) Let I be a finite interval, I ⊂ Rv, and assume
m(ξ, v) satisfies the truncation property uniformly in v ∈ I . Let 1 < p ≤ 2. Let
Mψ denote the velocity-averaged Fourier multiplier

Mψ f (x) :=
∫
I

Mψ f (x, v)dv =
∫
I

F
−1
x ψ

(
m(ξ, v)

δ

)
Fx f (x, v)dv.
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For each ξ ∈ Rd and δ > 0, let �m(ξ ; δ) ⊂ I be the velocity set

�m(ξ ; δ) :=
{
v ∈ I : m(ξ, v)

δ
∈ supp ψ

}
.

Then we have the L p-multiplier estimate

(2.2) ‖Mψ f (x)‖L p(Rd
x ) � sup

ξ

|�m(ξ ; δ)|1/p′ · ‖ f ‖L p(Rd
x ×Rv).

PROOF: For p = 2, the claim (2.2) follows from Plancherel’s theorem and

the Cauchy-Schwarz inequality, while for p close to 1+ the claim follows (ignor-

ing the bounded |�m(ξ ; δ)| factor) from the assumption that m(ξ, v) satisfies the

truncation property uniformly in v (and, in fact, the endpoint p = 1, with the usual

H1 replacement of L1, can be treated by a refined argument along the lines of [20]).

The general case of 1 < p < 2 follows by interpolation. �

Remark 2.3. Clearly, if m(ξ, · ) and c(ξ) are L p-multipliers, then so is their prod-

uct, and in particular, if m has the truncation property, then (2.2) applies for

ψ

(
m(ξ, v)

δ

)
c(ξ).

2.2 Averaging Lemma for Homogeneous Symbols

We will present several versions of the averaging lemma. The later versions

will supersede the former, but for pedagogical reasons we will start with the simpler

case of homogeneous symbols. In this case it is convenient to use polar coordinates

ξ = |ξ |ξ ′, where ξ ′ ∈ Sd−1 is defined for all nonzero frequencies ξ by ξ ′ := ξ/|ξ |.
We begin with the following:

AVERAGING LEMMA 2.1 Let 1 ≤ q ≤ 2 and let g ∈ Lq
loc(R

d
x × Rv) if q > 1 or

let g be a locally bounded measure, g ∈ M(Rd
x × Rv), if q = 1. Let η, N ≥ 0 and

let f ∈ W σ,p
loc (Rd

x × Rv), σ ≥ 0, 1 < p ≤ 2, solve the equation

(2.3) L(∇x , v) f (x, v) = 
η
x∂

N
v g(x, v) in D

′(Rd
x × Rv).

Here L(∇x , · ) is a differential operator that has sufficiently smooth coefficients,
L( · , v) ∈ C N ,ε>0, and let L(iξ, v) be the corresponding symbol. We assume
that L(iξ, v) is homogeneous in ξ of order k, k > σ + η, that the modified symbol
L(iξ ′, v) obeys the truncation property uniformly in v, and that it is nondegenerate
in the sense that there exists an α, 0 < α < (N + 1)q ′, such that

(2.4) sup
ξ∈R

d

|ξ |=1

|�L(ξ ; δ)| � δα, �L(ξ ; δ) := {v ∈ I : |L(iξ, v)| ≤ δ}.

Then there exist θ = θα ∈ (0, 1) and sα = s(θα) > σ such that for all bump func-
tions φ ∈ C∞

0 (I ), the averages f (x) := ∫
f (x, v)φ(v)dv belong to the Sobolev

space W s,r
loc (Rd

x ) for all s ∈ (σ, sα) and the following estimate holds:

(2.5) ‖ f ‖W s,r
loc (Rd

x ) � ‖g‖θ

Lq
loc(R

d
x ×Rv)

· ‖ f ‖1−θ

W σ,p
loc (Rd

x ×Rv)
, s ∈ (σ, sα).
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Here sα := (1 − θα)σ + θα(k − η), where θ ≡ θα(p, q, N ) and r are given by

(2.6) θ = α/p′

α(1/p′ − 1/q ′) + N + 1
,

1

r
= 1 − θ

p
+ θ

q
, 0 < θ < 1.

Remark 2.4. It would be more natural to assume that the symbol L(iξ, v) itself,

rather than the modified symbol L(iξ ′, v), obeyed the truncation property, as it is

typically easier to verify the truncation property for the unmodified symbol. In-

deed, when we turn to more advanced versions of the averaging lemma (which rely

on Littlewood-Paley theory and do not assume homogeneity) we will work with

the truncation property for the unmodified symbol. However, we choose to work

here with the modified symbol as it simplifies the argument slightly.

PROOF: We start with a smooth partition of unity, 1 ≡ ∑
ψj (2

− j z), such that

ψ0 is a bump function supported inside the disc |z| ≤ 2 and the other ψj are bump

functions supported on the annulus 1
2

< |z| < 2 (we note in passing that the other

ψj ’s can be taken to be equal, so the index j merely serves to signal their “action”

on the shells, 2 j−1 ≤ |z| ≤ 2 j+1). We set

f j (x, v) := F
−1
x ψj

(
L(iξ ′, v)

2 jδ

)
f̂ (ξ, v), j = 0, 1, 2, . . . ,

recalling that ξ ′ := ξ/|ξ |, and we consider the corresponding decomposition f =
f0 + ∑

j≥1 f j . We distinguish between two pieces, f = f (0) + f (1) where f (0) :=
f0 and f (1) := ∑

j≥1 f j . Observe that the v-support of f̂ (0) is restricted to the

degenerate set �L(ξ ; 2δ), whereas f̂ (1) = ∑
j≥1 f̂ j offers a decomposition of the

nondegenerate complement, �c
L
(ξ ; δ). The free parameter δ is to be chosen later.

We first note that f (0) = f0 is associated with the multiplier ψ0(L(iξ ′, v)/δ).

Since L(iξ ′, v) satisfies the truncation property, we can use Lemma 2.2 and the

nondegeneracy assumption (2.4) to obtain

‖ f (0)‖W σ,p
loc (Rd

x ) � sup
|ξ |=1

∣∣∣∣�L(ξ ; 2δ)

∣∣∣∣1/p′

· ‖ f ‖W σ,p
loc (Rd

x ×Rv)

� δα/p′‖ f ‖W σ,p
loc (Rd

x ×Rv)
.

(2.7)

We turn to the other averages f j , j ≥ 1, which make f (1). Since L(iξ, · ) is

homogeneous of order k, equation (2.3) states that

̂



k−η
x f (ξ, v) = |ξ |k−η |ξ |η

L(iξ, v)
∂ N
v ĝ(ξ, v) = 1

L(iξ ′, v)
∂ N
v ĝ(ξ, v),

and thus


k−η
x f j = 1

2 jδ
F

−1
x

∫
v

ψ̃j

(
L(iξ ′, v)

2 jδ

)
∂ N
v ĝ(ξ, v)φ(v)dv, j = 1, 2, . . . ,
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where ψ̃j (z) := ψj (z)/z is a bump function much like ψj is. Integration by parts

then yields


k−η
x f j = 1

(2 jδ)N+1
F

−1
x

∫
v

ψ̃j
(N )

(
L(iξ ′, v)

2 jδ

)
L

N
v (iξ ′, v)ĝ(ξ, v)φ(v)dv

+ lower-order or similar terms.

(2.8)

We can safely neglect the lower- or similar-order terms that involve (powers of) the

bounded multipliers ∂�
vL(iξ ′, v), � < N , and we focus on the leading term in (2.8)

associated with the multipliers

(2.9) ψ̃j
(N )

(
L(iξ ′, v)

2 jδ

)
L

N
v (iξ ′, v).

By the Hörmander-Mikhlin or Marcinkiewicz multiplier theorems, LN
v (iξ ′, v) are

bounded multipliers and hence (2.8) are upper-bounded by

‖
k−η
x f j‖Lq

loc(R
d
x ) �

1

(2 jδ)N+1
‖Mj g‖Lq

loc(R
d
x ).

Here Mj = M
ψ̃j

(N ) are the Fourier multipliers with symbol ψ̃j
(N )

(L(iξ ′, v)/2 jδ).

We now fix q > 1. By our assumption, L(iξ ′, v) satisfies the truncation prop-

erty, and Lemma 2.2 implies ‖Mj g‖Lq
loc(R

d
x ) � (2 j+1δ)α/q ′‖g‖Lq

loc(R
d
x ). Adding to-

gether all the f j ’s, we find that f (1) = ∑
j≥1 f j satisfies

‖
k−η
x f (1)‖Lq

loc(R
d
x ) �

∑
j≥1

1

(2 jδ)N+1
(2 j+1δ)α/q ′‖g‖Lq

loc(R
d
x ×Rv)

� δα/q ′−(N+1)‖g‖Lq
loc(R

d
x ×Rv)

.

(2.10)

Thus, if we fix t > 0 and choose δ to equilibrate the bounds in (2.7) and (2.10),

δα(1/p′−1/q ′)+N+1 ∼
t‖g(x, v)‖Lq

loc

‖ f (x, v)‖W σ,p
loc

,

then this tells us that

inf
f (0)+ f (1)= f

[‖ f (0)‖W σ,p
loc (Rd

x ) + t‖ f (1)‖Ẇ k−η,q
loc (Rd

x )

]
� tθ · ‖g(x, v)‖θ

Lq
loc(R

d
x ×Rv)

· ‖ f (x, v)‖1−θ

W σ,p
loc (Rd

x ×Rv)
,

and the desired W s,r
loc -bound follows for s < (1 − θ)σ + θ(k − η) with θ given in

(2.6). The remaining case of q = 1 can be converted into the previous situation

using Sobolev embedding. In this case, g being a measure, it belongs to W −ε,qε for

all (ε, qε) such that

g ∈ W −ε,qε ,
d + 2

q ′
ε

< ε < 1 < qε <
d + 2

d + 1
,
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and hence (2.5) applies for s < (1 − θ)σ + θ(k − η − ε) and θ = θα(p, qε, N ); we

then let ε approach 0+ so that qε approaches arbitrarily close to 1+ to recover (2.5)

with sα and θα(p, 1, N ). �

Remark 2.1. As an example, consider a (possibly pseudo-) differential operator

L(∇x , · ) of order k and let f (x, v) ∈ W σ,2
loc such that L(∇x , v) f ∈ W σ−k+1,2

loc .

Assume that Lv(iξ, v) �= 0 so that the nondegeneracy condition (2.4) holds with

α = 1. Application of Averaging Lemma 2.1 with p = q = 2, N = 0, and

η = k − σ − 1 then yields the gain of half a derivative, f (x) ∈ W s,2
loc with s <

σ/2+ (σ +1)/2 = σ +1/2, in agreement with [23, theorem 2.1]. The main aspect

here is going beyond the L2-framework, while allowing for general and possibly

different orders of integrability, ( f, g) ∈ (W σ,p, Lq).

Remark 2.2. The limiting case of the interpolation estimate (2.5), θ = 1, s = sα,

corresponds to Besov regularity f ∈ Bs,r
t=∞(Rd

x ). This regularity can be worked out

using a more precise bookkeeping of the Littlewood-Paley blocks. For the transport

case, k = 1, it was carried out first in [20, theorem 3] and improved in [4], and a

final refinement with a secondary index t = p can be found in [16]. This limiting

case is encountered in the particular situation when k = η, so that the interval

(σ, sα) “survives” at θ = 1. Here one cannot expect a regularizing effect, but there

is a persistence of relative compactness of the mapping g(x, v) �→ f (x) [41].

To gain better insight into the last averaging lemma, we focus our attention on

the case where f is a W σ,p
loc -solution of

(2.11)
L(∇x , v) f (x, v) = ∂vg(x, v),

g ∈ Lq
loc(R

d
x × Rv), f ∈ W σ,p

loc (Rd
x × Rv),

corresponding to the special case η = 0 and N = 1 in (2.3). This case will suffice

to cover all the single-valued applications we have in mind for the discussion in

Sections 3, 4, and 5 without the burden of carrying out an excessive amount of

indices. Averaging Lemma 2.1 implies that f (x) has Sobolev regularity of order

s < (1 − θ)σ + θk,

(2.12)

‖ f ‖W s,r
loc (Rd

x ) � ‖g‖θ

Lq
loc(R

d
x ×Rv)

· ‖ f ‖1−θ

L p
loc(R

d
x )
,

θ ≡ θα := α/p′

α(1/p′ − 1/q ′) + 2
.

The last regularity statement can be improved. To this end, we revisit the dyadic

multipliers in (2.9), ψ̃j
(N )

(L(iξ ′, v)/2 jδ)LN
v (iξ ′, v). The key observation is that

Lv(iξ ′, v) acts only on the subset of v’s—those that belong to v ∈ �L(ξ ′; 2 j+1δ).

Linking the size of Lv(iξ ′, v) to that of L(iξ ′, v), we arrive at the following im-

proved averaging regularity lemma:
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AVERAGING LEMMA 2.2 Let f ∈ W σ,p
loc (Rd

x × Rv), σ ≥ 0, 1 < p ≤ 2, solve the
equation

(2.13) L(∇x , v) f (x, v) = ∂vg(x, v), g ∈
{

Lq(Rd
x × Rv), 1 < q ≤ 2,

M(Rd
x × Rv), q = 1.

Let L(iξ, v) be the corresponding symbol. We assume that L(iξ, v) is homoge-
neous in iξ of order k, k > σ , that the modified symbol L(iξ ′, v) satisfies the
truncation property uniformly in v, and that it is nondegenerate in the sense that
there exists an α, 0 < α < q ′, such that (2.4) holds. Moreover, assume that there
exists a µ ∈ [0, 1] such that

(2.14) sup
|ξ |=1

sup
v∈�L(ξ ;δ)

|Lv(iξ, v)| � δµ, �L(ξ ; δ) := {v ∈ I : |L(iξ, v)| ≤ δ}.

Then there exist θ = θα ∈ (0, 1) and r given by

(2.15) θ := α/p′

α(1/p′ − 1/q ′) + 2 − µ
,

1

r
:= 1 − θ

p
+ θ

q
,

such that, for all bump functions φ ∈ C∞
0 (I ), the averages

f (x) :=
∫

f (x, v)φ(v)dv

belong to the Sobolev space W s,r
loc (Rd

x ) for all s ∈ (σ, sα), sα = (1 − θα)σ + θαk,
and (2.5) holds.

PROOF: For the proof we revisit (2.8) with η = 0, N = 1,


k
x f j = 1

(2 jδ)2
F

−1
x

∫
v

∂zψ̃j

(
L(iξ ′, v)

2 jδ

)
Lv(iξ

′, v)ĝ(ξ, v)φ(v)dv.

Its bound in (2.10) can now be improved by the extra factor of (2 j+1δ)µ, which

follows from (2.14), yielding∥∥
k
x f (1)

∥∥
Lq

loc(R
d
x )

�
∑
j≥1

1

(2 jδ)2
(2 j+1δ)

α
q′ +µ‖g‖Lq

loc(R
d
x ×Rv)

� δ
α
q′ −(2−µ)‖g‖Lq

loc(R
d
x ×Rv)

,

and we conclude by arguing along the lines of Averaging Lemma 2.1. �

Remark 2.3. In the generic case of a symbol L(iξ, v) that is analytic in iξ uni-

formly in v, the “degeneracy of order α” in (2.4) implies that

sup{|Lv(iξ, v)| : |ξ | = 1, |L(iξ, v)| ≤ δ} � δ1−α.

Thus, (2.14) holds with µ = 1 − α, and in this case, the velocity averaging holds

with Sobolev-regularity exponent

f (x) ∈ W s,r
loc (Rd

x ), s < sα := (1 − θα)σ + θαk, θα := α/p′

α(1/p′ + 1/q) + 1
.
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Remark 2.4. Averaging Lemma 2.2 can be extended for f ∈ L p(Rd
x × Rv) and

g ∈ Lq
loc(R

d
x × Rv) in the full range of 1 < p < ∞ and 1 ≤ q ≤ ∞. The dual

claim to (2.2), based on (L2, BMO)–interpolation for 2 ≤ p < ∞, reads

(2.16) ‖Mψ f (x)‖L p(Rd
x ) � sup

ξ

|�m(ξ ; δ)|1/p · ‖ f ‖L p(Rd
x ×Rv), 2 ≤ p < ∞.

This yields the same W s,r -regularity as before, namely, for all s ∈ (σ, (1 − θα)σ +
θαk) we have

(2.17) ‖ f ‖W s,r
loc (Rd

x ) � ‖g‖θ

Lq
loc(R

d
x ×Rv)

· ‖ f ‖1−θ

W σ,p
loc (Rd

x ×Rv)
,

with θ = θα(p, q) given by

θ := α/p

α(1/p − 1/q) + 2 − µ
,

1

r
:= 1 − θ

p
+ θ

q
,

p := max(p, p′), q := max(q, q ′).

2.3 An Averaging Lemma for General Symbols

We now turn our attention to averages involving general, not necessarily ho-

mogeneous, symbols; as such the polar coordinate representation ξ = |ξ |ξ ′ is no

longer useful and will be discarded. We focus on equations of the form

L(∇x , v) f (x, v) = ∂vg(x, v),

corresponding to (η, N ) = (0, 1) in (2.3).

AVERAGING LEMMA 2.3 Let f ∈ W σ,p
loc (Rd

x × Rv), σ ≥ 0, 1 < p ≤ 2, solve the
equation

(2.18) L(∇x , v) f (x, v) = ∂vg(x, v), g ∈
{

Lq(Rd
x × Rv), 1 < q ≤ 2,

M(Rd
x × Rv), q = 1.

Let L(iξ, · ) be the corresponding symbol of degree ≤ k with sufficiently smooth
v-dependent coefficients and assume it obeys the truncation property. Denote

ωL(J ; δ) := sup
ξ∈R

d

|ξ |∼J

|�L(ξ ; δ)|, �L(ξ ; δ) := {v : |L(iξ, v)| ≤ δ},

and suppose L is nondegenerate in the sense that there exist α, β > 0 such that

(2.19) ωL(J ; δ) �

(
δ

J β

)α

∀δ > 0, J � 1.

Moreover, assume that there exist λ ≥ 0 and µ ∈ [0, 1] such that

(2.20) sup
|ξ |∼J

sup
v∈�L(ξ ;δ)

|Lv(iξ, v)| � J βλδµ.

Then for all bump functions φ ∈ C∞
0 (I ), the average f (x) := ∫

f (x, v)φ(v)dv

belongs to the Sobolev space W s,r
loc (Rd

x ) for s ∈ (σ, sα,β) and the following estimate
holds:
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(2.21)

∥∥∥∥ ∫
f (x, v)φ(v)dv

∥∥∥∥
W s,r

loc (Rd
x )

�

‖ f (x, v)‖W σ,p
loc (Rd

x ×Rv)
+ ‖g(x, v)‖Lq

loc(R
d
x ×Rv)

.

Here, sα,β := (1 − θα)σ + θαβ(2 − µ − λ) where θ ≡ θα and r are given by

(2.22) θ := α/p′

α(1/p′ − 1/q ′) + 2 − µ
,

1

r
:= 1 − θ

p
+ θ

q
, 0 < θ < 1.

Remark 2.5. How does the last averaging lemma compare with the previous ones?

We note that since degLv(iξ, · ) ≤ k, the additional assumption (2.20) always

holds with µ = 0 and βλ = k. Hence, Averaging Lemma 2.3 with just the nonde-

generacy condition (2.19) yields the regularity f (x) ∈ W s,r
loc (Rd

x ) of (the reduced)

order s ∈ (σ, sα,β), where

(2.23) sα,β := (1 − θα)σ + θα(2β − k), θα := α/p′

α(1/p′ − 1/q ′) + 2
.

Now, if in particular L(iξ, · ) is homogeneous of degree k, then

ωL(ξ ; δ) = ωL

(
ξ ′; δ

|ξ |k
)

, ξ ′ := ξ

|ξ | ;

this shows that if the nondegeneracy condition (2.4) of Averaging Lemma 2.1

holds, ωL(J ; δ) ∼ (δ/J k)α, then it implies (2.19) with β = k, and we recover

the homogeneous Averaging Lemma 2.1 with (η, N ) = (0, 1); namely, the aver-

ages f̄ gain regularity of order s < (1 − θ)σ + θ(2β − k) = (1 − θ)σ + θk. The

only difference is that now the truncation property is assumed on the unmodified

symbol L(iξ, v) rather than the modified one L(iξ ′, v).

As for Averaging Lemma 2.2, we first note that in the generic case of a homoge-

neous L( · , v), the additional assumption (2.20) holds with λ = α and µ = 1 − α,

(2.24) sup
|ξ |∼J

sup
{v∈I :|L(iξ,v)|≤δ}

|Lv(iξ, v)| � J βαδ1−α.

Indeed, all the homogeneous examples discussed in Sections 3, 4, and 5 below

employ Averaging Lemma 2.2 with these parameters that yield W s,r -regularity of

order s < (1 − θα)σ + θαβ,

(2.25) f (x) ∈ W s,r
loc (Rd

x ), s < (1 − θα)σ + θαβ, θα = α/p′

α(1/p′ + 1/q) + 1
.

In the particular case of L being homogeneous of order k, then β = k and we re-

cover Averaging Lemma 2.2 (except that the truncation hypothesis is now assumed

on the unmodified symbol).

PROOF: We begin by noting that we can safely replace the nondegeneracy con-

dition (2.19) with a slightly weaker one; namely, there exist α, β > 0 and ε > 0
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such that

(2.26) ωL(J ; δ) �

(
δ1+ε

J β

)α

, ∀δ > 0, J � 1,

and still retain the same gain of regularity of order s < sα,β . This can be achieved

by replacing the values of α in (2.19) by α/(1 + ε) and then absorbing ε into a

slightly smaller order of regularity, (1 − ε)sα,β dictated by θα/(1+ε). The extra ε-

power of δ will be needed below to insure simple summability, which probably

could be eliminated by a more refined argument involving Besov spaces, along the

lines of [20].

Next, we break up f into Littlewood-Paley pieces [44, sec. VI, 4]

f = f0 +
∑

dyadic J ’s�1

f J ,

so that f̂ J (ξ, v), the spatial Fourier transform of f J (x, v), is supported for frequen-

cies |ξ | ∼ J , and f̂0 has support in |ξ | � 1. Since f0 is a smooth average of f at

unit scales, the contribution of f0 is easily seen to be acceptable. By giving up an ε

in the index sα,β we may thus reduce (2.21) to a single value of J . It thus suffices

to show that

J s‖ f J ‖Lr
loc(R

d ) � J σ‖ f J ‖L p
loc(R

d
x ×Rv)

+ ‖g‖Lq
loc(R

d
x ×Rv)

,

f J :=
∫
v

f J (x, v)φ(v)dv,

for each J � 1.

Fix J . Because of the local nature of Littlewood-Paley projections when J �
1, we may replace the localized L p-norms with global norms. Actually we may

replace Lr by weak Lr since we may pay another ε in the index sα,β to improve

this. By the duality of weak Lr and Lr ′,1, it thus suffices to show that

(2.27) |〈 f J , χE〉| � J −s |E |1/r ′

for all sets E ⊂ Rd of finite measure, where we have normalized ‖ f J ‖L p(Rd
x ×Rv) �

J −σ and ‖g‖Lq
loc(R

d
x ×Rv)

� 1.

We now decompose the action in v-space of each of the Littlewood-Paley pieces

(rather than a decomposition f itself used in Lemma 2.1),

f J (x, v) =
∑

dyadic δ’s�J k

ψ

(
L(∇x , v)

δ

)
f J (x, v),

where ψ(L(∇x , v)/δ) := F−1
x ψ(L(iξ, v)/δ)Fx . Here, ψ(z) is a bump function

on C supported on the region |z| ∼ 1. It suffices to estimate

(2.28)

〈 ∫
ψ

(
L(∇x , v)

δ

)
f J ( · , v)φ(v)dv, χE

〉
with a summable decay as the dyadic δ → 0 so that (2.27) holds.
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By our assumption, L(iξ, v) satisfies the truncation property uniformly in v;

hence by Lemma 2.2 we see that for all 1 < p ≤ 2,

(2.29)

∥∥∥∥ ∫
ψ

(
L(∇x , v)

δ

)
f J (x, v)φ(v)dv

∥∥∥∥
L p

loc(R
d
x )

�

ωL(J ; δ)1/p′‖ f J ‖L p
loc(R

d
x ×Rv)

.

From (2.29) and Hölder we may thus estimate (2.28) by

(2.30)

∣∣∣∣〈 ∫
ψ

(
L(∇x , v)

δ

)
f J ( · , v)φ(v)dv, χE

〉∣∣∣∣ � J −σωL(J ; δ)1/p′ |E |1/p′
.

On the other hand, thanks to equation (2.18) we can write

ψ

(
L(∇x , v)

δ

)
f J (x, v) = ψ̃

(
L(∇x , v)

δ

)
1

δ

∂

∂v
gJ (x, v)

where ψ̃(z) := ψ(z)/z and the gJ ’s are the corresponding Littlewood-Paley dyadic

pieces of g. We thus have

(2.31)

∫
ψ

(
L(∇x , v)

δ

)
f J (x, v)φ(v)dv =

1

δ

∫
ψ̃

(
L(∇x , v)

δ

)
∂

∂v
gJ (x, v)φ(v)dv.

We now integrate by parts to move the ∂/∂v derivative somewhere else. We will

assume that the derivative hits ψ̃(L(∇x , v)/δ), since the case when the derivative

hits the bump function φ(v) is much better. We are thus led to estimate

(2.32)
1

δ2

∣∣∣∣〈 ∫
ψ̃z

(
L(∇x , v)

δ

)
Lv(∇x , v)gJ (x, v)φ(v)dv, χE

〉∣∣∣∣.
Since gJ is localized to frequencies ∼ J , then by (2.20), the multiplier Lv(iξ, v)

acts like a constant of order O(J βλδµ). Also, ψ̃z is a bump function much like ψ .

Thus we may modify (2.29) with p replaced by q (assuming that q > 1 and using

the modified argument for the case q = 1 as before), ψ replaced by ψ̃z , and f J

replaced by Lv(∇x , v)gJ , to estimate (2.31) by

(2.33)

∣∣∣∣〈 ∫
ψ

(
L(∇x , v)

δ

)
f J ( · , v)φ(v)dv, χE

〉∣∣∣∣ �

δ−(2−µ) J βλωL(J ; δ)1/q ′ |E |1/q ′
.

Interpolating this bound with (2.30), we may bound (2.28) by

δ−θ(2−µ) J (1−θ)(−σ)+θβλωL(J ; δ)1/r ′ |E |1/r ′
.

The parametrization in (2.22) dictates α/r ′ = θ(2 − µ). Finally, we put the extra

ε power into use: by (2.26), ωL(J ; δ)1/r ′
� (δ1+ε J −β)θ(2−µ) and hence the last
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quantity is bounded by

δθ(2−µ)ε J −sα,β |E |1/r ′
, sα,β = (1 − θ)σ − θβ(2 − µ − λ).

Summing in δ and using the hypothesis that s < sα,β , we obtain (2.27). �

2.4 Velocity Averaging for First- and Second-Order Symbols

To apply velocity Averaging Lemma 2.3 we need to find out which multipliers

m(ξ) have the truncation property. Fortunately, there are large classes of such

multipliers.

First of all, it is clear that the multipliers m(ξ) = ξ ·e1 and m(ξ) = |ξ |2 have the

truncation property, as in these cases the Fourier multipliers are just convolutions

with finite measures. Now, observe that if m(ξ) has the truncation property, then so

does m(L(ξ)) for any invertible linear transformation L on Rd , with a bound that

is uniform in L . This is because the L p-multiplier class is invariant under linear

transformations.

Because of this, we see that the multipliers

m1(ξ) = a(v) · iξ and m2(ξ) = 〈b(v)ξ, ξ〉
have the truncation property uniformly in v, where a(v) are arbitrary real coeffi-

cients and b(v) is an arbitrary elliptic bilinear form with real coefficients.

From the Hörmander-Mikhlin or Marcinkeiwicz multiplier theorems and the

linear transformation argument one can also show that m1(ξ
′) has the truncation

property uniformly in v. These arguments go back to the discussion of [20]. The

situation with m2(ξ
′) is less clear, but fortunately we will not need to verify that

these second-order modified multipliers obey the truncation property since our av-

eraging lemmas also work with a truncation property hypothesis on the unmodified

multiplier.

Now we observe that if m1(ξ) and m2(ξ) are real multipliers with the truncation

property, then the complex multiplier m1(ξ)+ im2(ξ) also has the truncation prop-

erty. The basic observation is that one can use Fourier series to write any symbol

of the form

ψ

(
m1(ξ) + im2(ξ)

δ

)
as ∑

j,k∈Z

ψ̂( j, k)ψ̃j

(
m1(ξ)

δ

)
ψ̃k

(
m2(ξ)

δ

)
where ψ̃j (x) := e2π i j x ψ̃ and ψ̃ is some bump function that equals 1 on the one-

dimensional projections of the support of ψ . Since the C�-norm of ψ̃j grows poly-

nomially in j and ψ̂( j, k) decays rapidly in j and k (if ψ is sufficiently smooth),

we are done since the product of two L p-multipliers is still an L p-multiplier.
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3 Nonlinear Hyperbolic Conservation Laws

Having developed our averaging lemmas, we now present some applications

to nonlinear PDEs. We begin with the study of (real-valued) solutions ρ(t, x) =
ρ(t, x1, . . . , xd) ∈ L∞((0,∞)×Rd

x ) of multidimensional scalar conservation laws,

(3.1)
∂

∂t
ρ(t, x) +

d∑
j=1

∂

∂xj
Aj (ρ(t, x)) = 0 in D

′((0,∞) × Rd
x ).

We abbreviate (3.1) as ρt + ∇x · A(ρ) = 0 where A is the vector of C2,ε-spatial

fluxes, A := (A1, A2, . . . , Ad). Let χγ (v) denote the velocity indicator function

χγ (v) =


1 if 0 < v ≤ γ

−1 if γ ≤ v < 0

0 otherwise.

We say that ρ(t, x) is a kinetic solution of the conservation law (3.1) if the corre-

sponding distribution function χρ(t,x)(v) satisfies the transport equation

(3.2) ∂tχρ(t,x)(v)+a(v) ·∇xχρ(t,x)(v) = ∂vm(t, x, v) in D
′((0,∞)×Rd

x ×Rv),

for some nonnegative measure, m(t, x, v) ∈ M+((0,∞) × Rd
x × Rv). Here, a(v)

is the vector of transport velocities, a(v) := (a1(v), . . . , ad(v)) where aj (·) :=
A′

j (·), j = 1, . . . , d. The regularizing effect associated with the proper notion of

nonlinearity of the conservation law (3.1) was explored in [36] through the averag-

ing properties of an underlying kinetic formulation. For completeness, we include

here a brief description that will serve our discussion on nonlinear parabolic and

elliptic equations in the following sections, and we refer to [36] for a complete

discussion.

The starting point is the entropy inequalities associated with (3.1),

∂tη(ρ(t, x)) + ∇x · Aη(ρ(t, x)) ≤ 0 in D
′((0,∞) × Rd

x ).

Here, η is an arbitrary entropy function (a convex function from R to R) and

Aη := (Aη

1, . . . , Aη

d) is the corresponding vector of entropy fluxes, Aη

j (ρ) :=∫ ρ
η′(s)A′

j (s)ds, j = 1, . . . , d. A function ρ ∈ L∞ is an entropy solution if

it satisfies the entropy inequalities for all pairs (η, Aη) induced by convex en-

tropies η. Entropy solutions are precisely those solutions that are realizable as

vanishing viscosity limit solutions and are uniquely determined by their L∞ ∩ L1–

initial data ρ0(x), prescribed at t = 0, e.g., [33]. A decisive role is played by the

one-parameter family of Kružkov entropy pairs, (η(ρ; v), Aη(ρ; v)), parametrized

by v ∈ R,

η(ρ; v) := |ρ − v|, Aη

j (ρ; v) := sgn(ρ − v)(Aj (ρ) − Aj (v)).

Kružkov entropy pairs lead to a complete L1-theory of existence, uniqueness, and

stability of first-order quasi-linear conservation laws [32].



VELOCITY AVERAGING AND REGULARITY OF QUASI-LINEAR PDES 1505

We turn to the kinetic formulation. We define the distribution m(t, x, v) =
mρ(t,x)(v) by the formula

(3.3) m(t, x, v) := −
[
∂t

η(ρ; v) − η(0; v)

2
+ ∇x ·

(
Aη(ρ; v) − Aη(0; v)

2

)]
.

The entropy inequalities tell us that the distribution m = mρ is in fact a nonnegative

measure, m(t, x, v) ∈ M+((0,∞)×Rd
x ×Rv). Next, we differentiate (3.3) with re-

spect to v: a straightforward computation yields that χρ(t,x)(v) satisfies the kinetic

transport equation (3.2). This reveals the interplay between Kružkov entropy in-

equalities and the underlying kinetic formulation; for nonlinear conservation laws,

kinetic solutions coincide with the entropy solutions [36, 40, 43]. Observe that

by velocity averaging we recover the macroscopic quantities associated with the

entropy solution ρ, ∫
v

χρ(v)φ(v)dv = �(ρ),

where �(ρ) := ∫ ρ

s=0
φ(s)ds is the primitive of φ. In particular, one can recover ρ

itself by setting φ(v) = 1[−M,M](v), M = ‖ρ‖L∞ .

We now use Averaging Lemma 2.2 to study the regularity of ρ. To this end

we first extend (3.2) over the full Rt × Rd
x –space, using a C∞

0 (0,∞)–cutoff func-

tion, ψ ≡ 1 for t ≥ ε, so that f (t, x, v) := χρ(t,x)(v)ψ(t) and g(t, x, v) :=
mv(t, x, v)ψ(t) + χρ(t,x)(v)∂tψ(t) satisfy

∂t f (t, x, v) + a(v) · ∇x f (t, x, v) = ∂vg(t, x, v) in D
′(Rt × Rd

x × Rv),

with g ∈ M(Rt ×Rd
x ×Rv). Set I := [inf ρ0, sup ρ0] and assume that the first-order

symbol is nondegenerate so that (2.4), (2.14) hold; namely, there exist α ∈ (0, 1)

and µ ∈ [0, 1] such that

(3.4) sup
τ 2+|ξ |2=1

|�a(ξ ; δ)| � δα, �a(ξ ; δ) := {v ∈ I : |τ + a(v) · ξ | ≤ δ},

and

(3.5) sup
|ξ |=1

sup
�a(ξ ;δ)

|a′(v) · ξ | � δµ.

We apply Averaging Lemma 2.2 for first-order symbols, k = 1, with q = 1,

p = 2, and σ = 0, to find that f (x) and hence ρ(x) belongs to W s,r
loc (Rt × Rd

x ),

ρ(t, x) ∈ W s,r
loc ((ε,∞) × Rd

x ), s < θα := α

α + 4 − 2µ
, r := α + 4 − 2µ

α + 2 − µ
.

At this stage we invoke the monotonicity property of entropy solutions, which

implies that for s < 1, ‖ρ(t, · )‖W s,1
loc (Rd

x )
is nonincreasing, and we deduce that

ρ(t, · ) ∈ W s,1(Rd
x ) for t > ε. We conclude that the entropy solution operator



1506 E. TADMOR AND T. TAO

associated with the nonlinear conservation law (3.1),(3.4), ρ0(·) �→ ρ(t, · ), has a

regularizing effect, mapping L∞(Rd
x ) into W s,1

loc (Rd
x ),

∀t ≥ ε > 0 ρ(t, · ) ∈ W s,1
loc (Rd

x ), s < s1, s1 := θα = α

α + 4 − 2µ
.

Next, we use the bootstrap argument of [36, sec. 3] to deduce an improved

regularizing effect. The W s,1
loc (Rt × Rd

x )–regularity of ρ(t, x)ψ(t) implies that

f (t, x, v) = χρ(t,x)(v)ψ(t) belongs to L1(W s,1(Rt × Rd
x ), Rv); moreover, since

∂vχρ(v) is a bounded measure, f ∈ L1(W s,1(Rt ×Rd
x ), Rv)∩L1(Rt ×Rd

x , W s,1(Rv))

and hence

f ∈ W s,1
loc (Rt × Rd

x × Rv) ∀s < s1.

Interpolation with the obvious L∞-bound of f then yields that f ∈ W s,2
loc (Rt ×

Rd
x × Rv) for all s < s1/2. Therefore, Averaging Lemma 2.2 applies to f =

χρ(t,x)(v)ψ(t) with q = 1, p = 2, and σ = s1/2, implying that ρ(t, · ) has im-

proved W s,1
loc -regularity of order s < s2 = (1 − θα)s1/2 + θα. Reiterating this

argument yields the fixed point sk ↑ s∞ = 2θα/(1 + θα) and we conclude with a

regularizing effect

∀t ≥ ε > 0 ρ0 ∈ L∞ ∩ L1(Rd
x ) �→ ρ(t, · ) ∈ W s,1

loc (Rd
x ), s <

α

α + 2 − µ
.

As indicated earlier in Remark 2.5, in the generic case, µ = 1 − α,

(3.6) sup
|ξ |=1

sup
{v∈I :|τ+a(v)·ξ |≤δ}

|a′(v) · ξ | � δ1−α,

which yields a W s,1-regularizing effect of order s < α/(2α+1). This improves the

previous regularity result [36, theorem 4] of order s < α/(α + 2), corresponding

to µ = 0.

We can extend the last statement for general L p
loc initial data. Recall that the

entropy solution operator associated with (3.1) is L1-contractive. We now in-

voke a general nonlinear interpolation argument of J.-L. Lions, e.g., [49, “Inter-

polation Theory,” lecture 8]; namely, if a possibly nonlinear T is Lipschitz on X
with a Lipschitz constant L X and maps boundedly Y1 �→ Y2 with a bound BY ,

then one verifies that the corresponding K -functional satisfies K (T x, t; X, Y2) ≤
L X K (x, t BY /L X ; X, Y1), and hence T maps [X, Y1]θ,q �→ [X, Y2]θ,q . Conse-

quently, the entropy solution operator maps [L1, L∞]θ,q �→ [L1, W s,1
loc ]θ,q, 0 <

θ < 1 < q, and we conclude the following:

COROLLARY 3.1 Consider the nonlinear conservation law (3.1) subject to L p ∩
L1–initial data, ρ(0, x) = ρ0(x). Assume the nondegeneracy condition of order
α, namely (3.4), (3.6), hold over arbitrary finite intervals I . Then ρ(t, x) gains a
regularity of order s/p′,

∀t ≥ ε > 0 ρ0 ∈ L p ∩ L1(Rd
x ) �→ ρ(t, · ) ∈ W s,1

loc (Rd
x ), s <

α

(2α + 1)p′ .
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The study of regularizing effects in one- and two-dimensional nonlinear con-

servation laws has been studied by a variety of different approaches; an incomplete

list of references includes [21, 38, 45, 46, 47].

We close this section with three examples. Let � ≥ 1 and consider the one-

dimensional conservation law

(3.7)
∂

∂t
ρ(t, x) + ∂

∂x

{
1

� + 1
ρ�+1(t, x)

}
= 0, ρ0 ∈ [−M, M].

It satisfies the nondegeneracy condition (3.4) with α = 1
�
; hence ρ(t, · )|t>ε ∈ W s,1

loc

with s < α/(2α + 1) = 1/(� + 2). It is well-known, however, that the entropy

solution operator of the inviscid Burgers equation corresponding to � = 1 maps

L∞ �→ BV [38]. This shows that the regularizing effect of order α/(2α + 1) stated

in Corollary 3.1 is not sharp; consult [15] following [29]. Accordingly, it was

conjectured in [36] that (3.4) yields a regularizing effect of order α.

Next, let �, m ≥ 1 and consider the two-dimensional conservation law

∂

∂t
ρ(t, x) + ∂

∂x1

{
1

� + 1
ρ�+1(t, x)

}
+ ∂

∂x2

{
1

m + 1
ρm+1(t, x)

}
= 0,

subject to initial condition ρ0 ∈ [−M, M]. If � �= m then (3.4) is satisfied with

α = min{ 1
�
, 1

m } and we conclude ρ(t ≥ ε, · ) ∈ W s
loc(L1) with s < min{ 1

�+2
, 1

m+2
}.

If � = m, however, then there is no regularizing effect since τ ′+v�ξ ′
1+vmξ ′

2 ≡ 0 for

τ = 0, ξ1 + ξ2 = 0; indeed, ρ0(x − y) are steady solutions that allow oscillations

to persist along x − y = const. Other cases can be worked out based on their

polynomial degeneracy; for example,

∂

∂t
ρ(t, x) + ∂

∂x1

sin(ρ(t, x)) + ∂

∂x2

{
1

3
ρ3(t, x)

}
= 0, ρ0 ∈ [−M, M],

has a nondegeneracy of order α = 1
4
, yielding W s,1

loc -regularity of order s < 1
6
.

4 Nonlinear Degenerate Parabolic Equations

We are concerned with second-order, possibly degenerate parabolic equations

in conservative form:

∂

∂t
ρ(t, x) +

d∑
j=1

∂

∂xj
Aj (ρ(t, x))

−
d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0 in D

′((0,∞) × Rd
x ).

(4.1)

We abbreviate, ρt + ∇x · A(ρ) − tr(∇x ⊗ ∇x B(ρ)) = 0 where B is the matrix

B := {Bjk}d
j,k=1. By degenerate parabolicity we mean that the matrix B′(·) is non-

negative, 〈B′(·)ξ, ξ〉 ≥ 0 ∀ξ ∈ Rd . Our starting point is the entropy inequalities
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associated with (4.1) such that for all convex η’s,

∂tη(ρ(t, x)) + ∇x · Aη(ρ(t, x))

− tr
(∇x ⊗ ∇x Bη(ρ(t, x))

) ≤ 0 in D
′((0,∞) × Rd

x ).
(4.2)

Here Aη is the same vector of hyperbolic entropy fluxes we had before, Aη =
(Aη

1, . . . , Aη

d), and Bη is the matrix of parabolic entropy fluxes, Bη := (Bη

jk)
d
j,k=1

where Bη

jk(ρ) := ∫ ρ
η′(s)B ′

jk(s)ds. We turn to the kinetic formulation. Utilizing

the Kružkov entropies η(ρ; v) := |ρ − v|, we define the distribution, m(t, x, v) =
mρ(t,x)(v),

m(t, x, v) := −
[
∂t

η(ρ; v) − η(0; v)

2
+ ∇x ·

(
Aη(ρ; v) − Aη(0; v)

2

)]
+ tr

(
∇x ⊗ ∇x

Bη(ρ; v) − Bη(0; v)

2

)
.

(4.3)

The entropy inequalities tell us that m(t, x, v) ∈ M+((0,∞) × Rd
x × Rv) and

differentiation with respect to v yields the kinetic formulation

(4.4) ∂tχρ(t,x)(v) + a(v) · ∇xχρ(t,x)(v) − ∇�
x · b(v)∇xχρ(t,x)(v) = ∂vm(t, x, v)

for some nonnegative m ∈ M+ that measures entropy + dissipation production.

Here a is the same vector of velocities we had before, a = A′, and b is the

nonnegative diffusion matrix b := B′ ≥ 0. The representation η(ρ) − η(0) =∫
η′(s)χρ(s)ds shows that the kinetic formulation (4.4) is in fact the equivalent

dual statement of the entropy inequalities (4.2). But neither of these statements

settles the question of uniqueness, except for certain special cases, such as the

isotropic diffusion, Bjk(ρ) = B(ρ)δjk ≥ 0, e.g., [8], or special cases with mild

singularities, e.g., a porous-media-type one-point degeneracy [17, 51]. The exten-

sion of Kružkov theory to the present context of general parabolic equations with

possibly nonisotropic diffusion was completed only recently in [11], after the pi-

oneering work [53]. Observe that the entropy production measure m consists of

contributions from the hyperbolic entropy dissipation and the parabolic dissipa-

tion of the equation m = mA + mB. The solutions sought by Chen and Perthame

in [11], ρ ∈ L∞, require that their corresponding distribution function χρ satisfy

(4.4) with a restricted form of parabolic defect measure mB: the restriction im-

posed on mB reflects a certain renormalization property of the mixed derivatives

of ρ (or, more precisely, the primitive of
√

b(ρ)). Accordingly, we can refer to

these Chen-Perthame solutions as renormalized solutions with a kinetic formula-

tion (4.4). These renormalized kinetic solutions admit an equivalent interpretation

as entropy solutions [11] and as dissipative solutions [42]. A general L1-theory of

existence, uniqueness, and stability can be found in [10].

For a recent overview with a more complete list of references on such convec-

tion-diffusion equations in divergence form, we refer the reader to [9]. The regu-

larizing effect of such equations, however, is less understood. In [36, §5] we used



VELOCITY AVERAGING AND REGULARITY OF QUASI-LINEAR PDES 1509

the kinetic formulation (4.4) to prove that the solution operator, ρ0 �→ ρ(t, · ) is

relatively compact under a generic nondegeneracy condition

sup
|ξ |=1

|�L(ξ ; 0)| = 0, �L(ξ ; 0) := {v : τ + a(v) · ξ = 0, 〈b(v)ξ, ξ〉 = 0}.

A general compactness result in this direction can be found in [22]. We turn to

quantify the regularizing effect associated with such kinetic solutions. We empha-

size that our regularity results are based on the “generic” kinetic formulation (4.4),

but otherwise they are independent of the additional information on the renormal-

ized Chen-Perthame solutions encoded in their entropy production measure m. The

extra restrictions of the latter will likely yield even better regularity results than

those stated below. We divide our discussion into two stages in order to highlight

different aspects of degenerate diffusion in Section 4.1 and the coupling with non-

linear convection in Section 4.2.

4.1 Nonisotropic Degenerate Diffusion

We consider the parabolic equation

(4.5)
∂

∂t
ρ(t, x) −

d∑
j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0 in D

′((0,∞) × Rd
x ).

Here we ignore the hyperbolic part and focus on the effect of nonisotropic diffu-

sion. The corresponding kinetic formulation (4.4) extended to the full Rt ×Rd
x ×Rv

reads

∂t f (t, x, v) − ∇�
x · b(v)∇x f (t, x, v) = ∂vm(t, x, v), f := χρψ(t),

with m ∈ M+(Rt × Rd
x × Rv). Set I := [inf ρ0, sup ρ0]. The corresponding

symbol is L(iτ, iξ, v) = iτ − 〈b(v)ξ, ξ〉, and it suffices to make the nonde-

generacy assumption (2.4) on the second-order homogeneous part of the symbol

L(0, iξ, v) = −〈b(v)ξ, ξ〉. We make the assumption of nondegeneracy; namely,

there exist α ∈ (0, 1) and µ ∈ [0, 1] such that

(4.6) sup
|ξ |=1

|�b(ξ ; δ)| � δα, �b(ξ ; δ) := {v ∈ I : 0 ≤ 〈b(v)ξ, ξ〉 ≤ δ}

and

(4.7) sup
|ξ |=1

sup
�b(ξ ;δ)

|〈b′(v)ξ, ξ〉| � δµ.

We apply Averaging Lemma 2.3 with q = 1, p = 2, σ = 0, and k = 2 to find that

f (t, x) and hence ρ(t, x) belong to W s,r
loc (Rt × Rd

x ),

ρ(t, · ) ∈ W s,r
loc ((ε,∞) × Rd

x ), s < 2θα, θα := α

α + 4 − 2µ
, r := α + 4 − 2µ

α + 2 − µ
.

We follow the hyperbolic arguments. The kinetic solution operator associated with

(4.1) is L1-contractive, hence ‖ρ(t, · )‖W s,1
loc (Rd

x )
is nonincreasing and we conclude

that ∀t > ε, ρ(t, · ) has W s,1
loc -regularity of order s < s1, s1 := 2θα = 2α/(α + 4 −
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2µ). We then bootstrap. Since χρ(v)ψ(t) ∈ W s,2
loc (Rt × Rd

x × Rv) for all s < s1/2,

we can apply Averaging Lemma 2.1 with σ = s1/2 leading to W s,1
loc -regularity of

order s2 := (1 − θα)s1/2 + 2θα with fixed point sk ↑ s∞ = 4θα/(1 + θα),

(4.8) ∀t ≥ ε > 0 ρ0 ∈ L∞ ∩ L1(Rd
x ) �→ ρ(t, · ) ∈ W s,1

loc (Rd
x ), s <

2α

α + 2 − µ
.

We distinguish between two different types of degenerate parabolicity, summa-

rized in the following two corollaries:

COROLLARY 4.1 (Degenerate Parabolicity I: The Case of a Full Rank) Consider
the degenerate parabolic equation (4.1) subject to L p ∩ L1–initial data, ρ(0, x) =
ρ0. Let λ1(v) ≥ · · · ≥ λd(v) ≥ 0 be the eigenvalues of b(v) and assume that
λd(v) �≡ 0 over I = [inf ρ0, sup ρ0]. Then 〈b(v)ξ, ξ〉 ≥ λd(v)|ξ |2 and ρ(t, x) has
a regularizing of order s < 2α/(α + 2 − µ)p′. In particular, (4.8) holds with α

and µ dictated by λd(v) ≡ λd(b(v)), |�λ(δ)| � δα, and

sup
|ξ |=1

sup
v∈�λ(δ)

|〈b′(v)ξ, ξ〉| � δµ,

where �λ(δ) := {v ∈ I : 0 ≤ λd(v) ≤ δ}.
Corollary 4.1 applies to the special case of isotropic diffusion,

(4.9)
∂

∂t
ρ(t, x) − �B(ρ(t, x)) = 0, B ′(v) ≥ 0,

subject to L∞ ∩ L1–initial data, ρ(0, · ) = ρ0. If b(·) := B ′(v) is degenerate of

order α in the sense that

|�b(δ)| � δα and sup
v∈�b(δ)

|b′(v)| � δ1−α, �b(δ) := {v ∈ I : 0 ≤ b(v) ≤ δ},

then Corollary 4.1 implies, ∀t ≥ ε, ρ(t, · ) ∈ W s,1
loc , s < 2α/(2α + 1). For

L p ∩ L1–data ρ0, the corresponding solution ρ(t, · ) gains W s,1
loc -regularity of or-

der s < 2α/(2α + 1)p′ and we conjecture, in analogy with the hyperbolic case,

that the nondegeneracy (4.6) yields an improved regularizing effect of order 2α/p′.
Existence, uniqueness, and regularizing effects of the isotropic equation (4.9) were

studied earlier in [2, 3, 6]. The prototype is provided by the porous media equation

(4.10)

∂

∂t
ρ(t, x) − �

{
1

n + 1
|ρn(t, x)|ρ(t, x)

}
= 0,

ρ(0, x) = ρ0(x) ≥ 0, ρ0 ∈ L∞.

The velocity averaging yields W s,1-regularity of order 2/(n + 2) and, as in the

hyperbolic case, it does not recover the optimal Hölder continuity in this case, e.g.,

[17, 50]. In fact, the kinetic arguments do not yield continuity. Instead, our main

contribution here is to the nonisotropic case where we conjecture the same gain of

regularity driven by λd(b(v)) as the isotropic regularity driven by b(v).
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We continue with the subtler case where b(·) does not have a full rank so that

∃� 1 ≤ � < d : λ1(v) ≥ · · · ≥ λ�(v) ≥ 0, λ�+1(v) ≡ · · · ≡ λd(v) ≡ 0.

Despite this stronger degeneracy, there is still some regularity that can be “saved.”

To demonstrate our point, we consider the two-dimensional case.

COROLLARY 4.2 (Degenerate Parabolicity II: The Case of a Partial Rank) We con-
sider the two-dimensional degenerate equation

∂

∂t
ρ(t, x) −

{
∂2

∂x2
1

B11(ρ(t, x))

+ ∂2

∂x1∂x2

B12(ρ(t, x)) + ∂2

∂x2
2

B22(ρ(t, x))

}
= 0,

(4.11)

subject to L∞ ∩ L1–initial data ρ(0, x) = ρ0. Assume strong degeneracy, b2
12(v) ≡

4b11(v)b22(v), so that λ2(b(v)) ≡ 0 ∀v ∈ I = [inf ρ0, sup0]. In this case,
〈b(v)ξ, ξ〉 = (

√
b11(v)ξ1 + √

b22(v)ξ2)
2 and ρ(t, · ) admits a W s,1

loc -regularity of
order s < 2α/(α + 2 − µ), which is dictated by the nondegeneracy condition

(4.12) sup
|ξ |=1

|�b(ξ ; δ)| � δα

and

(4.13) sup
|ξ |=1

sup
v∈�b(ξ ;δ)

∣∣∣∣ b′
11(v)√
b11(v)

ξ1 + b′
22(v)√
b22(v)

ξ2

∣∣∣∣ � δµ−1/2

where �b(ξ ; δ) := {v ∈ I : |√b11(v)ξ1 + √
b22(v)ξ2|2 ≤ δ}.

We distinguish between two extreme scenarios.

(1) If |b11(v)| � |b22(v)| ∀v ∈ I , then the regularizing effect (4.8) holds with

(α, µ) dictated by b22(v), namely,

|�b22
(δ)| � δα and sup

v∈�b22
(δ)

|b′
22(v)| � δµ,

where �b22
(δ) := {v ∈ I : 0 ≤ b22(v) ≤ δ}.

(2) If b11(v) ≡ b22(v) ∀v ∈ I , then there is no regularizing effect since the

symbol (
√

b11(v)ξ1 + √
b22(v)ξ2)

2 vanishes for all ξ1 ± ξ2 = 0 (so that (4.12) is

fulfilled with α = 0). Indeed, equation (4.11), with b11(v) = b22(v) =: B ′(v),

takes the form

∂

∂t
ρ(t, x) −

{
∂2

∂x2
1

± 2
∂2

∂x1∂x2

+ ∂2

∂x2
2

}
B(ρ(t, x)) = 0,

and we observe that ρ0(x ∓ y) are steady solutions that allow for oscillations to

persist along x ∓ y = const.
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4.2 Convection-Diffusion Equations

We begin with the one-dimensional case

(4.14)
∂

∂t
ρ(t, x) + ∂

∂x
A(ρ(t, x)) − ∂2

∂x2
B(ρ(t, x)) = 0.

We look at the prototype example of high-order Burgers-type nonlinearity, a(v) :=
v�, � ≥ 1, combined with porous medium diffusion b(v) = |v|n , n ≥ 1. The

corresponding symbol is given by L((iτ, iξ), v) = iτ + v�iξ + |v|nξ 2. We study

the regularity of this convection-diffusion equation using Averaging Lemma 2.3,

which employs the size of the set

�L

(
J ; δ

) := {v | J |τ + v�ξ | + J 2|v|nξ 2 ≤ δ}, τ 2 + ξ 2 = 1, J � 1, δ � 1.

Comparing diffusion-versus-nonlinear convection effects, we can distinguish here

between three different cases. Clearly �L(J ; δ) ⊂ �b := {v : |v|n ≤ δ/J 2}, hence

ωL(J ; δ) � (δ/J 2)1/n and (2.19) holds with αb = 1/n and βb = 2. We shall use

this bound whenever n ≤ �, which is the case dominated by the parabolic part of

(4.14). Indeed, in this case we have (δ/J )1/� � (δ/J 2)1/n , which in turn yields

sup
v∈�L(J ;δ)

|Lv((iτ, iξ), v)| � sup
v∈�b

(J |v|�−1 + J 2|v|n−1) � J 2/nδ1−1/n.

This shows that (2.20) holds with (λb, µb) = (αb, 1 − αb), and velocity averaging

implies a W s,1
loc -regularizing effect with Sobolev exponent s < βbαb/(3αb + 2),

s < sn = 2

2n + 3
.

We also have �L(J ; δ) ⊂ �a := {v : |v|� � δ/J }, so that ωL(J ; δ) � (δ/J )1/�;

i.e., (2.19) holds with αa = 1/� and βa = 1. We shall use this bound whenever n ≥
2�, which is the case driven by the hyperbolic part (4.14). In this case, (δ/J )1/� �
(δ/J 2)1/n , hence

sup
v∈�L(J ;δ)

|Lv((iτ, iξ), v)| � sup
v∈�a

(J |v|�−1 + J 2|v|n−1) � J 1/�δ1−1/�,

implying that (2.20) is fulfilled with (λa, µa) = (αa, 1 − αa). The corresponding

Sobolev exponent, s < βaαa/(3αa + 2), is then given by

s < s� := 1

2� + 3
.

Finally, for intermediate n’s, � < n < 2�, we interpolate the previous two ωL-

bounds (which are valid for all n’s),

ωL(J ; δ) � (δ/J )(1−ζ )/�(δ/J 2)ζ/n

for some ζ ∈ [0, 1], which we choose as ζ := (n/�) − 1, so that (2.19) holds with

α = (1 − ζ )/�+ ζ/n and βα = (1 − ζ )/�+ 2ζ/n, and (2.20) holds with (λ, µ) =
(α, 1 − α). This then yields the Sobolev-regularity exponent, s < βα/(3α + 2),

s <
n + (2� − n)ζ

3n + 3(� − n)ζ + 2n�
, ζ := n

�
− 1, � < n < 2�.
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An additional bootstrap argument improves this Sobolev exponent, s < βα/(2α +
1), and we summarize the three different cases in the following corollary:

COROLLARY 4.3 The convection-diffusion equation

(4.15)
∂

∂t
ρ(t, x)+ ∂

∂x

{
1

� + 1
ρ�+1(t, x)

}
− ∂2

∂x2

{
1

n + 1
|ρn(t, x)|ρ(t, x)

}
= 0,

subject to initial conditions ρ0 ∈ [−M, M], has a regularizing effect,

ρ0 ∈ L∞(Rx) �→ ρ(t > ε, · ) ∈ W s,1
loc (Rx),

of order s < s�,n given by

s�,n = n + (2� − n)ζ�,n

2n + 2(� − n)ζ�,n + n�
, ζ�,n :=


0, n ≤ �,

(n/�) − 1, � < n < 2�,

1, n ≥ 2�.

We note that when n ≤ �, then �b ⊂ �a and (4.15) is dominated by degenerate

diffusion with a regularizing effect of order s�,n = sn = 2/(n+2). Thus, we recover

the same order of regularity we met with the “purely diffusive” porous medium

equation (4.10). If n ≥ 2�, however, then �a ⊂ �b, and it is the hyperbolic part

that dominates diffusion, driving the overall regularizing effect of (4.15) with order

s�,n = s� = 1/(� + 2); we recover regularity with the same order that we met with

the “purely convective” hyper-Burgers equation (3.7). Finally, in the intermediate

“mixed cases,” � < n < 2�, we find a regularity of a (nonoptimal) order

s�,n = n� + (2� − n)(n − �)

2n� − 2(n − �)2 + n�2
, � < n < 2�.

We turn to the multidimensional case (4.1). The regularizing effect is deter-

mined by the size of the set

�(J ; δ) = {v | J |τ+a(v)·ξ |+J 2〈b(v)ξ, ξ〉 ≤ δ}, τ 2+|ξ |2 = 1, J � 1, δ � 1.

Assume that the degenerate parabolic part of the equation has a full rank, so

that the smallest eigenvalue of b(v), λ(v) ≡ λd(b(v)), satisfies

(4.16) |�b(δ)| � δαb and sup
|ξ |=1

sup
v∈�b(δ)

|〈b′(v)ξ, ξ〉| � δ1−αb,

where �b(δ) := {v | 0 ≤ λd(b(v)) ≤ δ}. In this case, ωL(J ; δ) � (δ/J 2)αb , which

yields a gain of W s,1
loc -regularity of order s < 2αb/(2αb + 1). If in addition the

hyperbolic part of the equation has a nondegeneracy of order αa, namely,

sup
τ 2+|ξ |2=1

|�a((τ, ξ), δ)| � δαa and sup
|ξ |=1

sup
v∈�a(δ)

|a′(v) · ξ | � δ1−αa,

where �a((τ, ξ); δ) := {v : |τ +a(v) ·ξ | ≤ δ}; then we can argue along the lines of

Corollary 4.3 to conclude that there is an overall W s,1
loc -regularity of order dictated

by the relative size of 2αb/(2αb + 1) and αa/(2αa + 1). As an example, we have

the following:
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COROLLARY 4.4 Consider the two-dimensional convection-diffusion equation

∂

∂t
ρ(t, x) + ∂

∂x1

{
1

� + 1
ρ�+1(t, x)

}
+ ∂

∂x2

{
1

m + 1
ρm+1(t, x)

}
−

2∑
j,k=1

∂2

∂xj∂xk
Bjk(ρ(t, x)) = 0,

(4.17)

with nondegenerate diffusion, B ′(v) � |v|n. Then its renormalized kinetic solution
admits a W s,1

loc -regularizing effect, ρ0 ∈ L∞ �→ ρ(t, · ) ∈ W s,1
loc (R2

x), of order

s <


s�,m := min

(
1

� + 2
,

1

m + 2

)
if n ≥ 2 max(�, m) and � �= m,

sn := 2

n + 2
if n ≤ min(�, m) or � = m,

s�,m,n ∈ [s�,m, sn] if min(�, m) < n < 2 max(�, m).

Finally, we close this section with a third example of a fully degenerate equation

(4.18)
∂

∂t
ρ(t, x) +

(
∂

∂x1

+ ∂

∂x2

)
A(ρ(t, x))

−
(

∂2

∂x2
1

− 2
∂2

∂x1∂x2

+ ∂2

∂x2
2

)
B(ρ(t, x)) = 0.

In this case, there is a stronger, rank-1 parabolic degeneracy with no regularizing

effect from the purely diffusion part, since 〈b(v)ξ, ξ〉 ≡ 0 ∀ξ1 − ξ2 = 0, and no

regularizing effect from the purely convection part where a(v)·ξ ≡ 0 ∀ξ1+ξ2 = 0.

Nevertheless, the combined convection-diffusion does have a regularizing effect as

demonstrated in the following:

COROLLARY 4.5 Consider the two-dimensional convection-diffusion equation

(4.19)
∂

∂t
ρ(t, x) +

(
∂

∂x1

+ ∂

∂x2

){
1

� + 1
ρ�+1(t, x)

}
−

(
∂2

∂x2
1

− 2
∂2

∂x1∂x2

+ ∂2

∂x2
2

){
1

n + 1
|ρn(t, x)|ρ(t, x)

}
= 0.

For n ≥ 2� it admits a regularizing effect, ρ0 ∈ L∞ ∩ L1 �→ ρ(t, · ) ∈ W s,1
loc (R2

x),
of order s < 6/(2 + 2n − �).

As before, the Sobolev exponent computed here is not necessarily sharp, and as

a result no gain of regularity is stated for n < 2�.

PROOF: We use Averaging Lemma 2.3 with the usual (p, q) = (2, 1), which

yields a Sobolev regularity exponent of order s = βα(2 − µ − λ)/(α + 4 − 2µ),
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where α, β, λ, and µ characterize the degeneracy of the symbol associated with

equation (4.19),

L((iτ, iξ), v) = J iτ + Jv�i(ξ1 + ξ2) + J 2|v|n|ξ1 − ξ2|2, τ 2 + |ξ |2 = 1.

We consider first those ξ ’s, |ξ | = 1, such that |ξ1 − ξ2| ≤ 1/5. Here we have (say)

|ξ1 + ξ2| ≥ 1/10, so that �L(J ; δ) ⊂ �a = {v : |v|� � δ/J }, and (2.19) holds with

(αa, βa) = (1/�, 1); moreover, the growth of Lv sought in (2.20) is bounded by

sup
v∈�L(J ;δ)

|Lv

(
(iτ, iξ), v

)| � J

(
δ

J

)(�−1)/�

+ J 2

(
δ

J

)(n−1)/�

� J λδµ,

where {
λ := 1/� and µ := 1 − 1/� if n ≥ 2�,

λ := 2 − (n − 1)/� and µ := (n − 1)/� if n < 2�.

In particular, if n < 2� then the Sobolev exponent vanishes since 2 − µ − λ = 0,

and we cannot deduce any regularizing effect in this case. If n ≥ 2�, however, we

compute the Sobolev exponent as before, s = s� = 1/(2� + 3). Next, we consider

the case when |ξ1 − ξ2| ≥ 1/5 so that �L(J ; δ) ⊂ �b = {v : |v|n � δ/J 2} and

(2.19) holds with (αb, βb) = (1/n, 2). As for (2.20), we have

sup
v∈�L(J ;δ)

|Lv

(
(iτ, iξ), v

)| � J

(
δ

J 2

)(�−1)/n

+ J 2

(
δ

J 2

)(n−1)/n

� J 2λδµ,

where {
λ = 1/n and µ = 1 − 1/n if n ≤ �,

λ = 1/2 − (� − 1)/n and µ = (� − 1)/n if n > �.

In particular, if n ≥ 2� we compute in this case a smaller Sobolev exponent s =
3/(3 − 2� + 4n) ≤ s�. The regularity result follows from the bootstrap argument

we discussed earlier, which yields the final Sobolev exponent s = 2βα(2 − µ −
λ)/(α + 2 − µ). �

5 Nonlinear Degenerate Elliptic Equations

We consider the nonlinear, possibly degenerate elliptic equation

(5.1) −
d∑

j,k=1

∂2

∂xj∂xk
Bjk(ρ(x)) = S(ρ(x)) in D

′(�), b(·) := B′(·) ≥ 0,

augmented with proper boundary conditions along the C1,1-boundary ∂�. We as-

sume that the nonlinear source term S(ρ) is further restricted so that blowup is

avoided.
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We begin with formal manipulations, multiplying (5.1) by η′(ρ) and “differen-

tiating by parts” to find

−
d∑

j,k=1

η′(ρ)
∂2

∂xj∂xk
Bjk(ρ) − η′(ρ)S(ρ)

= −
d∑

j=1

∂

∂xj

(
η′(ρ)bjk(ρ)

∂ρ

∂xk

)
+

d∑
j,k=1

η′′(ρ)bjk(ρ)
∂ρ

∂xj

∂ρ

∂xk
− η′(ρ)S(ρ)

= − tr(∇x ⊗ ∇x Bη(ρ)) + η′′(ρ)〈b(ρ)∇xρ, ∇xρ〉 − η′(ρ)S(ρ).

We arrive at the entropy inequalities associated with (5.1), stating that sufficiently

smooth solutions of (5.1) satisfy, for all convex η’s,

(5.2) − tr(∇x ⊗ ∇x Bη(ρ)) ≤ η′(ρ)S(ρ),

where Bη(ρ) = {Bη

jk(ρ)}d
j,k=1 and Bη

jk(ρ) := ∫ ρ

0
η′(s)bjk(s)ds. So far, we have

not specified the notion of solutions for (5.1) since it seems that relatively little

is known about a general stability theory for degenerate equations such as (5.1).

The difficulty lies with the type of degeneracy that does not lend itself to standard

elliptic regularity theory, because of the Bjk’s degenerate dependence on ρ, nor

does it admit the regularity theory for viscosity solutions, e.g., [7, 13] because of

their degenerate dependence on ρ rather than ∇xρ. We refer to the works of Guan

[27, 28], who shows that in certain cases, one is able to “lift” a C1,1-regularity of

ρ into a statement of C∞-regularity. By using the existence of smooth viscosity

solutions in the uniformly elliptic case where b(v) ≥ λ > 0, (5.2) can be justified

by the “vanishing viscosity limit,” forming a family of regularized solutions ρλ

associated with bλ(s) := b(s) + λId×d and letting λ ↓ 0+. Next comes the kinetic

formulation of (5.1), which takes the form

(5.3) −∇�
x · b(v)∇xχρ(v) + S(v)

∂

∂v
χρ(v) = ∂

∂v
m(x, v) in D

′(� × Rv)

for some nonnegative m ∈ M+ that measures “entropy production.” Indeed, for

an arbitrary convex “entropy” η, the moments of (5.3) yield

0 ≥ −
∫

η′′(v)m(x, v)dv

=
∫

η′(v)
∂

∂v
m(x, v)dv

= −
d∑

j,k=1

∫
η′(v)bjk(v)

∂2

∂xj∂xk
χρ(v)dv +

∫
η′(v)S(v)

∂

∂v
χρ(v)dv



VELOCITY AVERAGING AND REGULARITY OF QUASI-LINEAR PDES 1517

= −
d∑

j,k=1

∂2

∂xj∂xk
Bη

jk(ρ) −
∫

(η′(v)S(v))′χρ(v)dv

= − tr(∇x ⊗ ∇x Bη(ρ)) − η′(ρ)S(ρ).

Thus, the kinetic formulation (5.3) is the dual statement for the entropy inequal-

ities (5.2). We postulate that ρ is a kinetic solution of (5.1) if the corresponding

distribution function χρ(x)(v) satisfies (5.3), and we address the regularizing effect

of such kinetic solutions.

To use the averaging lemma, we first extend (5.3) over the full Rd
x × Rv–space.

Let ψ be a C∞
0 (R+)-cutoff function, ψ(s) ≡ 1 for s ≥ ε, and let ζ(x) denote

the smoothed distance function to the boundary, ζ(x) = ψ(dist(x, ∂�)); then

f (x, v) := χρ(x)(v)ζ(x) satisfies

−
d∑

j,k=1

bjk(v)
∂2

∂xj∂xk
f (x, v)

= ∂

∂v
ζ(x)m(x, v)

+
d∑

j,k=1

(
∂

∂xj
(bjk(v)ζxk (x)χρ(v)) + ∂

∂xk
(bjk(v)ζxj (x)χρ(v))

)

+ S(v)ζ(x)
∂

∂v
χρ(v) −

d∑
j,k=1

bjk(v)ζxj xk (x)χρ(v)

=: ∂

∂v
g1(x, v) + 
η

x g2(x, v) + g3(x, v) + g4(x, v) in D
′(Rd

x × Rv).

(5.4)

Assume that (5.1) is nondegenerate in the sense that there exists an α ∈ (0, 1)

such that

(5.5) |�b(δ)| � δα and sup
|ξ |=1

sup
v∈�b(δ)

|〈b′(v)ξ, ξ〉| � δ1−α,

where �b(δ) := {v ∈ I : 〈b(v)ξ, ξ〉 ≤ δ}.
We examine the contribution of each of the four terms on the right of (5.4) to the

overall W s,1-regularity of f , appealing to the different averaging lemmas term by

term. The first term on the right involves the bounded measure g1 = ζm; Averaging

Lemma 2.3, with the usual (p, q) = (2, 1), then yields that the corresponding

average f 1 has a W s1,1
loc -regularity of order s1 < 2θ1, θ1 = α/(3α + 2). The

second term on the right-hand side of (5.4) involves the gradient of the uniformly

bounded term g2 = ∑
bjk(v)ζxk (x)χρ(v); here we can use Averaging Lemma 2.1

with η = q = 1 to conclude that the corresponding average f 2 has W s2,1
loc -regularity

of order s2 < θ2 = α/(α + 2) (in fact, with q = 2 one concludes a better W s2,2-

regularity of order s2 < α/2). The remaining two terms on the right-hand side
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of (5.4) yield smoother averages and therefore do not affect the overall regularity

dictated by the first two. Indeed, ∂vχρ(v) and hence g3(x, v) = S(v)ζ(x)∂vχρ(v)

is a bounded measure, and Averaging Lemma 2.1 with η = N = 0 implies that

the corresponding average f 3 belongs to the smaller Sobolev space W s3,1
loc of order

s3 < 2θ3, θ3 = α/(α + 2). Finally, the last term on the right of (5.4) consists of

the bounded sum, g4 = −∑
bjk(v)ζxj xk (x)χρ ; with η = N = 0 and q = 2, the

corresponding average f 4 has a W s4,2
loc -regularity of order s4 < 2θ4, θ4 = α/2.

Next, we iterate the bootstrap argument we mentioned earlier in the context of

hyperbolic conservation laws. The first W s1,1-bound together with the L∞-bound

of f imply a W σ1,2
loc -bound with σ1 = s1/2, which in turn yields the improved

regularity of f 1 ∈ W s,1
loc , s < (1 − θ1)σ1 + 2θ1. Thus, for the first term we can

iterate the improved regularity, s1 �→ (1 − θ1)s1/2 + 2θ1, converging to the same

fixed point we had in the parabolic case before, s1 < 2α/(2α + 1). The second

term requires a more careful treatment: as we iterate the improved regularity of

χρ ∈ W s,1
loc , we can express the term on the right of (5.4) as 
ηs g2 with ηs := 1 − s

and with g2 standing for the sum of L1-bounded terms, g2 = 
s
∑

bjk(v)ζxk χρ(v).

Consequently, Averaging Lemma 2.1 yields the fixed-point iterations s2 �→ (1 −
θ2)s2/2 + (2 − ηs2

)θ2 with limiting regularity of order s2 < α. The remaining two

terms are smoother and do not affect the overall regularity: a similar argument for

the third term yields the fixed-point iterations, s3 �→ (1−θ3)s3/2+2θ3 with a fixed

point s3 < 2α/(α + 1), while the fourth term remains in the smaller Sobolev space

W α,2. We summarize with the following statement:

COROLLARY 5.1 Let ρ ∈ L∞ be a kinetic solution of the nonlinear elliptic equa-
tion (5.1) and assume the nondegeneracy condition (5.5) holds. Then we have the
interior regularity estimate for all D ⊂ �,

ρ(x) ∈ W s,1
loc (D), s <

α if α < 1
2
,

2α

2α + 1
if 1

2
< α < 1.
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