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1. INTRODUCTION. Edge detection and the detection of discontinuities are impor-
tant in many fields. In image processing, for example, one often needs to determine the
boundaries of the items of which a picture is composed. (For more information about
edge detection in image processing, see [10].) We consider the problem of detecting
the edges present in a function when given the Fourier coefficients of the function.

There are numerical methods that estimate the Fourier coefficients of a function of
interest rather than directly estimating the solution. The spectral viscosity method, a
numerical method used to solve nonlinear partial differential equations (PDEs), is an
example of such a method [12]. The method approximates the Fourier coefficients of
the solution of a PDE. The Fourier coefficients are then used to calculate an approx-
imation to the solution. The accurate reconstruction of the solution requires that the
positions of the discontinuities of the solution be known [5]. In this paper we discuss
techniques for using a function’s Fourier coefficients to determine the locations and
sizes of the jump discontinuities of the function.

At first glance the spectral representation of the signal—the Fourier series or trans-
form associated with the signal—does not seem to be the ideal place to look for
information about discontinuities in the signal. When a signal is discontinuous the con-
vergence of the Fourier series or transform associated with the signal is not uniform;
in such cases the Gibbs phenomenon [11] appears and truncating the series after any
finite number of terms always leads to O(1) oscillations in the reconstructed signal.
(For a nice, detailed treatment of the Gibbs phenomenon, see [6].)

Considering the question again, however, one realizes that if a discontinuity is
characterized by a “phenomenon,” then the existence of the discontinuity is indeed
encoded in the coefficients. The question becomes how to effectively “decode” the
discontinuity. One does not do this by directly summing the series—one uses the spec-
tral representation in a somewhat different way to “concentrate” the function about the
discontinuity. In what follows, we explain how this is done. We restrict ourselves to pe-
riodic (or compactly supported) functions and only consider Fourier series. (Those in-
terested in seeing a more general theory of concentration factors are referred to [3, 4].)

Much of the information in this article is well known [3, 4]. The use of the Euler-
Mascheroni constant to improve the performance of the concentration factor in Section
4 is, to the best of our knowledge, new.

In the next section we give some of the background necessary for our study. In the
following sections we present the classical method of finding the discontinuities, we
explain its shortcomings, and we present a better method and analyze its properties.

2. SOME BACKGROUND.

2.1. Piecewise Continuity and Piecewise Differentiability. A function is called
piecewise continuous if it has only a finite number of discontinuities in any interval,
and its left and right limits exist (but are not equal) at each discontinuity. A function is
said to be piecewise differentiable if the function and its derivative are both piecewise
continuous. (A piecewise differentiable function need not be continuous.)

In signal processing one is often interested in piecewise differentiable functions—
functions like those in Figure 1. Piecewise differentiable functions are composed of
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Figure 1. Two piecewise differentiable functions.

differentiable functions that have been “pasted” together like the constant values in
Figure 1(a) and the sine waves in Figure 1(b).

If one acquires a signal from a piece of equipment and if changes in the equipment’s
operating mode are signaled by discontinuous changes in the signal, then locating the
discontinuities in the signal is important. If one is processing a picture, the transition
from a region that depicts a face to a region that depicts a wall is generally discontin-
uous. If one would like to determine the edges of the face, it is important to be able to
determine the curves along which the function that represents the image is discontinu-
ous.

Because of the role that piecewise differentiable functions play in signal process-
ing, we characterize piecewise differentiable functions carefully. As the discontinuities
of piecewise differentiable functions are of particular interest to us, we develop tech-
niques for examining such discontinuities.

2.2. The Convergence of the Fourier Series. Let f (t) be a periodic function with
period T . The Fourier coefficients of f (t) are

cn = 1

T

∫ x+T

x
e−inωt f (t) dt,

where ω = 2π/T , x is an arbitrary point, and T is the period of the function f (t).
In many cases, it is possible to reconstruct a function from its Fourier coefficients.

We consider three different senses in which a function is represented by its Fourier
series. First, consider a piecewise differentiable periodic function, f (t). At all points
at which f (t) is continuous we have

f (t) =
∞∑

n=−∞
cneinωt .

At points of discontinuity, the convergence is to the mean of the values to which the
function tends from the left and the right of the discontinuity [2]. That is, for piecewise
differentiable functions the convergence of the Fourier series to the function is point-
wise wherever the function is continuous and is to the average value of the function at
the jumps in the function’s value. This shows that if a piecewise differentiable func-
tion f (t) is continuous, then the Fourier series converges pointwise to f (t). If f (t) is
discontinuous, then so is the function to which the Fourier series converges.
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Now suppose that f (t) is periodic with period T and is square integrable in each
period—that f (t) ∈ L2[0, T ]. Then (as described in [8]) the Fourier series converges
to the function in L2[0, T ] (and this is a weaker form of convergence than uniform
convergence). Additionally, for square integrable functions Parseval’s equation states
that

∞∑
n=−∞

|cn|2 = 1

T

∫ x+T

x
| f (t)|2 dt.

Parseval’s equation says that if a function is square integrable, then the function’s
Fourier coefficients are square summable. (Because any piecewise continuous func-
tion is bounded on any finite interval, every periodic piecewise continuous function is
square integrable.)

Finally, suppose that the Fourier coefficients of f (t) are absolutely summable; that
is,

∞∑
n=−∞

|cn| < ∞.

As |einωt | = 1, the absolute summability of the Fourier coefficients establishes the
uniform convergence of the Fourier series

∞∑
n=−∞

cneinωt .

As the functions einωt are continuous and we know that the uniform limit of continuous
functions is a continuous function, we find that if the Fourier coefficients are absolutely
summable, then the Fourier series converges to a continuous function. As we have
already seen that the Fourier series of a piecewise differentiable function tends to a
continuous function if and only if the function is actually continuous, we find that if
the Fourier coefficients of a piecewise differentiable function are absolutely summable,
then the function is continuous.

2.3. Smoothness and Convergence. In what follows two properties of the Fourier
coefficients are important. One property concerns the relation between the smoothness
of f (t) and convergence of the Fourier series associated with f (t). We treat this ques-
tion here. The other property concerns the effect that shifting a function has on the
function’s Fourier coefficients and is treated in Section 2.4.

Let us consider the connection between the smoothness of f (t) and the summability
of the Fourier coefficients. If a function is continuous and piecewise differentiable,
then the Fourier coefficients of the derivative of the function are square summable (as
the derivative is piecewise continuous). Let t0, t1, . . . , tM−1 be the points in the interval
[0, T ) at which the derivative of f (t) changes in a discontinuous fashion—at which
there are jumps in the derivative’s values—and let an be the Fourier coefficients that
correspond to f ′(t). Because f (t) is continuous, it is clear that

T an =
∫ T

0
e−inωt f ′(t) dt

=
∫ t0

0
e−inωt f ′(t) dt + · · · +

∫ T

tM−1

e−inωt f ′(t) dt
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by parts= e−inωt f (t)
∣∣t0
0

+ · · · + e−inωt f (t)
∣∣T

tM−1

+ inω

∫ t0

0
e−inωt f (t) dt + · · · + inω

∫ T

tM−1

e−inωt f (t) dt

continuity= inω

∫ t0

0
e−inωt f (t) dt + · · · + inω

∫ T

tM−1

e−inωt f (t) dt

= inωT cn.

Making use of the Cauchy-Schwarz inequality, we see that

∞∑
n=−∞

|cn| = 1

ω

( −1∑
n=−∞

1

n
|inωcn| + ω|c0| +

∞∑
n=1

1

n
|inωcn|

)

≤ 1

ω

⎛
⎝

√√√√ −1∑
n=−∞

1

n2

√√√√ −1∑
n=−∞

|an|2 + ω|c0| +
√ ∞∑

n=1

1

n2

√ ∞∑
n=1

|an|2
⎞
⎠

< ∞.

That is, the Fourier coefficients of a function that is both continuous and piecewise
differentiable are absolutely summable. Combining this result with the final result of
Section 2.2, we find that a piecewise differentiable function is continuous if and only
if its Fourier coefficients are absolutely summable. Thus, if a piecewise differentiable
function f (t) can be written

f (t) = fd(t) + fc(t),

where fd(t) and fc(t) are piecewise differentiable, fd(t) is discontinuous, and fc(t)
is continuous, then (because of the linearity of the Fourier coefficients) the Fourier
coefficients of f (t) can be written as a sum of two parts. The part that corresponds to
fd(t) cannot have absolutely summable Fourier coefficients. The part that corresponds
to fc(t) must have absolutely summable Fourier coefficients.

2.4. Shifts of a Function. The second property we are interested in concerns the
effect that shifting a function has on the function’s Fourier coefficients. Let the
Fourier coefficients of f (t) be denoted by cn . What are the Fourier coefficients,
an , of f (t − τ)? A simple calculation shows that

an = 1

T

∫ x+T

x
e−inωt f (t − τ) dt

u=t−τ= 1

T

∫ x−τ+T

x−τ

e−inω(u+τ) f (u) du

= e−inωτ cn.

2.5. An Important Example. Without loss of generality, in the rest of this exposition
we consider functions that are periodic with period 1. Consider k(t) defined by

k(t) ≡ t − 1

2
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Figure 2. The function k(t).

in the interval t ∈ [0, 1) and defined elsewhere by periodically extending the func-
tion. (See Figure 2.) The function as defined has a jump of height 1 at every integer.
(The height of the jump in the value of a function k(t) at a point t0 is defined as
limt→t−0 k(t) − limt→t+0 k(t).)

The Fourier coefficients of k(t) are

cn =
∫ 1

0

(
t − 1

2

)
e−i2πnt dt.

For n = 0, it is clear that c0 = 0. For n 	= 0, we see that

cn =
∫ 1

0

(
t − 1

2

)
e−i2πnt dt

by parts=
(

t − 1

2

)
e−i2πnt

−in2π

∣∣∣∣
1

t=0

+ 1

i2πn

∫ 1

0
e−i2πnt dt

= i

2πn
.

The coefficients are square summable—as they must be—but they are not summable.
The Fourier series that corresponds to k(t) is

−1∑
n=−∞

i

2πn
ei2πnt +

∞∑
n=1

i

2πn
ei2πnt . (1)

2.6. An Interesting Sum. Using Parseval’s equation for k(t) = t − 1/2 and its
Fourier coefficients, we have∫ 1

0
k2(t) dt =

∫ 1

0

(
t − 1

2

)2

dt

=
∞∑

n=−∞
|cn|2
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= 2
∞∑

n=1

1

4π2n2

= 1

2π2

∞∑
n=1

1

n2
.

As it is easy to see that

∫ 1

0

(
t − 1

2

)2

dt = 1

12
,

it is simple to show that

∞∑
n=1

1

n2
= π2

6
. (2)

This sum is used in Section 3.2.

2.7. Decomposing a Function. In the sections to come, we will need to split a piece-
wise differentiable function into its continuous and discontinuous parts. We now con-
sider one way to perform this decomposition. Suppose that one has a piecewise dif-
ferentiable function f (t) with m jumps at the locations t1, . . . , tm with the heights
h1, . . . , hm , respectively. The function

w(t) = f (t) −
m∑

j=1

h j k(t − t j )

has no jumps and is continuous and piecewise differentiable. We find that

f (t) = w(t) +
m∑

j=1

h j k(t − t j ),

where w(t) is continuous and piecewise differentiable and the sum
∑m

j=1 h j k(t − t j )

is discontinuous and piecewise differentiable. The Fourier coefficients of w(t), which
we denote by bn , are absolutely summable. Making use of the linearity of the Fourier
coefficients, we find that the Fourier coefficients of the sum, denoted by an , are

an =

⎧⎪⎨
⎪⎩

m∑
j=1

h j
ie−i2πnt j

2πn
n 	= 0,

0 n = 0.

Clearly these coefficients are not summable. By the linearity of the Fourier coefficients,
we find that the coefficients of f (t), denoted by cn , are

cn = an + bn.

3. THE CLASSICAL APPROACH—THE HILBERT TRANSFORM. In order
to determine where the edges of the data are in a “minimally invasive way,” we want to
find a transformation of the Fourier coefficients that changes the Fourier coefficients
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as little as possible, but that causes the partial sums of the Fourier series of a discon-
tinuous function to grow at the discontinuities but not elsewhere. Note that the reason
that the (symmetric) partial sums corresponding to the Fourier series (1)

−1∑
n=−N

i

2πn
ei2πnt +

N∑
n=1

i

2πn
ei2πnt

do not diverge at t = 0 is that at t = 0 the terms corresponding to ±n cancel one
another.

Consider cn , the Fourier coefficients of a function that is piecewise continuous but
not continuous. Making use of the decomposition of Section 2.7, decompose the func-
tion into its discontinuous and continuous parts, and denote their Fourier coefficients
by an and bn respectively. Then cn = an + bn .

Now consider a transformation of the sequence cn. Define rn , the transformed se-
quence, by the equation

rn =

⎧⎪⎨
⎪⎩

−icn = −ian − ibn n ≥ 1,

0 n = 0,

icn = ian + ibn n ≤ −1.

This transformation is known as the Hilbert transform [9]. Clearly the transformed
version of the bn is still absolutely summable, while the transformed version of the an

is not absolutely summable. Thus, the continuous part of the function is transformed
into a continuous function by the Hilbert transform while the Hilbert transform of
the discontinuous part is still—at the very least—discontinuous. (If the coefficient of
the constant term of the original function is zero, then the Hilbert transform is an l1

isometry. If the coefficient of the constant term is nonzero, the Hilbert transform is an
l1 contraction.)

3.1. The Effect of the Transformation on k(t − τ). Let us consider the function
that one recovers from the Fourier series using the transformed coefficients of the
discontinuous function k(t − τ). The function one recovers is

g(t) =
−1∑

n=−∞

−1

2πn
ei2πn(t−τ) +

∞∑
n=1

1

2πn
ei2πn(t−τ) =

∞∑
n=1

cos(2πn(t − τ))

nπ
.

Note that at t = τ + m this series is the harmonic series and g(τ + m) diverges (and
at t = τ + m + 1/2 the series is the alternating harmonic series and converges condi-
tionally to ln(2)/π).

To proceed with our analysis we must analyze the partial sums

gN (ξ) =
N∑

n=1

cos(2πnξ)

nπ
, ξ = t − τ

more carefully. To this end, we consider the properties of the Dirichlet kernel [14]
defined by

DN (ξ) ≡
N∑

n=−N

ei2πnξ = 1 + 2
N∑

n=1

cos(2πnξ). (3)
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This is a finite geometric series whose sum is

DN (ξ) = e−i2π Nξ

2N∑
n=0

ei2πnξ

= e−i2π Nξ 1 − ei(2N+1)2πξ

1 − ei2πξ

= sin((2N + 1)πξ)

sin(πξ)
.

It follows that

|DN (ξ)| ≤ 1

| sin(πξ)| .

We now consider the partial sum

gN (ξ) =
N∑

n=1

cos(2πnξ)

nπ
.

From (3) it follows that this sum can be written as

gN (ξ) = cos(2πξ)

π
+

N∑
n=2

Dn(ξ) − Dn−1(ξ)

2nπ
.

Rewriting this, we find that

gN (ξ) = cos(2πξ)

π
+ DN (ξ)

2Nπ
− 1

2π

N∑
n=2

Dn−1(ξ)

(
1

n
− 1

n − 1

)
− D1(ξ)

2π

which, from the fact that D1(ξ) = 1 + 2 cos(2πξ), can be further simplified to

gN (ξ) = DN (ξ)

2Nπ
+ 1

2π

N∑
n=2

1

n(n − 1)
Dn−1(ξ) − 1

2π
.

Considering our previous bound on |Dn(ξ)|, we have

|gN (ξ)| =
∣∣∣∣∣

N∑
n=1

cos(2πnξ)

nπ

∣∣∣∣∣ ≤ 1

| sin(πξ)|

(
1

2Nπ
+ 1

2π

∞∑
n=2

1

n(n − 1)

)
+ 1

2π
.

Note that

∞∑
n=2

1

n(n − 1)
=

∞∑
n=1

1

n(n + 1)
<

∞∑
n=1

1

n2
.

Making use of (2) it follows that

|gN (ξ)| =
∣∣∣∣∣

N∑
n=1

cos(2πnξ)

nπ

∣∣∣∣∣ ≤ 1

| sin(πξ)|
(

1

2Nπ
+ 1

2π

π2

6

)
+ 1

2π
.
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This shows that as long as ξ is not an integer—as long as t 	= τ + m—gN (ξ) is
bounded, and the dependence of the bound on ξ is known.

This leaves us in the position of knowing that the partial sums diverge like the
harmonic series at t = τ + m and are bounded elsewhere. We take advantage of this
fact by dividing the partial sum by the (approximate) value of the partial sum of the
(divergent) harmonic series. This causes the partial sum to tend to 1 at the point at
which the discontinuity occurred and to tend to zero elsewhere.

When ξ = m (or, equivalently, t = τ + m) the partial sum is

gN (ξ) =
N∑

n=1

1

nπ
= 1

π

N∑
n=1

1

n
.

We would like to develop a closed form estimate of this sum. We note that∫ n+1

n

1

x
dx ≤ 1

n
≤

∫ n

n−1

1

x
dx .

Thus

1 +
∫ N+1

2

1

x
dx ≤

N∑
n=1

1

n
≤ 1 +

∫ N

1

1

x
dx .

It follows that

1 + ln(N + 1) − ln(2) ≤
N∑

n=1

1

n
≤ 1 + ln(N ).

Dividing all three terms by ln(N ) and taking the limit as N → ∞, we find that∑N
n=1

1
n

ln(N )
→ 1.

Combining our results, we find that

lim
N→∞

π

ln(N )
gN (ξ) =

{
0 ξ 	∈ Z,

1 ξ ∈ Z.

3.2. Edge Detection in Piecewise Differentiable Functions. Now let us consider the
effects of the transformation on a generic piecewise differentiable function f (t). If the
Fourier coefficients of f (t) are cn, then the sum that we consider is

edge1(t; N ) ≡ π

ln(N )

( −1∑
n=−N

icnei2πnt +
N∑

n=1

−icnei2πnt

)
.

The function edge1(t; N ) is the function that corresponds to the Fourier coefficients of
f (t) after they have been Hilbert transformed. This sum is our first edge detector, and
it has two important properties. As N → ∞ the value of the sum tends to the height
of the jump in the original function at any point at which a jump occurs. At all other
points, the sum tends to zero.

To prove these claims, we make use of the decomposition of Section 2.7. By linear-
ity we can consider the effect of the operation on each set of Fourier coefficients. As
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the the sum of the bn converges absolutely, it is clear that

π

ln(N )

( −1∑
n=−N

ibnei2πnt +
N∑

n=1

−ibnei2πnt

)
= O

(
1

ln(N )

)
.

For any fixed n the coefficient an is just the coefficient that corresponds to

m∑
j=1

h j k(t − t j ).

By the linearity of edge1(t; N ) relative to the coefficients input to it and from the
results of Section 3.1 we see that as N → ∞ the function edge1(t; N ) converges to h j

at t j and to zero, like O(1/ ln(N )), elsewhere.

4. SHORTCOMINGS OF THE TECHNIQUE. Let us consider the function
k(t) = t − 1/2, and let us see how well our edge detector edge1(t; N ) works. In
Figure 3(a), k(t) is approximated using the Fourier series with N = 1000, and in
Figure 3(b) we see the output of edge1(t; 1000).

0 0.5 1 1.5 2
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

(a)
0 0.5 1 1.5 2

–0.2

0

0.8

0.6

0.4

0.2

1

1.2

(b)

Figure 3. The function k(t) and the output of edge1(t; 1000).

Upon looking at Figure 3(b), two points are immediately obvious. First of all, the
measured value of the jump, which should be exactly 1—is about 1.08. Second of all,
even though N is rather large, the points away from the jump are not particularly close
to zero.

The second point is the fundamental problem with this method. Because we divide
a finite number by ln(N ), and because ln(N ) does not increase quickly, we need a very
large value of N in order to force the points away from the jumps to zero.

The first problem, however, is curable. Consider the partial sums that correspond to
the harmonic series again. We substituted ln(N ) for the partial sum. It is well known
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that

lim
N→∞

((
N∑

k=1

1

k

)
− ln(N )

)
≡ γ = 0.577215 . . . .

Furthermore, it has been shown [13] that

1

2(N + 1)
<

(
N∑

k=1

1

k

)
− ln(N ) − γ <

1

2N
.

The constant γ is known as the Euler-Mascheroni constant. Rather than dividing the
sum by ln(N ), we divide it by ln(N ) + γ . This defines a second, improved, edge de-
tector, edge2(t; N ):

edge2(t; N ) ≡ 1

ln(N ) + γ

( −1∑
n=−N

icnei2πnt +
N∑

n=1

−icnei2πnt

)

= ln(N )

ln(N ) + γ
edge1(t; N ).

The improved edge detector returns Figure 4. Here the jump is indeed measured as one
unit, but the convergence away from the jumps is still very slow.
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Figure 4. The output of edge2(t; 1000).

5. A BETTER AND SIMPLER TECHNIQUE. If one’s goal is to determine the
locations of the discontinuities of a function, there is no reason to require that the
processing of the Fourier coefficients only minimally affect the coefficients. The prob-
lem with the previous method was that we were dividing a bounded function that we
wanted to force to zero by ln(N ). This caused the decrease towards zero away from
the jumps to be very slow. It would be better to divide the bounded part by something
larger, if possible.

Let us consider the following method of transforming the Fourier coefficients of our
data. If cn are the coefficients of the function, let the transformed coefficients sn be

sn = −incn.
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This transformation emphasizes the high frequency components of the original func-
tion (and gives, up to a constant factor, the Fourier coefficients of the derivative of the
original function). As jump discontinuities have a large high frequency component, it
is reasonable that such a transformation can help us locate jump discontinuities.

Let us consider the function that one recovers when one starts with the coefficients
that correspond to the shifted sawtooth wave, k(t − τ):

cn =
⎧⎨
⎩

ie−i2πnτ

2πn
n 	= 0,

0 n = 0.

We find that the partial sums using the transformed coefficients are

gN (t) =
N∑

n=−N

snei2πnt = 1

π

N∑
n=1

cos(2πn(t − τ)).

Considering the definition and the properties of the Dirichlet kernel (as developed in
Section 3.1), one finds that

gN (t) = 1

π

DN (ξ) − 1

2
= sin((2N + 1)πξ)

2π sin(πξ)
− 1

2π
.

We see that the partial sums are bounded as long as ξ is not an integer. When ξ is an
integer, the sums equals N/π .

Note that the transformation performed on the coefficients causes the series associ-
ated with the discontinuous part to diverge like N/π . The coefficients of the continu-
ous part, on the other hand, will not diverge as quickly. In fact, using arguments similar
to those of Section 2 it is easy to show that for a sufficiently smooth continuous part
the sum will be absolutely and uniformly convergent.

Therefore, we can produce an effective edge detector by considering

edge3(t; N ) ≡ π

N

N∑
n=−N

snei2πnt = − π

N

N∑
n=−N

incnei2πnt . (4)

The discontinuous piece contributes a component that converges to the height of the
jump at the location of the jump and tends to zero like 1/N away from the jump.
The continuous piece, if it is smooth enough, will decay as 1/N as well. This tech-
nique is superior to the preceding one (except insofar as it is invasive—it requires
that the l1 norm of the coefficients be greatly altered). In Figure 5(b) we see the
output of edge3(t; 100) for k(t) = t − 1/2, and in Figure 5(d) we see the output of
edge3(t; 1000) for the same input. For the sawtooth wave, the latter detector performs
just as one would hope, and even the former gives reasonable results.

In Figure 6 we consider the output of edge3(t; 1000) when the input has two jumps
(of heights 2 and −2) in close proximity to one another. We see that edge3(t; 1000)

detects all the jumps quite cleanly.
In Figure 7 we see the input to and the output of edge3(t; N ) when the input to the

detector is a large continuous waveform with small jumps (of height 1.5) embedded in
it. The output of edge3(t; 1000) is much cleaner than the output of edge3(t; 100). As
explained above, as N increases the influence of any smooth pieces decreases while
the influence of the jumps remains the same.
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(d) The output of edge3 (t; 1000)
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(b) The output of edge3 (t; 100)

Figure 5. The edges of k(t) as detected by edge3(t; N).
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(a) Two pulses, N = 1000
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(b) The output of edge3 (t; 1000)

Figure 6. The input to and output of edge3(t; 1000) when the data has two jumps (of heights 2 and −2) in
close proximity to one another.

In the case at hand, there are only a few nonzero Fourier coefficients in the Fourier
series expansion of the smooth part of the data of Figure 7. Thus, for all sufficiently
large N the sum in (4) is fixed. The number that multiplies the sum in (4), however,
decreases linearly with N . Thus, the influence of the smooth part decreases linearly
with increasing N while the influence of the jumps is unchanged by increasing N .
This explains more precisely why the output of edge3(t; 1000) is much cleaner than
that of edge3(t; 100).
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(c) A piecewise continuous waveform, N = 1000
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(d) The output of edge3 (t; 1000)

0 0.5 1 1.5 2
 –6

 –4

 –2

0

2

4

(a) A piecewise continuous waveform, N = 100

0 0.5 1 1.5 2
 –0.5

0

0.5

1

1.5

(b) The output of edge3 (t; 100)

Figure 7. The input to and output of edge3(t; N) when the data has a large continuous part.

6. CONCLUSIONS. We have developed three edge detectors that work by using
spectral data about a function to “concentrate” the function about its discontinuities.
The first two detectors are based on the Hilbert transform and are minimally invasive;
unfortunately they are not very effective. The third method is both invasive and effec-
tive. All three methods have been carefully analyzed using techniques that are elegant
and elementary.
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Mathematics Is . . .

“Mathematics is an activity governed by the same rules imposed upon the sym-
phonies of Beethoven, the paintings of DaVinci, and the poetry of Homer.”

Edward Kasner and James Newman, Mathematics and the Imagination,
Simon & Schuster, New York, 1940, p. 362.

“Mathematics is like music, freely exploring the possibilities of form.”
George Santayana, The Realm of Truth: Book Third of Realms of Being,

Charles Scribner’s Sons, New York, 1938, p. 2.

—Submitted by Carl C. Gaither, Killeen, TX
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