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We are interested in the detection of jump discontinuities in piecewise smooth
functions which are realized by their spectral data. Specifically, given the Fourier
coefficients, f, = a, + ib,}r_,, we form the generalized conjugate partial sum

N
- k

Ll = 2 a(N)(aksin kx — bycoskx). The classical conjugate partial sum,

k=1

5[ f1(x), corresponds to- = 1 and it is known thait1 &.[f1(x) converges to

the jump function f](x) := f(x+) — f(x—); thus, IogNS“[f](X) tends to
“concentrate” near the edgesfThe convergence, however, is at the unacceptably

slow rate of ordeiO(1/log N).

To accelerate the convergence, thereby creating an effective edge detector, we

k

introduce the so-called “concentration factors,y, = a(—

N) . Our main result shows

()

that an arbitraryC20, 1] nondecreasingr() satisfying /15— dx——> — leads
N— o

to the summability kernel which admits the desired concentration property,

logN 1
S F1(0——=[1(x), with convergence ratdSg[ f1(x)| = Cons(T + ‘cr(N)D

N—x

for Xs away from the jump discontinuities. To improve over the slowly convergent
—ar
log N)’ we
demonstrate the examples of two families of concentration functions (depending on free
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conjugate Dirichlet kernel(corresponding to the admissibdg(x) =
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—1r
parameterp andc): the so-called Fourier factors, (x) = %sin aX, and polynomial
factors,oP(X) = —pmxP. These yield effective detectors of (one or more) edges, where
both the location and the amplitude of the discontinuities are recovetados Academic Press
Key Words:Fourier expansion; conjugate partial sums; piecewise smoothness;
concentration factors.

1. INTRODUCTION

Smooth functions can be accurately represented by their spectral data. For exar
given the Fourier coefficient$, = a, + ib,, the N-term truncated Fourier expansion,

N

S f1(x) = > acoskx + besinkx, (1.1)

k=0

provides a highly accurate representation for smddth The situation is different,
however, in the case of piecewise smooth functions, and experience has led to
complementing points of view.

In the first approach, one “sees” the smooth piece$ &éparated by edges of jump
discontinuities. The straightforward Fourier expansion in this case experiences the Gi
phenomenon: localy§[ f](X) “suffers” O(1) oscillations in the neighborhoods of the jumps,

1
and globally, there is a slow N) convergence throughout the smooth pieces. It is sti

possible to recover a piecewise smaidilom its spectral coefficients and to retain the superio
spectral accuracy; such spectrally accurate recovery is obtain@tebyng S,[ f](x) and
could be carried out either on the Fourier side, e.g., [15, 19], or in physical space (cor
[10, 11, 19] and the references therein). As an example of the latter, one introduc
Ci(—1, 1) “bump” function,B(x), such thaB(0) = 1, and withD .+ denoting the usual
Dirichlet kernel of degre®®, 6 < 1, we set the mollifiexy(x) := B(x) Dy+(X). Then,
replacingSy[ f] with §[f] * % lp@) yields a spectrally accurate approximationf X)

for all x’s which are at leasi-away from the set of jump discontinuities [10]. Observe tha

1 /x
Ps(X) = 51/j<8) is a two-sided mollifier supported on-¢, 8) with spectrally small

moments. In a series of works (reviewed in [11]), Gottlieb and Shu used one-si
mollifiers to recover a piecewise smoothup to the discontinuous “edges.” All these
recovery procedures require a priori knowledge of the location of the underlying jut
discontinuities. Thus detection of the “edges” in this approach remains a critical issu

In the second approach, one is directly interested in seeing the ed§esdafes which
are viewed as being “separated” by pieces of smoothness. Detection of edges in
context is fundamental in a variety of computational algorithms, from spectrally accur
schemes for capturing shock discontinuities, e.g., [14, 18], to image compression (cor
[1, 6] and the references therein). Of course, wavelet expansions are particularly suit
for edge detection: one traces jump discontinuities by “zooming” through the dya
scales (consult [5, 6, 16, 17] and the references therein).

In this paper we address the question of edge detection in spectral data. We off
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simple and effective procedure to detect edges, basegenaralized conjugate partial
sumsof the form

N

SIF1(x) =D o(:\(l)(aksin kx — b,coskx).

k=1

The starting point is the standard conjugate s8qi.f](x), corresponding ter(x) = 1.
The classical result due to Luss, e.g., [3, Section 42]; [20, Section Il, Theorem 8.13]

asserts thaito_g—wN S.[f](x) converges to the jump function

[F1(x) = f(x+) = f(x—),

— 1T .
and thus,m S\ f1(x) tends to “concentrate” near the edgesfoffhe convergence,
however, is at the unacceptably slow rate of of@ét/log N) (indeed, consult Fig. 2.1).

To accelerate the convergence, thereby creating an effective edge detector, we intrc

k

the so-called “concentration factorsgi = (r(N). Our main result shows that an

arbitrary C?[0, 1] nondecreasing(x) satisfying

fl a(X)

—dx——> —7r
X

1

/N N —

is “admissible,” in the sense that the corresponding generalized conjugate sum satisfie
concentration property

SULF100 —— [F1(%).

To demonstrate our above arguments, we consider the following two examples

[, 7]):

it _p=x<0 X ™). x<o
sin—5—, —7= , cog X~ 559 |x|—§ : ,

fa(x) 1= 3X — 1 fo(X) := 5 i
sin , 0<x=m, cos<2x+xsgr<|x|—2)>, x> 0.

2

In both casesf,(x) andf,(x) are recovered from their Fourier coefficients using th
Fourier partial sumSy[ f](x). (both the continuous and the discrete cases are cons
ered). The Gibbs phenomenon is depicted in Figs. 1.1 (the continuous case) and 1.2
discrete case).

Figure 1.3 shows the reconstruction of a piecewise smooth function using the one-s
mollifier presented in [12]. Heré,(x) andf,(x) are recovered from their continuous
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FIG. 1.1. Fourier partial sumS,[ f](x), of f = f (x) (left) andf = f,(x) (right).

ul x

Fourier coefficients (Fig. 1.3) and from their discrete Fourier coefficients (Fig. 1.4). T
recovery requires the location of the jump discontinuities.

Finally, Fig. 1.5 shows the detection of these jump discontinuities using our propo:
generalized conjugate sum. In this case, we use the concentration fumtkips — wx.
Both the location and the amplitude of the jump discontinuitielg](D) = —2 and
[f](=7/2) = £V/2, are clearly identified.

The paper is organized as follows. The so-caltedcentration propertyf the basic
conjugate partial sun§y,[ f], is reviewed in Section 2. In Section 3 we devise our new
more general approach for locating jump discontinuities based on the concentra
property of thegeneralizectonjugate partial sum&Z[ f]. Here we provide a systematic

k
study of concentration factora(N) , and their improved resolution of the limiting jump

function [f ]( x). Finally, in Section 4 we extend our theory to the analogous discrete ca
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FIG. 1.2. Fourier partial sum of = f,(x) (left) andf = f, (x) (right) usingN = 40 discrete Fourier modes,
N

fy = > 3 f(x)€", which are based on the given gridvalues at the-2 1 equidistant grid points;.

j=-n
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FIG. 1.3. Reconstruction of piecewise continuous functiohs; f,(x) (left) andf = f (x) (right), after
filtering S,q[ f ](X) with one-sided mollifier.

2. THE CONJUGATE FOURIER PARTIAL SUM

Letf(x) be a 2r-periodic piecewise smooth function, with a single jump discontinuit
atx = &, whose associated jump value is defined as

[£1(&) 1= F(&+) — F(-). (2.1)

Given the Fourier coefficients d{x),
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FIG. 1.4. Reconstruction of piecewise continuous functiohs; f,(x) (left) andf = f,(x) (right), after
filtering their discrete Fourier interpolant (of degride= 40) with one-sided mollifier.
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FIG. 1.5. Detection of discontinuous edges using the conjugate Sgpf,J(x) = —2X ‘T<N>i sgnk) f &, using

N = 20, 40, and 80 modes, and based on the first-degree polynomial concentration furfé{ign= —mx.

our goal is toidentify the jump discontinuities, i.e., to locate the jump discontinuities an
to accurately evaluate their associated jump values. The key to locating the discontinu
lies in the relationship between the conjugate Fourier partial sum and the jump discc

nuities.
The conjugate Fourier partial sum is given by

N

S f1(x) := D asinkx — b,coskx.

k=1

Equivalently,S[ f](x) can be written as

81100 =1+ By =717f (OB~ e,

w

whereD, is the conjugate Dirichlet kernel

t N 1
COSE—CO +Et

N
Dy(t) = X sinkt = :

k=1 in—
2 sm2

(2.3)

(2.4)

(2.5)

We recall that the support of the conjugate Fourier partial §yfrf](x) approaches the
singular support of(x) asN — o, e.g., [3, Section 42; 20, Section 2, Theorem 8.13]. This wil
be referred to as theoncentration propertyof §[f](X). To illustrate the concentration

property ofS[ f](x), we offer the specific example of the saw-tooth function
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T+ X
, —m=X<¢
2
() X—

In this case [](§¢) = = and the conjugate Fourier partial sum is

- *, cosk(x —
B0 = -3 0T

k=1

The concentration property &N[d)é](x) can be deduced from the following:

AsserTion2.1. We have

(2.6)

cosk(x — 1 if x =
) = 8(X) = { I()t)r(1erv§ise.

N
>
k=1

Iog N

The proof is immediate. LdD(y) denote the usual Dirichlet kernel

N

Dy(y) = D' cosky. (2.7)

k=0

Summation by parts yields

", cosk(x — N1
3 S D32 (D — 9~ Deslx— ©)

D(x—¢§ Dn(x—9§
Ek(k+1)+ N

k=1

Do(x — §).

Since|Dy(y)| = we have

1
2 siny/2|’

Mz

6 "N

cosk(x — &) (wz 1) 1 1
Tk T\le "N x—g

=~
I
[

1 N cosk(x— ¢
and (2.6) follows forx # &. Of course, foix = & we havelog N 2 K — 1,
k=1

as asserted.
This special case of the saw-tooth function can be generalized to any piecewise sm

function, as told by
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THeorem 2.1. (On the Concentration Property)Let f(x) be a2w-periodic piecewise
smooth function with a single discontinuity atx¢. Then

[f1(H), x=§
0,

g N S0 = (1100300 = | e ice (28)

We shall offer two proofs for this theorem. The first approach is a straightforwa
extension of the concentration property of the saw-tooth function asserted in (2.6), al
the lines of [20, Section II, Theorem 8.13].

[f1(&)

Proof. Consider the functiog(x) =f(x) — T(I)g(x), where®(x) is the saw-

tooth function with am-jump atx = & Consequentlyg(x) is a C° function which
vanishes ak = ¢. By (2.4), the conjugate sum @f( x) equals

~ 1" ~
Slgl(x) = WJ g()Dy(x — t)dt. (2.9)

-

. . 2
Applying the standard upper boundsif; (t) in (2.5),|Dy(t)| = min(N, |t|) , and the fact

that g(x) is a continuous function witlg(¢§) = 0, we obtain

~ 2 (& ~
Sl = Wf 9] [By(€ = Dt
&

2 &+mIN - 2 &t .
SWJ lg(0) IDN(é—t)IdHWJ / |9(0)] [Dy(é = 1)ldt
¢ &+miN

N W/N| t|dt+i §+WMdt— 1) + o(log N) = o(log N
=) gvldt+ — g — g 4t = o(1) + o(log N) = o(log N).

&+miN

By the definition ofg(x), Assertion 2.1, and the previous estimate it follows that

[F1(9) -
|0g N S\l[q)g](x)

v ko

_IogNS\‘[f](X) ~ “logN

Sugl(x) —

T |ogN o(log N) + [f](&€)8:(x) + o(1),

and we are done.m
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Theorem 2.1 says that

1.
F* log N Pn(¥) [£1()8:(x).

— 0

-1 .
We point out that the scaled conjugate Dirichlet ker%ﬂ Dy, is just one example for

a broader class of admissible “conjugate” kernels which induce the concentration pi
erty. This brings us to the following:

Derinition 2.1 (Admissible Kernels). We say that a conjugate keridgl, is admis-
sible if it satisfies the following four properties:

(1) Ky  isodd; (2.10)
(P2) Iimj Ky(x)dx — —1; (2.11)
N—x
1
cos(N + > X
(P3) Ky(x) = C— i + Ry(X), [Ryll.: = Const (2.12)
2T sin(z)
(#4) lim sup |Ry(x)| — 0, V fixed 8 > 0. (2.13)

N—o [x|>8>0

. g 1 . o .

Clearly, the scaled conjugate Dirichlet kern%Ig—N Dy (%), is admissible: indeed, in
this case properties?3) and (P4) hold with Ky = Ry = mﬁN andC = 0.
Properties®3) and P4) are motivated by the fact that unlike the scaled Dirichlet kerne
the generalized conjugate kernels we shall meet later omareniformly integrable.

Our second proof of concentration property applies to general admissible kernels
course, the result applies to piecewise smooth functions with more than just a sir
discontinuity. We now need to specify our precise notionpacewise smoothness,
making

AssumpTion 2.1 (Piecewise Smoothness)(x) is piecewise smooth in the sense o
having finite number of jump discontinuities whérfd(x) # O, and such thawx’s,

f(x+1t) —f(x—t) = [f](x)
t

e LYo, m]. (2.14)

Thus, piecewise smooths with smooth pieces which are ttter of any ordere > 0
will suffice. (To be precise, we may allow appropriate Besov regularity, yet in actt
computation we cannaesolvebut a finite number of discontinuities.)
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THeorem 2.2 (The Concentration Property Revisited).et f(x) be a piecewise smooth
function,(2.14) and let J= {&} denote the set of its jump discontinuities. Consider th
generalized conjugate partial sum

K[f]:=f=Ky= JW f(HKy(x — t)dt,

where K is an admissible kernel satisfying propertigsl)—@4) in (2.10)—(2.13) Then

~ [f1(&) x=¢§&€,
S0 — 1100800 = {110 X vive. (2.15)
Remark. Note that the convergence asserted in (2.15) need not be uniform.

Proof. Since by property?®1) in (2.10)K, is odd, we can rewrite the corresponding
conjugate partial surl, as

K[f1(x) = —J'ﬂ[f(ert) — f(x — t)]Ky(t)dt. (2.16)

0

Define the “local variation’,(t) := [f](xX) — (f(x + t) — f(x — 1)), and split (2.16)
into four contributions,

1% —fﬁ[f(x+ t) — f(x — t)]Ky(t)dt

0

Jx(t) 1
t) CO{ N + Z)tdt

2 sin(2

—[f](x)-JwRN(t)dtvL cfﬂ

8 T
+j jx(t)ﬁeN(t)dHJ K ORN Ot = Ty + 1+ 1+ 1V
0 B
Property 22) in (2.11) yields that the first term approaches the jurhf{ k),
In= —[f](X)-J Ku(dt — [f1(x), N — o,
0

By piecewise smoothnesg,(t)/sin t/2 € L0, =] and by Riemann—Lebesgue

Ily,—> 0. Given are, we can findd = &(¢) such that supj, ()] = &, and sincé|Ry||, :
0.9)

N—x
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is bounded by®3) in (2.12), it follows that the third terrtll | can be made as small as
we please independently of,

= ||Ry/l* supljx(t)| = Const: .
0,9)

| = U jx(DRy(Ddt

And finally, property ¢4) in (2.13) implies that supRy(t)| can be made arbitrarily small

t>6>0

for N large enoughN > Ng(8(¢)), and hence

IV, = J j(HRy(t)dt = Const sup |Ry(t) — 0.
8

t>6>0

N

Thus the convolution of with any admissible kerneK, satisfies the concentration
property. m
The following example illustrates Theorem 2.2 for the conjugate Fourier partial su

FfIx = fogN S\,[f](x) In this caseKy = og 00N Dy corresponds to the “canonical”
conjugate kernel given in Theorem 2.1. Clearly, it is an odd kernel with unit mass ovex (O,

so (P1) and (2) hold. The estimat®(t)| = min(

2 -
) implies thatK,, = Dy also

'It]
satisfies propertiesA3) and (P4); indeed withRy(x) =

logN

Iog N Dn(X) we find

o [™_|Ry(D]dt=2[fIN + [7\] |Ry(D)]dt = Constyielding 3) in (2.12); and

1 2 o )
o RV = jogN D) = flog N’ satisfying ¢24) in (2.13).
We close this section with
ExampLE 2.1.
X+
sin 5 —mT=x<0
f(x) = 3X—
sin O<x=m.
2
Here¢é = 0 and [f](¢) = —
~ — T ~
It is clear from Fig. 2.1 thaS{[f](x) = m&[f](x) does in fact locate the

singularity point and approximate the jump value there. Furthermore, in agreement \

1
Theorems 2.1 and 2.2, the numerical convergence reﬁéﬁ)m)—both at the discon-

tinuity point and away from it. In particular, the slow convergence is exhibited in Fig. 2
whereN = 80 modes dmot recover the correct amplitude of the jumgd,][0) = —2.

The improvement of this slow logarithmic convergence rate will occupy our discussion
the remaining sections. Note that naive straightforward smoothing does not improve
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FIG. 2.1. The conjugate Fourier partial susj[ f](x) = jogN SN[f](x) computed withN = 40 modes.
Here,f = f,(x) given in Example 2.1 experiences a single jump](0) = —2: before smoothing (left) and

after smoothing (right).

convergence rate. In fact, the resolution of the smoothed conjugate Dirichlet kernel at

discontinuity is less sharp, as shown in Fig. 2.1, where an exponential smoothing filte
alkNJ?

K —

used by premultiplyingA‘k — exp( )fk The results are similar for other smoothing

filters.

3. CONCENTRATION FACTORS

3.1. Introduction

Consider a piecewise smooth functibfx) with a single discontinuity ax = & We
introduce ageneralizecconjugate partial sum of the fofrm

N

FIF1(X) = D on(asinkx — bycoskx). (3.1)

k=1

Hereo = {0y \} are free summability parameters to be determined so thatdheen-
tration propertysimilar to (2.8) holds:

SIFI00 = [F1(x)8(%). (3.2)
Iog N

S[f1(x). In this case, (3.2) holds in view of Theorem 2.1. It is clea

For example,(rkN corresponds to the canonical conjugate Fourier partial su

09 = g

1 We use the notatio and & to indicate the dependence on both the concentration ké&geind the
concentration factow . This “abuse” of notation will be clarified in Section 3.3.
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that theses’s influence the convergencate associated with the concentration property
of [ f1(x). We refer too as theconcentration factor®f S[ f]( x).

As a preliminary step, we begin by estimating the Fourier coefficients to their leadi
order. Integration by parts yields

1 1
-~ — —[f](g)sm k& + @<k2> , b, ~ ﬁ[f](g)coskg + @<k2) . (3.3)
Substituting the leading order terms of (3.3) into (3.1) yields

- " oncosk(x —
K110 ~ [ 3 TN (3.4)

k=1

Therefore, the desired concentration propertysgf f](x) in (3.2) amounts to

AsserTion3.1. Leto = {0y} be the concentration factors with the corresponding
N

generalized conjugate partial sun§[SJ(x) = 3 own(@sinkx — becoskx). Then the
k=1
concentration property3.2) requires

N achosk(x -9

—2 ——— = 8,(x). (3.5)

Before turning to our general discussion on concentration factors, we note
following.

Remarks. 1. The scaled conjugate Fourier parual SFW S[f1%) = f*——

log N
corresponds to the concentration factogg = m We thus denote
b= 3.6
O-k,N - |Og N ( . )

as theDirichlet concentration factorand note that they are independenkofn this case,

. . 1 o
Assertion 2.1 states that (3.5) holds with an error term of oﬁ(m) , yielding the
concentration statement of Theorem 2.1 and in agreement with Assertion 3.1.

2. As a consequence of the leading order expansion in (3.3), the highest accu

1
that can be obtained in (3.5) for locating the jump discontinxity & is first order,@(N> .

Faster convergence of (3.5) may be achieved by further expanding the Fourier coeffici
in terms of higher derivatives. This is considered for the particular methods examine
[2, 7] and is also suitable for our general method. Here, we are concerned with impro\
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the first-order convergence rate, and we note that higher orders can be handled in a si
manner.

3. The concentration factors to be determinedmust show aroverall improved
accuracy for (3.2). More specifically, we seek concentration factors which, beyc
improving the convergence rate, will lead &[ f](x) having better resolution of the
singular support of (x). This will be clarified by the differences between the variou:
concentration factors outlined below.

4. Although only functions with a single point of discontinuity are considered her
our results are easily extended to include any piecewise smooth functions (along the |
of Theorem 2.2), as will be seen in Example 3.1.

3.2. Concentration Factors Determined by Regularization

One possible approach to improving the convergence rate of (3.2) is to (weal
regularize the partial sums in (3.5) by defining the regularized indicator function

1, X— ¢ =
Be(x) == {o, L< |>§|— gTs . 3.7)

Observe thad(x) has an even Fourier expansion i { £), whose Fourier partial sum
is given by

SULB0(x) = 2—; + 3 2 sinke % (3.8)

k=1

Comparing it with Assertion 3.1, we can identify the summation on the right of (3.8) wi
concentration factors of the formr, = csinkey; here we consider vanishingy

o
=N’ which depends on a fixed free parameteiThe scaling coefficient;, should be
N
O
determined so that the concentration characterization in (3.5) hek&% — 1.1t
k=1

sinx
follows thatc = —#/Si(«) with Si(a) denoting the usuabila) = ngdx

In summary, we arrive at the family of concentration factors (depending)on

=

Uk,NE %SII’] keN, €N —

(3.9,

ZlR

We refer to these as theourier concentration factorgjenoted {TE’N}, since they are
in fact (proportional to) the Fourier coefficients 6f(x). For this choice of Fourier
concentration factors, (3.5) holds with a convergence rate of ér¢igy).

The results for Example 2.1 using the Fourier concentration faat(ﬁm, are shown in
Fig. 3.1. Compared with the “concentration-free” conjugate Dirichlet kernel in Fig. 2.
the improved resolution of the discontinuityat= 0 is evident.

In this context, we recall an alternative approach to locating jump discontinuities
suggested by Banerjee and Geer [2]. As described below, the method in [2] is base
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[f(x)]
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FIG. 3.1. Jump value obtained by applying the Fourier concentration factors,)(3:S= 1, to Example 2.1.
The exact jump is f](0) = —2.

estimating the Gibbs’ overshoots which occur exactly at the points of discontinuity. \
shall see that the method in [2] in fact leads to a particular set of “Fourier” concentrat
factors.

We briefly describe the method given in [2]. Starting with Fourier partial sul
N

SIfl(x) = X’ acoskx + bsinky, it yields the familiar Gibbs’ overshoot at= £, of

k=0

size

. 2Si()

im {1+ ~ SLFlE} ="~ [1(®)],

N—x%

2Si() 2 sinu .

where = - I3 Tdu ~ 1.17898accounts for 18% Gibbs’ overshoot. It
follows that

&[f](wﬁ) —sﬂ[f](x—ﬁ)

. {[f](g) forx=¢ (3.10)

2 0 otherwise.
; SI(W)

an
Thus, the (scaledlifferencesof the Gibbs’ picks akiN “concentrate” at the disconti-

nuity. In [2], the location of¢ and an approximation off[] (&) were recovered by direct
evaluation of (3.10).
How can this procedure based on (3.10) be interpreted within our general frar
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FIG. 3.2. Jump value obtained by applying the Gibbs concentration factors to Example 2.IN witt20,
40, and 80 modes. The exact jump i§][0) = —

work? After inserting the leading order terms of the Fourier coefficients into (3.:
it follows that

sr(x ) - sarx- 5]

N wk cosk(x — & log N
~ 1) g )E — @( N )

2 .
; SI(?T)
(3.11)

N

1 Kk lo
with an error term on the right of the forrx Psin— = ( z ) Compared with the

characterization of the concentration property in (3.5), one recognizes the summatiol
the right of (3.11) as a generalized conjugate Fourier partial sum associated with
msin(km/N) ) )

S In fact, these fall into the special category of
Fourier concentration factors in (3)9 corresponding te. = 7. Thus the approach in [2]
given in (3.10) concurs with the so-called “Gibbs” concentration factors

concentration factors = —

N = Sitm) siny - (3.12)

The results are depicted in Fig. 3.2.

3.3. Concentration Factors Revisited

Bearing in mind the concentration factassdetermined thus far, we revisit (3.1) to
determine general criteria that will guarantee the concentration property (3.2). We star
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considering the concentration factargy = whereo(Xx) = oy(X) is aconcen-

(k

g N y
tration functionwhich is yet to be determined. Note that we still alloyx) = oy (X) to
depend orN. In the generic case, however(x) is independent oN, (e.g.,o"(x) ~
sin(ax) for the Fourier concentration factors in (3)9, and so we omit the subindex.

We start by summing

N

K1) =D cr(:\(l)(aksin kx — b,coskx) = fﬁ f(t) % > cr(:\(l)sin k(x — t)dt,

k=1 o
(3.13)
which leads to generalized conjugate kernels of the form
Kg(t) = ! % “)si k 3.14
N(t)—;k:loﬁsm t. (3.14)

We ask ourselves when such kernels are admissible in the sense of satisfying the
properties outlined in Definition 2.1, so that by Theorem 2.2 the concentration property hc

K10 =2 Ki(0) — [F1(x)8:(x). (3.15)

In the language of Assertion 3.1, one focuses here on the Heaviside furi¢ipn

1
= H/(x) := > sgné—x), where (3.15) boils down to (3.5),

- N N a(k/N)
SWHA() = Hex KY= =X = = cosk(x = &) — 8(x),

k=1

Clearly, theK g(t) are odd so property(1) holds; moreover, with the minimal require-

N k
S N sin kt
k=1

KRl 20, is bounded ifijKRll 11 /v, iS. Namely we start with

ment of bounded concentration facto = Const-N and hence

CoroLLARY 3.1. Consider the conjugate kernel

. 1Y /k
Ki() = — > 0(N>sin kt,
k=1
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k ~
associated with bounded concentration factm‘éN) . Then K is an admissible kernel

(and hence the concentration propert$.15) holdg, if the following conditions are
fulfilled:

@2 1im | U(i/N) (1- (—1)k)] - (3.17)
cogN + )t -

(#?3") Kg(t)=C——— + RY(D), J |Rg(t)|dt = Const; (3.18)
2 sin(3) N

(P4") lim sup |R(t)| = 0, V fixed s > 0. (3.19)

Next, we provide easily checkable characterizations of proper#s)£(%4'). We
summarize our results (adding minimal requirements on the smoothness of the con
tration functiono(x)) in the following two assertions. The first deals with toéal mass
of the concentration kernek &.

AsserTion 3.2. Assume that the concentration functioifx) = oy (x) € CY0, 1]
satisfies

X — —m, —-——— 0. (3.20)
X
1/N j=1 N— o

Jl w0 ]

Then property(®2') and hencg®2) hold, i.e.,lim [7 Kg(t)dt = —1.

N—%

o(X
Remark. If ¥ is integrable then the summation encountered in prop&®)(is, in

fact, the Riemann sum of

21+ 1
N o (KIN) V2o 2 [to(x)
—(—1)K) = | 24
2 A=Y= 2 o dx
k=1 j=0 N 0
. : ax\y
And thus we find that if-(x) € L [0, 1], -~ satisfies
1
X
f UNT()dx S - (3.21)

0

then property $2") in (3.17) holds. The (slight) refinement asserted in (3.20) extends
L -weak kernels which are excluded by (3.21).
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j o Lo(x) 1 1
Proof. Setszzm. By continuity, X2J“de = |o(Xg-1) + ©N - [lar—dx

X2j-1 X2j—1 X
Summing such terms we find

1 gn(X) N2 e g (x) vz 1 2 1
J X dXZEJ XdXZE[U(ij1)+@<N>:|X|:2j_1+@<j2):|

1N =1 =1

-3 T - 9+ 3 70 o).

k=1

and the result follows. m
Our next assertion, dealing with properti€&3()—(%4"), provides a sharp upper bound
) ) cosN + )t
on theamplitudeof the conjugate kerneR(t): = K{t) + o(l) ———.
2 sin(y)
N
AsserTion3.3.  Consider the conjugate kernelgkt) = = > a(N)sin kt, with con-

centration functions( - ) € C?[0, 1]. Then the following estimate holds:

) ) cogN + )t
Ru(t) = KR(H) + o(1) ——— —
2m sin(3)

1 1 1 1
= [3||O‘||Cz + COﬂSt] W + |: ‘ 0'<N> ‘ + N |0’(1)|:| m (322)

1
Remark. Thus, (3.22) shows that iir(1/N)| = Const.m then both properties
(#3) and @4') hold.

k
Proof. Twice summation by parts leads to the idenét}acall the notationx, := )

N
4 sir?(é) > o (x)sinkt = —i [o(Xes1) — a(x)] - [sin(k + 1)t — sinkt]

t 1 t t
+ 20(1)sin 5 cos(N + )t — 20(X,)Sin - cos=

2 2 2772
= i [0 (Xi2) — 20 (Xr) + o (x)]sin(k + L)t
k=1

+ [0(1) — o(Xy—)]SINNt — [o(Xy) — o(X,)]sint

t 1 ot t
+ 20(1)sin 2co{N + z)t - Za(xl)sm§ cos5 . (3.23)
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By the C? smoothness ofr( - ) we find

|

- 1 1
R (] = [lole: + 2ol e + Uo(,\,) B |o<1>|} (3.24)

—

To conclude the proof we consider the special example(of) = x: the corresponding

k - 1Nk
conjugate kerneQwith On = N> readsKy (t) = p > Nsin ktand it coincides with the
k=1

-1
differentiated Dirichlet kernel in (2.7)7“ D{ (1),

1 1 t 1
N+3 cogN + E)t 1 Cos; sin(N + E)t

_l’_i
™ 2sin) ™™ asikd)

(3.2H

sinkt= —

Zl =

1 N
KN (D) = p= >
k=1

Now we decompose

KR =KD — o(DKNO] + o (DKK(®).

The first difference on the right is a conjugate kernel associated with concentrat
function w(x) := o(x) — o(1)x. Application of (3.24) tK & (t) implies the upperbound
N +3 cosN + )t

asserted in (3.22). Also, by (3.28(t) + does not exceed WA?,

™ 2sind)
and the result follows. =
We summarize our last two assertions, by stating our main

- -1N [k
Treorem 3.1 (Main Theorem). Consider the conjugate kernelit) = 72 O'(N)
1

)

sin kt associated with a €0,1] concentration functiono(x), such that

1
sConst'l—. Assume
ogN
1 oy(Xx
J ”)E ) dx——s —, (3.26)
1/N N —
N o)l
————> 0. (3.27)
=1 J N—»

(i) The concentration property: &(t) is an admissible kernel, so thaf 5 ](x) = f * K¢,
satisfies the concentration property,
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S0 — [F](%) = {f(§+) B,f(g_)’ iiggm\ﬁsﬂscontinuities x &, (3.28)

N — oo

(il) The convergence rate: Assume, further, th@at ¥ is piecewise € function.
Then, at any € regularity point x of f, the vanishing rate of$f](x) is upper
bounded by

oo log N 1
ISE[f1(x)| = Const: [N+ ’a(N> ” : (3.29)

Remarks. 1. One can relax the assumption of piecew@ regularity, requiring,
instead, that at any fixed away from the jump discontinuities(-) admits a local
Zygmund regularity f(x + t) — f(x — 1))/t € BV(0, 9).

2. In the generic case$g(X)| = Const- |X. In these cases, the error estimate
(3.29) shows that away from the jump discontinuitied dfe conjugate kernel decay

logN
is at least first order(@(z), in agreement with thé@(log N/N) decay we found

earlier for the Fourier concentration factors in (3.11). We note, however, that (3.:
does not implyuniform convergence rate up to the jump discontinuities. Indeed, tt
polynomial concentration factors introduced in Section 3%(x) = —pwxP, admit

first-order convergence rate (and exhibit even faster convergence rate of ol

1
@(UP<N> ~ Np) at selected gridpoints away from the jumps), yet they fail t
maintain this rate at the proximity of the jumps. The further smoothness’0{) at

x = 0 does not seem to improve the convergence rate beyond the first-order e
bound stated in (3.29).

Proof. We address the error estimate (3.29). The local smoothné&e i measured by
the modulus of continuitys(t) := f(x — t) — f(x + t). SinceK ¢ is odd we can rewrite the
corresponding conjugate partial sum®g[ f1(x) = (J3™N + [T) o, (H)KE(t)dt, and

. , S = cogN + 1/2)t -
utilizing property 3') of K in (3.18), K{(t) = _U(l)m + RY(), we

decompose

» 1N . - oyt 1
SNLFI(x) = f o, (HK Gt dt — (1) J Mr(()t/z) COS<N + z)tdt
0 N

+ f ! wt)RG(Hdt.  (3.30)

/N

Sincef has (more than) Lipschitz regularity a&f |w(t)] = Const- t. This, together
with [KZ(t)] = Const- N, implies that the first integral on the right of (3.30) does no
exceed
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1
= Const: —

1/N
‘ f w (DK (H)dt T
0

Moreover,f(+) is assumed to hav@? regularity atx. This implies theC* smoothness of
w,(t)/t (as a function oft), and hence th@(1/N) decay of its Fourier coefficients. It
follows that the second integral on the right of (3.30) is upper bounded by

T wyt) N 1 d
27 sint2) O3 N T )t
1/N

And finally, using Assertion 3.3 to upper bound the amplitud&®gft), we find that the
third integral on the right of (3.30) does not exceed

K 1 ‘ 1 ‘ 1 1 ld
tXW'FtX O'N +N|(T( )| Y t
1N
—c log N ’ 1 ’
= Const N + | o N .

The last three bounds imply the convergence rate estimate (3.89).

= Const:

N .

= Const:

‘ f ! w (DR (t)dt

1N

1 1
Remark. If o(x) is nondecreasing, then necessari‘ly(N)‘ = Const-m for

X
(3.17) to hold, and in this case (3.27) is fulfilled. If, in additic%T(,X—)e L'[0, 1], then
admissibility requires only the scaling condition

f 70 hx= —o (3.31)

Itis easy to see from the above discussiondiga ofy (@nd, in particulargy,) are admissible

m
concentration factors: in the first case, the Fourier concentration fagfoys= fogN satisfy (3.27)

o(X
(and note that in this case(x—) is only weak L* so that we need the refinement of (3.20)); in

the second case of Fourier concentration factefsx) = sin ax satisfies (3.31).

Sl()

3.4. Polynomial Concentration Factors

Guided by the results of Theorem 3.1 we define a family of what we refer to
“polynomial” concentration factors, based on concentration functieféx) = —pwxP.
The first two members in this family yield

e first-degree polynomial concentration factors(X) = —wx),

o= % (3.32)
kN — N’ .
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« second-degree polynomial concentration facteréx) = —2mwx?),
o 21k? 333
TNE NN D) (3.33)
Clearly oP(x) = —pwxP are admissible by Theorem 3.1 and hence the concentrati

property holds. We note in passing that the generalized conjugate sums associated wi
polynomial concentration factorsrP, coincide with the differentiated Fourier partial
sums,

N

> k?P*i(a,sin kx — b,coskx)
k=1

S 2p+1

&0 = - "ep T
wm(2p + 1) d?P*?

=(-1F NPT gy2prl Sl F1(x).

The corresponding concentration property then reads

2p+1
(0 T2 D sereag 100 — (1100 (3.34)

The special casp = 0 was already referred to in the proof of Assertion 3.3, where w

made use of the identitig}(t) = N D{(t). The corresponding concentration property.

(3.34,) with p = 0, goes back to F&je[20, Section Ill, Theorem 9.3] and to Golubov [9,
13] for higherp’s.

To gain better insight into thewverallimproved accuracy, we analyze the behavior o
SXIH (X)) = H, * KZ'(x) for x's away from the assumed jump discontinuity of the
HeavisideH,(x) = %sgr(f — X) atx = &; consult (3.5). To this end, we lpt:= x —
¢ and rewrite the sum (3.5) correspondingatf}y as

LN sin(*2) cogtL2e
éﬁ‘“[Hg](x)=NEcoskp=%p, p=x-— &
k=1 N sin(%)
Lo . m(l —N) .
Substituting in the discrete valugs = N forl =1,..., 2N — 1, yields
sin™ M cosMrmi =N 0 | is even
S TH(x) = =i
N LT N Si”wz@ N) | is odd.

The uniform convergence is clearly depicted in Fig. 3.3 by the oscillatory behav
between the odd and even gridpoints. It is important to clarify that the convergenc
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k
FIG. 3.3. Jump value obtained by applying the first-order polynomial concentration faetb\(%) , to
Example 2.1 withN = 20, 40, and 80 modes. The exact jump i5](0) = —

x away from the point of discontinuity does not depend on the value of & but
rather on its distance from ag with an odd or even index. It follows that the

convergence rate for (3.2) corresponding to the first-order polynomial facto

k

opl(N) , Is the same for all odd (everx), regardless of proximity to the points of

discontinuity.

k
For the second-order polynomial factom",z(N>, we rewrite (3.5) as

N
o 2k coskp
S HA(0) = 2 NN+ 1)
k=1

, nsing £ coslttie \

- > . + — > coskp
N(N + 1) - Smg N =
cot(kp/2) X 2 kp 10

= 7N(N+1)Esmkp+mzsmz Nzcoskp, p—X—g_
Using the closed formulas
N sin costhe N cos?  cogN +3)p
> coskp = , > sinkp= ,

BTy E— in :
= sinZ " 2 sinj 2 sin}
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[f(x)]
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FIG. 3.4. Jump value obtained by applying the second order polynomial concentration factors to Exarr
2.1 withN = 20, 40, and 80 modes. The exact jump i5](0) = —2.

-2

| e s s
&E T T T

| =N
we substitute the discrete valugs = % and apply a fair amount of algebra to
obtain
1 .
0 N2 if | even
SUTHACD =1y cob(p/2))
ON +@7N2 if | odd.

Thus the second-degree polynomial factors attain second-order convergence (but
at the even discretization points). It is also oscillatory, and due to the added error ti
coti(pl/2)
N2
¢ to the discretized value of.. This error implies that the convergence is worse near tt
points of discontinuity, and the lack of uniform convergence is depicted in Fig. 3.4. Ol
positive note, 5[ f](x) — 0 more rapidly outside the immediate proximity of the
discontinuity point, which may be helpful in identifying jump discontinuities for function

at the odd points, it is dependent on the proximity of the jump discontinui

TABLE 3.1
Error Comparison for Example 2.1 with N = 40 Modes

[f1(X) O'kD,N UE,N O'E,N TN [N
atx = 0 0.168 2.0E-02 6.5E-03 2.4E-02 1.1E-02
atx # 0 0.326 5.9E-02 0.11 5.5E-02 6.7E-02

Note. First row: Absolute error for { ](0) = —2. Second row: average error fof [(x # 0) = 0.



126 GELB AND TADMOR

[fx)] UEh]
15~ 15
1+ (l 1
1
| L
0sf (1 0sf
-Gibbs Il
= |//Fouriae, i ! .
ofe~ b g I' N / 0 A
L. /
1|1l y s
[ I o 2
05 I 05
([
ik ]J ik
Y- SR NI WA 1 1 L x 1.5.' M 1 1 1 1 [
3 -2 -1 0 1 2 3 - -2 1 0 1 2 3

k k
FIG. 3.5. Jump value obtained by different vaIuesmf(N) with « = 1 anda = 7 (left) and o”(N)
with p = 1 andp = 2 (right), when applied to Example 3.1 witd = 40 modes. The exact solution is

” o

with stronger variation, as will be seen in Example 3.1. We note that there are higher o
polynomial factors corresponding to admissible kerré&fsthat may work as well.

Table 3.1 compares different concentration factors for Example 2.1, with the first r
showing the magnitude of error forf [(0) and thesecond row comparing the average
error for [f](x # 0).

As expected, the worst case is with the Dirichlet concentration factors. The results
comparable forrf  ando 2. Overall, the polynomial concentration factors work bette
than the Fourier concentration factors, and it is not surprisingatfiatproduces a slower
convergence rate averaged ovels # 0, due to the contribution of order

cot¥(pl/2)

N2

Until now we have only discussed functions with one discontinuity. Example 3

demonstrates the detection of edges for a function with two discontinuities.

which prevents uniform convergence near the point of discontinuity.

ExampLE 3.1. We consider

¢

X T
cos5, —WSX<—§
3X T T
f(x) =} cos7, o =X<35
X T
gCOS?, ESXSW

ar a
Here& = — 5. & = 5, and [f1(&) = —[f1(&) = V2
Figure 3.5 displays the results for Example 3.1 using different concentration fact
The polynomial concentration factors work better than the Fourier concentration fact
and the fast convergence &[f](x) for {ofa} is more evident than in the first
example.
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TABLE 3.2
ko
Absolute Error for Example 3.1 at x = — >
N UE,N UE,N 0'|(<3,N UE}N UE,ZN
20 0.453 9.2E-03 7.0E-02 5.4E-02 0.150
40 0.372 1.0E-02 1.6E-02 3.1E-02 6.0E-02
80 0.315 6.5E-03 4.0E-03 1.7E-03 2.5E-02

Table 3.2 compares the different concentration factors fd(4,), while Table 3.3
compares the average error dfl[ x # &,;, &). The tables indicate that the polynomial
concentration factors yield better results than their Fourier counterparts. Here we see
o R4 yields better average accuracy away from the points of discontinuitydffan In
this case, the smooth “pieces” in Example 3.1 exhibit stronger variation than before,
the faster convergence &f[ f](x) corresponding tor 7, away from the discontinuities
plays a more dominant role.

We mention again that while the estimates above are at best first order, they ca
improved to0(1/N?) by substituting the results off[J(¢) back into (3.3) and applying
another integration by parts. Finally, we emphasize that the possibilities fre not
exhausted and that other concentration factors may provide better results.

4. DISCRETE FOURIER EXPANSION

Suppose we are given the discrete grid valifes) defined at the R + 1 equidistant

points,x; := —m + (j + N)Ax, with Ax:= . The discrete Fourier expansion

av
2N+1
approximation is given by

N

T F1(X) = 2 apcoskx + Bysinkx,

k=0
where the corresponding\2+ 1 discrete Fourier coefficients based on those 2 1

equidistant grid values are defined as

TABLE 3.3
Average Error for Example 3.1 Away from the Discontinuities

N UE.N UE.N UEN ol [N
20 0.466 0.195 0.319 0.188 0.119
40 0.382 9.6E-02 0.171 9.2E-02 4.8E-02

80 0.327 4.8E-02 8.9E-02 4.5E-02 2.1E-02
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FIG. 4.1. Jump values obtained by applying different “continuous” concentration factors to the discrete Fou

T
coefficients for Example 3.1 withl = 40 modes. The exact solution experiences two juEﬁ@{i 5) = =* \,5.

N
Ax
= > f(x)coskx, O0=k=N

j=—N

Ax N )
Bi=— > f(x)sinkx, 1=k=N. (4.1)

j=—N
The discrete conjugate Fourier partial sum is therefore

N

T F1(X) = D aysinkx — Bycoskx. 4.2)

k=1

In the discrete case, every grid value experiences a jump discontinuity. The jumps
are of ordef0(Ax) are acceptable, but thfg1) jumps indicate a jump discontinuity in the
underlying functiorf (x). Hence, in the discrete case we identify a jump discontinuity :
¢ by its enclosed grid cell, ), ;. 1], which is characterized by the asymptotic statemer

_[LF1(8) + 0(A%) forj=j.: &€x, Xl
(X0 — f(X) = { 0(AX) for otherj’s # j,. (4.3)

Of course, this asymptotic statement, (4.3), may serve as an edge detector based the
grid values{ f(x)} j'\‘:_N. We now seek alternative edge detectors based on the discrete Fol
coefficients, fy, B~ 4, analogous to our study of the continuous case in Section 3.

As a starting point, we point out the inadequacy of the concentration factors studie

k
Section 30‘(N> , In the present context aliscreteFourier expansion (4.2). Figure 4.1 shows
the results for the discrete data of Example 3.1. The discrepancy in Figs. 3.5 and 4.1 cle
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indicates that the concentration factors determined in Section 3 are not applicable her
separate (but closely related) study is required for discrete concentration factors.

To analyze the discrete case, we follow our framework in Section 3. We introdt
concentration factors, \, and consider the (discrete) generalized conjugate sums

N

TULEIX) = D men(asinkx — Bycoskx). (4.4)

k=1

Summing by parts the discrete Fourier coefficients we find

Ax N
ay = mjgl\‘ sinkx o F(x) — f(x 0],

B AX N
B = ijN coskXyo (X1 — F(x)].

Let §.12 = X,.12 denote the midpoint of the cellx], X .,] which encloses
the discontinuity ak = & Applying (4.3) to the discrete Fourier coefficients in (4.1)
gives

A
a WQM/Z) [ f1(&)SINKE, .y, Sin+ O(AX),

oy =

AX
Bk = 27 sink(Ax/2) [ f](&)coské;, v, + O(AX), (4.5)
and substituting (4.5) into (4.4) leads to

* TkN

T F1(0) = —[1(&) 2 m cosk(x — &,y2 + 0(AXx).  (4.6)

Observe that as\x — 0, the discrete conjugate suify[f](x) approaches the
corresponding continuous conjugate s&§[ f](x). In fact, by comparing (4.6) with
SALF1(x) in (3.4),

~ 1
1100 = —[f]@)Efcosk(x o+ofy).

we see that the concentration property of the discrete conjugate Fourier partial sum
direct analogue of the continuous case. Of course, in the discrete case, we do not ide
the exact location of the underlying discontinuityxat ¢, but rather the location of the
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discrete cell that encloses this discontinuity which is realized here in terms of its midpc
atx = &4/, (Figs. 4.3 and 4.4).

We arrive at the following discrete analogue of our Theorem 3.1 for detecting edge:
spectra of piecewise smooth functions. In this discrete context, piecewise smooth
refers to piecewiseC? functions; i.e., we refer td’s with finite number of jump
discontinuities where f](x) # 0, such that (2.14) is strengthened into

f(x+1t) —f(x—t) —[f](x
t

e L~ [0, ]. 4.7)
THeorem 4.1. Let f(X) be a piecewise smooth functigd,7), and let J= {&} denote
the set of its jump discontinuities. Given the discrete Fourier coefficiast iB,J k1,

we consider the generalized discrete conjugate partial sum

N

T F1(%) = X 7en(eysinkx — Bcoskx) (4.8)
k=1
. . _ k
corresponding to the discrete concentration facters= {r\} = 7 N/ If n. are

related to admissible continuous concentration factegs, in (3.1),

B sin(k(Ax/2)) Ax = 2
TS k) Te AXToNg (4.9
then T{[ f](x) satisfies the concentration property
TUFI) — [F1(8)8,(x). (4.10)

Furthermore, the direct analogue to the continuous case offers a more general re
THeOREM 4.2. Consider a C[0, 1] discrete concentration functiom(x) such that

1 1 k o .
T(N> = Const-m. Thent, = T(N> are admissible and the concentration
property is fulfilled,

TUFI0) — [F1(98,(x),

if the following conditions are met:

' n(X) )
2 sin(x/2) dx ) -1 (4.11)

| —> %

N 7(j/IN
|T(}2 I o (4.12)

j:1 N — o
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FIG. 4.2. Jump value obtained by applying discrete Fourier and Gibbs concentration faﬁi‘éfﬁ)
(corresponding tec = 1 anda = ), with N = 40 modes. The exact solutions exhibit the jump discontinuities

[£.](0) = —2 (left) and[fb]<ig> = + /2 (right).

All of the continuous concentration factoss= { o \} from Section 3 can therefore

be “converted” into discrete concentration facters= {7, \} up to a scaling factor of
. Ax
sink= .
Q( .

Sin 2

1. Dirichlet concentration factors

-2 ~AX
Eziynk?; (4.13)

T kAx log N

2. Fourier concentration factors (Fig. 4.2)

o Ax a\
Tk = I(A)(Si(a)smkzsm(kN) ; (414a)

n

[ [¥x)]

15 r
JL
i osf
- L [ igst order
0.5 - 0
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FIG. 4.3. Jump value obtained by applying discrete first- and second-degree polynomial concentra
factors withN = 40 modes. The exact solution exhibit the jump discontinuitieg(p) = —2 (left) and

[fb]<i127> — =2 (right).



132 GELB AND TADMOR

[fx)] [H(x)1

1.5 15

05

osf

05

-05 -

JRY-) i EFENENNS NAUVIINIL NSVITS ENAIUTUVIN IATETITES EAVITErS e JEY-1 N IVERIRININ SFUVININTS EVVATES SVRVANIES EVAFIVEI STATE M
] -2 -1 o] 1 2 3 ] -2 -1 [¢] 1 2 3

FIG. 4.4. Jump value for Example 3.1 obtained by applying the first-order polynomial factors (4.16) (le
and second-order polynomial concentration factors (4.17) (right), Wéirg20, 40, and 80 modes. The exact

solution jumps aff](i%r) = *.2

3. Gibbs concentration factors (Fig. 4.2)

AX kK

G — H . ein__ -
P = S|nk25|nN,

T

KAXSi(m) (4.15)

4. First-order polynomial concentration factors (Fig. 4.3, Fig. 4.4)

-2 AX
P1 —= i .
T = AxN sink 5 (4.16)

5. Second-order polynomial concentration factors (Fig. 4.3, Fig. 4.4)

— 4k ) kAX
AXN(N + 1) S"% 2

=

(4.17)

We close this section noting that in the casd ef f (Xx) in Example 2.1, Tables 4.1
and 4.2 indicate a comparable order of resolution for the different concentration fact
Tt 7¢, 701, and 7Pz both at the value at the point of discontinuity and at the averag
convergence away from the point of discontinuity. For= f,(X) in Example 3.1,
however,rP* produces best average errors outside the discontinuities#at-\/2), and

TABLE 4.1
Absolute Error for Example 2.1 at x = 0

N TR T Te TR TR?
19 0.86 4.3E-02 2.3E-02 9.8E-02 8.8E-02
39 0.90 2.3E-02 1.9E-02 5.0E-02 3.7E-02

79 0.92 1.2E-02 1.1E-02 2.5E-02 1.6E-02
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TABLE 4.2
Average Error for Example 2.1 Away from the Discontinuity, x # 0

133

N ™ Tk Te T TR

19 0.20 0.19 0.21 0.11 0.13

39 0.16 5.9E-02 0.11 5.5E-02 6.7E-02
79 0.14 2.9E-02 5.4E-02 2.7E-02 3.5E-02

Fig. 4.4 shows faster convergence for= {rP2, T7[f](x) — O away from the
immediate proximity of these points of discontinuity.

5. CONCLUDING REMARKS

The theorems provided in Sections 3 and 4 enable us to determine concentration fa
for both continuous and discrete Fourier expansion coefficients that improve the ove
accuracy of the concentration property of the conjugate Fourier partial sum.

[fx)1 [fx)]
B A AN A A s Yim AP AA s s
g s, \ A I/ Wz ) VP ON
Vo, 4
| |
05k I‘ 05 |
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| |
1k " T |
| '|
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o 1 1 1 1 L ox 2 | 1 l 1 1 1 =
-3 2 1 0 1 2 3 3 -2 1 0 1 2 3
[mxj [fix)]
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AT PO & fe - |
ofF N A < o |
1 || |
0.5 | | 05 |
5 | |
1
I |
1F | 2 |
(|
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L | 15} I
2H T LN i 1) ol 1 o L1 X -2 L, 1 L 1 L L x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIG. 5.1. Jump value obtained by generalized conjugate partial Sff,f,](x), using various Fourier
—1aT
concentration functionsf(x) = %sin ax, with @ = 1, 1.5 (top) andx = 2, 3 (bottom). The exact solutions

exhibit the jump discontinuity {,](0) = —2.
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It is important to mention that the choice of an appropriate concentration factor depe
on various factors. Consider the following cases:

e For the one-sided mollifier proposed in [12], only the approximate jump locatic
is required to reconstruct a piecewise continuous function, makiigand 7 > appeal-
ing choices due to their rapid convergence away from the discontinuities.

e Reconstruction methods in [2] and [7] require exact knowledge of the jun
locations, but in [7], for example, knowledge of the jump locations and the Fouri
coefficients is enough to determine the jump discontinuities, implying that locating f
jump discontinuities is more important than determining their corresponding amplitud
This makeso 2 and 7 £? poor choices because of the strong oscillations they cause n
the discontinuities.

e For highly varying functions, we have seen tldf andr P> display better results
due to their rapid convergence away from the discontinuities.

e In the case of several discontinuitiesk? and 7 > produce too many oscillations
between the points of discontinuities unless there are sufficiently many modes to “reso
the smooth pieces df

e Finally we note that the results for the Fourier concentration facidfsy ", (with
a = 1), and the first-degree concentration functieff?, 7 £, bear close similarity which
is not shared by the Gibbs’ concentration facter§, = (corresponding tar,, 7, with
«a = ). Indeed, the sensitivity of the Fourier concentration factors on the free parame
« is clearly depicted in Fig. 5.1 and deserves further study in the future.
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