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We are concerned with the detection of edges—the location and amplitudes of
jump discontinuities of piecewise smooth data realized in terms of its discrete
grid values. We discuss the interplay between two approaches. One approach,
realized in the physical space, is based on local differences and is typically
limited to low-order of accuracy. An alternative approach developed in our
previous work [Gelb and Tadmor, Appl. Comp. Harmonic Anal., 7, 101–135
(1999)] and realized in the dual Fourier space, is based on concentration fac-
tors; with a proper choice of concentration factors one can achieve higher-
orders—in fact in [Gelb and Tadmor, SIAM J. Numer. Anal., 38, 1389–1408
(2001)] we constructed exponentially accurate edge detectors. Since the stencil
of these highly-accurate detectors is global, an outside threshold parameter is
required to avoid oscillations in the immediate neighborhood of discontinuities.
In this paper we introduce an adaptive edge detection procedure based on a
cross-breading between the local and global detectors. This is achieved by using
the minmod limiter to suppress spurious oscillations near discontinuities while
retaining high-order accuracy away from the jumps. The resulting method pro-
vides a family of robust, parameter-free edge-detectors for piecewise smooth
data. We conclude with a series of one- and two-dimensional simulations.
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1. INTRODUCTION AND MOTIVATIONS

The detection of edges in images is an increasingly important area of
research. Not only is the knowledge of the jump locations essential in high
resolution reconstruction methods, e.g., [10, 16, 17], but there are many sci-
entific applications in which the knowledge of the edges and their associated
jump values are useful in of themselves. One classical example arises in mag-
netic resonance imaging (MRI) segmentation which enables various features
of interest to be “separated” out for closer examination. Edge detection
determines the boundaries of each particular region and classifies the type
of region based on the jump value at the boundaries. Since the most rele-
vant information is often found near the borders of each segmented region,
it is imperative that edge detection is performed successfully. Furthermore,
due to the cost of MRI, resolution is somewhat limited. Hence features
in an image might be spread over as few as two pixel data points with the
edges located extremely close together. Finally, computational efficiency and
robustness are particularly relevant in the case of MRI since huge amounts
of data must be processed in short periods of time.

In our previous work, [7, 8, 9], we describe an edge detection pro-
cedure which recovers the location and amplitudes of edges from spec-
tral information provided either by the continuous spectral coefficients or
the discrete ones based on equally spaced grid values in physical space.
These detectors effectively resolve the jump function, [f ](x), so that edges
are detected by separation. Specifically, the detectors “concentrate” near
the O(1) scale of jump discontinuities which are effectively separated from
the smooth regions where [f ](x)∼ 0. This procedure offers a large family
of edge detectors, each detector is associated with its own particular con-
centration factors. The prescribed procedure is computationally efficient
and robust; there are, however, two major drawbacks. First, in order to
“pinpoint” the edges one has to introduce an outside threshold parame-
ter to quantify the “large” jumps, i.e., those with [f ](x)�O(∆x), imply-
ing that the edge detection method is inherently problem dependent [8].
Second, oscillations form in the neighborhood of the jump discontinuities.
The particular behavior of these oscillations depends on the specific con-
centration factors used. Therefore it can be difficult to distinguish what
constitutes a true jump discontinuity as opposed to an oscillating arti-
fact, particularly when several jump discontinuities are located in the same
neighborhood, i.e., when there is limited resolution for the problem.

In this paper we develop an adaptive, parameter-free edge detection
procedure based on the nonlinear limiting of low- and high-order concen-
tration factors. The rationale is as follows. We first observe that away from
the jumps, one should let high-order—possibly exponentially small factors
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dominate, by taking the smallest (in absolute) value between the low-order
local and the high-order global detectors. As we approach the jump dis-
continuity, however, the high-order methods produce spurious oscillations
which should be rejected. This could be achieved through a comparison
with essentially monotone profiles produced by low-order detectors. Thus,
when the two profiles disagree in sign—indicating spurious oscillations,
then our detector is set to zero. We end up with the so-called minmod

limiter, (4.1). By tieing in such a mixture of “local” and “global” meth-
ods in different regimes of the computation, the resulting minmod-based
adaptive detection provides a parameter-free edge detector, which in turn
enables more robust nonlinear enhancements.

The paper is organized as follows: In Sec. 2 we discuss local edge
detectors based on equally spaced grid points in physical space. In Sec. 3
we review the concentration method in dual space and describe low- and
high-order concentration factors. We also establish the consistency of both
the local and global approaches. We close this section discussing the non-
linear enhancement [8], where threshold parameters are used to enhance
the seperation between “small” scales of smoothness and “large” scales
of edges. Next, an adaptive, parameter-free edge detection procedure is
introduced in Sec. 4. Here we discuss the nonlinear minmod limiter, which
retains the high-order in smooth regions while “limiting” the high-order
spurious oscillations in the neighborhoods of the jumps by the less oscil-
latory low-order detectors. Finally, Sec. 5 contains numerical examples
of two dimensional applications of our new adaptive method. Although
we limit our analysis to periodic piecewise smooth functions on [−π,π),
we note that our method is easily adapted for the general intervals and
that in two dimensions, edge detection is performed one dimension at a
time. Overall, the minmod detector followed by the enhancement proce-
dure seem to provide an optimal startegy of edge detection.

2. LOCAL DETECTION OF EDGES BY (UNDIVIDED)
DIFFERENCES

Consider a periodic piecewise smooth function f (x) on [−π,π) for
which we wish to identify the points of discontinuity. The corresponding
jump function can be defined as [f ](x) := f (x+) − f (x−), where f (x±)

are the right and left side limits of the function at x. Suppose we are given
discrete grid point values of f (x), with fj :=f (xj ) on equidistant points
xj =−π + j∆x, j =0, . . . ,2N, where ∆x = 2π

2N+1 . A jump discontinuity at
x = ξ is identified by its enclosed grid cell, xj � ξ �xj+1, and is character-
ized by the asymptotic statement
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∆f
j+ 1

2
:=fj+1 −fj =






[f ](ξ)+O(∆x) for j = jξ : ξ ∈ [xj , xj+1]

O(∆x) for j �= jξ .

(2.1)

From (2.1), it is clear that the function f (x) experiences a jump discon-
tinuity at every grid point xj , and that the determination of what con-
stitutes a jump is based on an asymptotic statement which is inherently
a user dependent. It is reasonable, for instance, to assign jump values to
points corresponding to those x

j+ 1
2
’s such that |∆f

j+ 1
2
|�O(∆x).Therefore

the local differences (2.1) can be viewed as an edge detection method of
first order.

To demonstrate the application of (2.1), consider the following
examples

fa(x) :=






(
x+π

π

)5

, x <0,

(
x−π

π

)5

, x >0.

; fb(x) :=






sin (x+1)7 x<−π

2
,

( x

π

)3−sin
(

9x

2

)

+1, −π

2
<x<

π

2
,

sin (x−1)7, x>
π

2
.

(2.2)

Figure 1 displays these piecewise smooth functions on equally spaced grid
points.
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Fig. 1. (a) fa(x) and (b) fb(x) on N =80 equally spaced grid points.
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The corresponding jump functions are

[fa ](x) :=





−2, x =0,

0 x �=0.

; [fb](x) :=






.582, x =−π

2
,

−1.418, x = π

2
,

0 x �=±π

2
.

(2.3)

Figures 2 and 3 demonstrate the convergence of the local first order differ-
ence method (2.1) to the jump function [f ](x).
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Fig. 2. Application of (2.1) for N =80 to approximate (a) [fa ](x) and (b) [fb](x).
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Fig. 3. The logarithmic error of the difference formula (2.1) for (a) [fa ](x) and (b) [fb](x),
with N =40,80, and 160.
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While the simple construction of differences (2.1) might suffice for
determining the jump discontinuities for functions like [fa ](x) and [fb](x),
it is not difficult to imagine that distinguishing a jump discontinuity
from a smooth region might become more complicated for functions with
higher variation or smaller scales. Therefore we seek an edge detection
method that yields higher order convergence to zero away from the sin-
gular support of the function.

Following (2.1), we consider higher order local difference formulas of
order 2p+1 to obtain faster convergence in the smooth regions of f . For
example, the first few higher order difference formulas yield

∆1f
j+ 1

2
:=fj+1 −fj ,

∆3f
j+ 1

2
:=−fj+2 +3fj+1 −3fj +fj−1, (2.4)

∆5f
j+ 1

2
:=fj+3 −5fj+2 +10fj+1 −10fj +5fj−1 −fj−2,

and in general we have

∆2p+1f
j+ 1

2
=

p∑

l=−p

(−1)l+1
(

2p +1
p −|l|

)

fj+1+l . (2.5)

The coefficients for the first few ∆2p+1f
j+ 1

2
are displayed in Table I.

Away from the neighborhoods of discontinuities of f (x), the sum (2.5) is
of order O(∆x)2p+1. We now wish to determine its behavior in the neigh-
borhoods of the jump discontinuities, and then use the results to develop
local edge detectors of odd orders (we omit the even order difference for-
mulas which require non-symmetric stencils around x

j+ 1
2
).

To motivate our derivation of a local edge detection formula, let us
examine the application of ∆5f

j+ 1
2
; the results of examples (2.2) are dis-

played in Fig. 4.

Table I. Short Table of Coefficients for ∆2p+1f
j+ 1

2

2p +1\j + l j +5 j +4 j +3 j +2 j +1 j j −1 j −2 j −3 j −4

1 1 −1
3 −1 3 −3 1
5 1 −5 10 −10 5 −1
7 −1 7 −21 35 −35 21 −7 1
9 1 −9 36 −84 126 −126 84 −36 9 −1
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Fig. 4. Application of ∆5f
j+ 1

2
using N =80 points to (a) [fa ](x) and (b) [fb](x).

A simple computation based on (2.5) yields, in agreement with Fig. 4,

∆5f
j+ 1

2
∼






6[f ](ξ), if ξ ∈ [xj , xj+1],

−4[f ](ξ), if ξ ∈ [xj−1, xj ]∪ [xj+1, xj+2],

[f ](ξ), if ξ ∈ [xj−2, xj−1]∪ [xj+2, xj+3],

O(∆x)5, otherwise.

(2.6)

It is evident from (2.6) that a local edge detection procedure can be
developed from the general difference formula (2.5) that can identify both
the location and the magnitudes of the jump discontinuities of piecewise
smooth f (x). Specifically, the (undivided) differences are O(∆x)2p+1 in
smooth regions, outside the immediate neighborhoods of a jumps, whereas
within the symmetric 2p-cells neighborhood of such jumps located at, say,
x = ξ , we have

∆2p+1f
j+l+ 1

2
=






(−1)lql,p[f ](ξ)+O(∆x), if |l|�p,

O(∆x)2p+1, if |l|>p,

(2.7)

where [12]

ql,p = (−1)l
p−|l|∑

k=0

(
2p +1

k

)

(−1)k =
(

2p

p +|l|
)

. (2.8)

Hence we consider the local edge detector

T
2p+1
N [f ](x)= 1

q0,p

∆2p+1f
j+ 1

2
, q0,p =

(
2p

p

)

. (2.9)
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Fig. 5. Application of T 5
80[f ](xj ) to approximate (a) [fa ](x) and (b) [fb](x).

Letting N →∞, we have

T
2p+1
N [f ](x)→






(−1)l
ql,p

q0,p

[f ](ξ), if xj−p � ξ �xj+1+p, |l|�p,

0, otherwise,

(2.10)

implying that as N →∞, T
2p+1
N [f ](x) “concentrates” at the jump disconti-

nuities of f (x). Here the index l = lξ traces the cell enclosing the jump so
that |ξ −xj±l −∆x/2|�∆x/2. We refer to (2.10) as the local concentration
property and we note the oscillatory behavior of T

2p+1
N [f ](x) is increasing

with growing p’s.
Figures 5 and 6 display the results for applying the fifth order local

edge detection method (2.9) to determine the jump functions (2.3). It is
clear that the neighborhood of each jump discontinuity consists of two
cells on each side with

T 5
N [f ](x)=






[f ](ξ)+O(∆x), if ξ ∈ [xj , xj+1],
− 2

3 [f ](ξ)+O(∆x), if ξ ∈ [xj−1, xj ]∪ [xj+1, xj+2],
1
6 [f ](ξ)+O(∆x), if ξ ∈ [xj−2, xj−1]∪ [xj+2, xj+3],
O(∆x)5, otherwise.

Figure 7 compares the logarithmic errors of the local edge detector
(2.9) for various orders p. We see that as a direct consequence of (2.10),
higher order differencing lead to faster convergence away from the jump
discontinuities, yet near the discontinuities, first order differencing is more
advantageous, in the sense that no spurious oscillations are produced.
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Fig. 6. The logarithmic error of T 5
N [f ](x) for (a) [fa ](x) and (b) [fb](x), with N = 40,80,

and 160.

-3 -2 -1 0 1 2 3
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

x

log|[fa](x)-T80
2p+1[f](x)|

-3 -2 -1 0 1 2 3

-7

-6

-5

-4

-3

-2

-1

0

x

log|[fb](x)-T80
2p+1[f](x)|

(a) (b)

Fig. 7. The logarithmic error of T
2p+1

80 [f ](xj ) using p = 0, . . . ,3 for (a) [fa ](x) and (b)
[fb](x).

3. EDGE DETECTION IN THE DUAL SPACE: THE GLOBAL
APPROACH

In [7, 8, 9] we introduced a general family of edge detectors, based
on the so-called concentration factors which are implemented in the dual
Fourier space. The behavior of the edge detection procedure was linked to
the type of concentration factor employed. The detectors, in the generic
case, depend on the Fourier interpolant. Hence they lead to global edge
detectors in the sense that their stencil involve all the discrete data. At
the same time, we show below that the local edge detectors (2.9) can be
viewed as special cases corresponding to specific trigonometric concentra-
tion factors. Let us first recall how the global concentration edge detection
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method is formulated (see [7] and [9]). Assume we are given discrete grid
point data for a periodic piecewise smooth function f (x) at xj = 2πj

2N+1 ,
j =0, . . . ,2N . The discrete concentration detector is defined as

T̃ τ
N [f ](x) :=πi

N∑

k=−N

sgn(k)τ
( |k|∆x

π

)
f̃ke

ikx, (3.1)

where f̃k are the usual pseudo-spectral coefficients,

f̃k = 1
2N +1

2N∑

j=0

f (xj )e
−ikxj , (3.2)

and τ(sk) are the discrete concentration factors,

τ(sk)=σ(sk)sinc
(πsk

2

)
, sk := |k|∆x

π
, sinc(s) := sin(s)/s. (3.3)

Here σ(sk) are admissible concentration factors at our disposal; in [8], we
have shown that the desired concentration property holds provided the fol-
lowing admissibility requirement is fulfilled.

Corollary 3.1. Let σ(·)∈C2[0,1] be admissible concentration factor so
that

∫ 1
0

σ(s)
s

ds =1. Then concentration property

T̃ τ
N [f ](x)→






[f ](ξ), if x = ξ,

0 otherwise,
as N →∞,

holds for the edge detector (3.1) associated with the discrete concentration
factors τ(sk)=σ(sk)sinc(

πsk
2 ).

To gain a better insight on the behavior of such detectors, we rewrite
(3.1) as

T̃ τ
N [f ](x)=−∆x

2N∑

j=0

f (xj )

N∑

k=1

σ
(k∆x

π

) sin(k∆x/2)

k∆x/2
sin k(x −xj ), (3.4)

and summation by parts then yields

T̃ τ
N [f ](x)=∆x

N∑

j=0

(f (xj+1)−f (xj ))

N∑

k=1

σ(k∆x/π)

k∆x
cos k(x−xj+1/2). (3.5)

The summation on the right is dominated by the discontinuous cell(s)
where |f (xj+1) − f (xj )| ∼ O(1) while the contributions of the “smooth”
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cells are negligible due to cancelations of oscillations. The precise state-
ment of convergence to the jump function reads [9, Sec. 3]:

T̃ τ
N [f ](x)= [f ](ξ)

N∑

k=1

σ(k∆x/π)

k
cos k(x − ξ

j+ 1
2
)+O(∆x| log ∆x|). (3.6)

Here ξ
j+ 1

2
:= x

jξ + 1
2

is the midpoint identifying one discontinuous cell.
Observe that such edge detectors identify all the jumps by concentrating
around the support of the jump function at finitely many cells.

3.1. Polynomial Concentration Factors: Global Edge Detectors

Several examples of admissible concentration factors were discussed
in [7, 8]. We begin our discussion with the polynomial concentration fac-
tors,

σ2p+1(s) := (2p +1)s2p+1. (3.7)

The corresponding τ2p+1 factors are τ2p+1(s) = σ2p+1(s)sinc(πs/2), and
(3.5) yields

T̃
τ2p+1
N [f ](x) = ∆x

2N∑

j=0

(f (xj+1)−f (xj ))

N∑

k=1

(2p +1)
(k∆x

π

)2p+1

×
cos k

(
x −x

j+ 1
2

)

k∆x
. (3.8)

For the first order method, p =0 in (3.8) reads

T̃
τ1
N [f ](x)=∆x

2N∑

j=0

(f (xj+1)−f (xj ))DN(x −x
j+ 1

2
), (3.9)

where DN(y) is the usual Dirichlet sum, DN(y)= (1 + 2
∑N

k=1 cos ky)/2π .
Hence, (3.9) tells us that the discrete concentration kernel associated
with the first order polynomial factor (3.7) amounts to interpolation of
the first-order local differences, f (xj+1) − f (xj ), at the intermediate grid
points, x

j+ 1
2
. In a similar fashion, concentration kernels associated with
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the higher order polynomial factors coincide with higher order derivatives
of this interpolant. In fact, an equivalent formulation for (3.8) reads

T̃
τ2p+1
N [f ](x) = (−1)p

( 2
2N +1

)2p
N∑

k=−N

(2p +1)(ik)2pg̃ke
ikx

= (−1)p(2p +1)
( 2

2N +1

)2p d2p

dx2p
T̃

τ1
N [f ](x), (3.10)

where g̃k = 1
2N+1

∑N
j=0(f (xj+1) − f (xj ))e

−ikx
j+ 1

2 are the discrete Fourier
coefficients of the interpolant of the differences we met above. Figures 8
and 9 display the results for applying (3.1) with a fifth order polynomial
concentration factor (3.7).
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Fig. 8. Application of T̃
τ5
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We note that resulting edge detectors using the polynomial concentra-
tion factors are global in the sense that they depend on the global inter-
polant of f , for T̃

τ2p+1
N [f ](x) = (

T̃
τ1
N [f ])(2p)(x). The corresponding stencil

involves all the grid values on the 2π interval; the only exception occurs
when the first-order polynomial factors are reduced to local differenc-
ing on the original gridpoints. It is interesting to compare these global
results to the local fifth order edge detection method: the global nature of
(3.1) is clearly observed in the oscillatory behavior of the error in Fig. 8,
compared with the local fifth order errors displayed in Figs. 5 and 6.

Figure 10 provides an instructive comparison of the polynomial con-
centration method (3.8) based on the logarithmic errors of various orders.
As expected, the first order polynomial factors, T̃

τ1
N [f ], yield the best

results in the neighborhood of the discontinuities, due to the local nature
of the method, at least when sampled on the original gridpoints. The
convergence away from the discontinuities, however, is not necessarily
improved for higher order polynomial concentration factors. Figure 10(a)
shows that the first-order factors perform better than the higher-order
ones, in particular as x approaches the boundaries, ±π : this is due to the
global dependence of the higher-order polynomial detectors, T̃

τ2p+1
N [f ] of

degree 2p +1>1, whereas the first-order method amounts to local differ-
encing of the very rapidly decreasing values of fa(x) as x approaches
±π . On the other hand, the results in Fig. 10(b) show how the high-
order factors outperform the first-order local factors which “suffer” from
the large variation between the two jumps at ±π/2: in this case, it is the
high-order accuracy of the global methods which dominates the first-order
local ones. Consequently, both lower- and higher-order factors may be
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Fig. 10. The logarithmic error of T̃
τ2p+1

80 [f ](x) with polynomial factor (3.7), p = 0,1,2,3,
for (a) [fa ](x) and (b) [fb](x).
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useful for different regimes of the computation. We will exploit this mix-
ture of low- and high-order methods, discussing our minmod-based adap-
tive detection in Sec. 4 below.

3.2. Trigonometric Factors: Back to Local Differencing

We now turn to our second family of trigonometric concentration
factors. As shown in (3.10), the polynomial concentration factors (3.7)
lead to higher order differentiation of the interpolant of the differences of
∆[f ](x

j+ 1
2
). The closely related trigonometric factors we consider below

will amount to higher order differences, thus realizing in the dual Fourier
space the (undivided) differences we discussed earlier in Sec. 2. Thus, using
the trigonometric factors discussed below we recover the local edge detec-
tors in their dual space formulations. Indeed, we will arrive at an alter-
native approach for determining the scaling factor q0,p in (2.9) such that
(2.10) is satisfied.

To demonstrate our point, we consider third-order differences, ∆3f
j+ 1

2
.

We use the pseudo-spectral Fourier representation

f (xj )=
N∑

k=−N

f̃ke
ikxj ,

where f̃k are the pseudo-spectral coefficients (3.2). After summation by
parts, the third-order difference formula (2.5) reads

∆3f
j+ 1

2
=

N∑

k=−N

1
2N +1

2N∑

l=0

f (xl)e
−ikxl

(
− eikxj+2+3eikxj+1−3eikxj +eikxj−1

)

= 1
2N +1

2N∑

l=0

f (xl)

N∑

k=−N

eik(xj −xl)
(

− eik2∆x +3eik∆x −3+ e−ik∆x
)

= − 24

2N +1

2N∑

l=0

f (xl)

N∑

k=1

sin3 k∆x

2
sin k(x

j+ 1
2
−x

l+ 1
2
). (3.11)

Notice that the jump discontinuity is associated with a specific grid point
value xj , whereas in the similar global formula (3.4), no grid points are
assigned.
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The trigonometric identities

2 sin
k∆x

2
cos kx

l+ 1
2
= sin kxl+1 − sin kxl,

−2 sin
k∆x

2
sin kx

l+ 1
2
= cos kxl+1 − cos kxl,

yield

∆3f (x
j+ 1

2
)= 23

2N +1

2N∑

l=0

(
f (xl+1)−f (xl)

) N∑

k=1

sin2 k∆x

2
cos k(x

j+ 1
2
−x

l+ 1
2
).

(3.12)

Therefore, the third order (p = 1) local edge detector method can be for-
mulated in the dual space as

∆3f (x
j+ 1

2
)=2T̃

τ3
N [f ](x

j+ 1
2
), (3.13)

where according to (3.5), T̃
τ3
N is associated with the concentration factors

σ3(s)= c34s sin2(πs/2) and c3 = 1
2 in agreement with 1/q0,1 in (2.8).Thus,

T̃
τ3
N [f ](x

j+ 1
2
) are nothing but the local differences T 3[f ](x

j+ 1
2
).

At this point it is instructive to show the consistency of the local and
global approaches for derivation of the same edge detectors methods by
computing the scaling factors cp with the q0,p’s derived in (2.9) from the
global perspective. Comparing (3.13) and (3.5), we can determine the con-
centration factor σ3(k∆x/π) as

σ3(s)= c322s sin2
(πs

2

)
. (3.14)

The admissibility condition in Corollary 3.1 requires the concentration
factors to be normalized so that (3.4) holds,

∫ 1
0 σ3(s)ds/s = 1 which dic-

tates the value of c3 as

c3

∫ 1

0
22 sin2

(πs

2

)
ds =1, (3.15)

yielding c3 = 1
2 , in agreement with cp = 1

q0,p
for p = 1 in (2.8). A similar

computation for higher order factors leads to

T
τ2p+1
N [f ](x

j+ 1
2
) = cp

22p+1

N +1

2N∑

l=0

(f (x
l+ 1

2
)−f (xl))

×
N∑

k=1

sin2p

(
k∆x

2

)

cos k(x
j+ 1

2
−x

l+ 1
2
). (3.16)
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Thus, the normalization

cp

∫ 1

0
22p sin2p

(πs

2

)
ds =1, (3.17)

yields

cp =
√

π

22p

Γ (2p +1)

Γ
(

2p+1
2

) = 1
(

2p

p

) = 1
q0,p

, (3.18)

in agreement with the derivation of the local edge detectors method (2.9).
The general (2p + 1)-order differencing then corresponds to the trigono-
metric factors

σ2p+1(s)= cp22ps sin2p
(πs

2

)
. (3.19)

As exhibited in Fig. 11, the trigonometric edge detectors, (3.19),
recover the regions of smoothness of a piecewise smooth function more
accurately than the polynomial factors (3.7).

Figure 12 compares the analogous concentration factors (3.7) and
(3.19) for the polynomial and trigonometric edge detectors. As is evident
from the comparison, both methods have increasing concentration factors
on [0,1]. Since both factors reduce the impact of the lower order modes
while sharpening the contribution of the higher order modes, oscillations
are inherent in the recovery of the jump function. The steeper slope of the
concentration factor in the polynomial case results in more prevalent oscil-
lations, suggesting that the application of a filter with polynomial edge
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Fig. 11. The logarithmic error of the fifth order (local) trigonometric versus the (global)
polynomial factors T̃

τ5
80 [f ](xj ) applied to (a) [fa ](x) and (b) [fb](x).
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Fig. 12. The concentration factors in spectral space using N = 80 for (a) the polynomial
factors (3.7) and (b) the trigonometric factors (3.19).

detection method might effectively reduce the oscillations while still yield-
ing high order convergence to zero away from the discontinuities.

For example, a filtered polynomial concentration factor

σ
exp

2p+1(s)=Const ·σ2p+1(s)e
−αsκ

, (3.20)

where Const is determined by the property (3.1), can help reduce oscil-
lations and achieve higher accuracy away from the jump discontinuities.
Figure 13 examines the application of (3.20) in both physical and spectral
space. Here we choose filter parameters α =32 and κ =8.
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Fig. 13. (a) Error graph for [fa ](x) applying the concentration method with fifth order
local, polynomial and filtered polynomial concentration factors. (b) Comparison of the fil-
tered polynomial concentration factors (3.20) in spectral space shown for k =0, . . . ,40.
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3.3. Exponential Concentration Factors

We close our list of examples for dual space detectors with a third
family of concentration factors introduced in [8], where we introduced the
exponential concentration factors,

σexp(ξ)=Const · e 1
γ ξ(ξ−1) , Const =

∫ 1−ε

ε

exp

( −1
γ ξ(ξ −1)

)

dξ. (3.21)

They yield exponential convergence to zero away from the discontinuities
with reduced oscillations everywhere except in the neighborhood of the jump
discontinuities. We conclude by noting that the exponential concentration
factor can be seen as the limiting case of high order p for the polynomial
factors, with additional filtering to reduce the oscillations. It is then more
powerful than the local methods in terms of convergence away from the dis-
continuities as well as localizing the neighborhood around the discontinuity

Figure 14(a) compares the different concentration factors, (3.7), (3.19)
and (3.21). The error graph of example (2.2(a)) for the concentration
method using the exponential factor is exhibited in Fig. 14(b).

It is apparent from the discussion and figures above that the exponen-
tial factor both reduces oscillations and increases convergence away from
a small neighborhood of the jump discontinuity. Both the higher order
polynomial factors (3.7) in the global concentration method (3.1) and the
local edge detection method (2.9) improve convergence rates away from
the discontinuities, but decrease the accuracy in the neighborhoods of the
jump. As is evident in Figs. 7 and 10, the neighborhoods surrounding
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Fig. 14. (a) Comparison of the exponential (γ =5), polynomial, and trigonometric concen-
tration factors in spectral space shown for k =0, . . . ,40. (b) Error graph for [fa ](x) applying
the concentration method with (3.21), γ =5 and N =40,80 and 160.
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the jump discontinuities tend to “spread out” as the order of the con-
centration factor (3.7) or (3.19) increases. The results within the neigh-
borhood are slightly worse for the local edge detection method, as the
spreading is dictated by (2.10) for the neighborhood around the jump dis-
continuity. Conversely, the neighborhoods around the jump discontinuities
are not affected by the application of the concentration method using the
first order polynomial concentration factor (3.8), or equivalently the first
order local edge detection method (2.9). In this case, the convergence rate
in the neighborhood of the discontinuities is O(∆x), but steep gradients
elsewhere might be falsely identified as jump locations, since the conver-
gence outside the neighborhood is also only O(∆x). If the discontinuities
are located “far enough” apart, meaning that the jump function can be
completely resolved, then the exponential concentration factor is perhaps
the most powerful of the methods, since T̃

exp
N [f ](x) = T̃N [f ](x) → 0 rap-

idly away from the discontinuities, and the oscillations appear only within
a small neighborhood of the discontinuities. However, as will be seen in
Sec. 4, interfering oscillations from “close” discontinuities can make it
difficult to accurately recover the jump function.

3.4. Enhanced Edge Detection

While it is evident that the (local and global) edge detection meth-
ods converge to the singular support of a piecewise smooth function f (x),
the oscillations in the neighborhoods of the discontinuities and the var-
ious orders of convergence away from the discontinuities make it neces-
sary to further enhance the results and “pinpoint” the jump discontinuity
locations exactly. This has been achieved in [8] by separating the vanishing
scales in the smooth regions from the O(1) scales in the neighborhoods of
the jump discontinuities. Specifically, if {ξj }Mj=1 denote the locations of the
jump discontinuities of f (x), then for admissible concentration factors in
(3.1), the separation of scales is enhanced by computing, for some q >1 at
our disposal,

Eq,N :=Nq/2(T̃ τ
N [f ](x))q ∼






Nq/2([f ](ξj ))
q, if x = ξj ,

O(N−q/2), if x �= ξj ,

leading to the enhanced concentration method,

Eτ
N [f ](x))=






T̃ τ
N [f ](x), if |Eq,N |>Jcrit ,

0, if |Eq,N |<Jcrit .

(3.22)
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Fig. 15. Application of (3.22) (Ẽ
τ5
80[f ](x)) to approximate (a) [fa ](x) and (b) [fb](x).

Here Jcrit is an O(1) global threshold parameter signifying the minimal
amplitude below which jump discontinuities are neglected; after all, almost
all grid values experience “jumps” and the question is their relative size
relative with respect to the small scale of 1/N . It is important to note
that since (2.9) and (3.1) actually detect the neighborhoods of the jump
discontinuities, O(ε(N)), rather than the discontinuities themselves, we use
the nonlinear enhancement (3.22) in a window of O(ε(N)) to pinpoint the
exact locations. Specifically, we determine that the exact discontinuities are
where the largest amplitude |Eq,N | > Jcrit occur in each small neighbor-
hood ε(N) of the jump discontinuities. Figure 15 show the powerful result
of (3.22) in pinpointing the jump discontinuities.

This enhancement procedure requires an outside threshold parame-
ter, reflecting the scaling of the function. This becomes an impediment
for detecting edges in both small scale problems as well as problems with
steep gradients and high variation. Additionally, pre-determination of the
neighborhood value ε(N) is also necessary for (3.22), leading to the mis-
identification of jump discontinuities when they are located “too” close
together. Next we address how to avoid the dependence on the outside
threshold parameter.

4. minmod EDGE DETECTION

As is evident from the results in Sec. 2, both the global detectors
based on high degree polynomials and, in particular, exponential fac-
tors, and local edge detectors based on low degree differencing, have the
underlying feature that if the convergence rate is fast away from the neigh-
borhoods of the discontinuities, then there are more oscillations in the
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neighborhood of the jump discontinuities. Hence it can be difficult to
determine the true jump location. This is further complicated when jump
discontinuities are located near to each other, since the oscillations occur-
ring in the neighborhoods of each discontinuity interfere with the true
jump discontinuities. As noted previously, the first order polynomial edge
detection (3.8), or equivalently the first order local edge detection (2.9),
does not yield oscillations in the neighborhoods of the discontinuities,
but has slow convergence away from the discontinuities. On the other
hand, the exponential concentration factor (3.21) produces rapid conver-
gence to zero away from the neighborhoods of discontinuities, but suffers
from severe oscillations within the neighborhoods. The loss of monotonic-
ity with the increasing order is, of course, the canonical situation in many
numerical algorithms. Here we introduce an adaptive edge detection pro-
cedure that realizes the strengths of both methods. We first observe that
away from the jumps, one should let the exponentially small factors dom-
inate by taking the smallest (in absolute) value between the low-order and
high-order detectors. As we approach the jump discontinuity, the high-
order methods produce spurious oscillations which should be rejected by
the low-order detectors: hence, when two values disagree in sign, indicating
spurious oscillations, the detectors should be set to zero. We end up with
the so-called minmod limiter which plays a central role in non-oscillatory
reconstruction of high-resolution methods for nonlinear conservation laws,
(e.g., [11, 15] and the references therein),

T̃ minmod
N [f ](x)=minmod(T̃

exp
N [f ](x), T̃

τ2p+1
N [f ](x)), p =1,2, . . . , (4.1)

where the k-tuple minmod operation takes the form

minmod{a1, a2, . . . , ak} :=





s ·min
(|a1|, |a2|, . . . , |ak|

)
if sgn(a1)= . . .= sgn(ak) := s

0, otherwise.

Here τexp is the discrete analog of the exponential concentration fac-
tors (3.21) and τ2p+1 represents the polynomial or trigonometric factors of
order (2p+1). Although the adaptive minmod algorithm is effective for any
order polynomial, typically first order would be preferable. This adaptive
algorithm can be extended to include other concentration factors, e.g.,

T̃ mm
N [f ](x)=minmod(T̃

exp
N [f ](x), T̃

poly
N [f ](x), T̃

trig
N [f ](x)), (4.2)

for any odd order of polynomial and trigonometric factors. For simplic-
ity, we use the minmod algorithm as described in (4.1) with the first and
third order polynomial factors (3.7). An application of this algorithm to
non-negative band pass filters can be found in [3, Sec. 4].
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Fig. 16. (a) The minmod algorithm (4.1) applied to example 2.2(b) and (b) with the nonlin-
ear enhancement using 80 Fourier modes.
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Fig. 17. (a) An example of a piecewise smooth function on N =80 points and (b) the jump
function.

Figure 16 illustrates the improvement in using (4.1). While some resid-
ual oscillations remain in Fig. 16(a), it is clear that if the minmod is fol-
lowed by the nonlinear enhancement procedure (3.22) the outside scaling
parameter becomes less significant in determining the jump locations, as
shown in Fig. 16(b).

Furthermore, the minmod algorithm works even when the jump dis-
continuities are located close together. As an example, consider the jump
function and associated jump function exhibited in Fig. 17.

Figure 18 compares the results of application of the concentration
method (3.1) with various concentration factors and the minmod algorithm.
It is evident that the polynomial factor τ2p+1 does not converge to zero fast
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Fig. 18. Edge detection using first order τpol (dotted), τexp (dashed) and the minmod algo-
rithm (solid) with (a) 80 and (b) 160 points.

enough away from the discontinuities, hence the steep gradients of the func-
tion might be misinterpreted as jump discontinuities. On the other hand,
the concentration method using τexp causes interfering oscillations in the
neighborhoods of the discontinuities, making it difficult to determine where
the true jumps are. The minmod algorithm (4.1) ensures the convergence to
the jump function without interference of the oscillations.

At this point, the application of the enhancement procedure introduced
in [8] works directly to pinpoint the jump discontinuities, without having to
determine a neighborhood parameter ε(N). Furthermore, one can apply the
minimization algorithm discussed in [1] and [2] to reduce the O(∆x) error
in the approximation of the amplitude of the jump discontinuity.

5. NUMERICAL APPLICATIONS

In this section we describe some two dimensional applications using
the minmod edge detection algorithm (4.1). In each case, the adaptive edge
detection method is performed one dimension at a time and is followed by
the enhancement procedure (3.22).

One important application of edge detection is in the segmentation
process associated with MRI. Specifically, analyst are interested in study
particular regions of the brain, and edge detection can be effectively
employed to extract or “segment” out a region of interest. The classical
example of the Shepp-Logan phantom image, displayed in Fig. 19, is a
typical initial test to determine efficacy of imaging techniques [14].

Figure 20 exhibits the application of the concentration method (3.1)
applied using the concentration factors (3.7) and (3.21) for a one dimen-
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Fig. 19. Contour plot of the Shepp-Logan brain image.
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Fig. 20. The concentration method (3.1) applied to the Shepp-Logan phantom on
[128×128] points using (a) the polynomial concentration factor (3.7) and (b) the expo-
nential concentration factor (3.21) at the cross section (x,0).

sional cross section of the image. What is evident in Fig. 20 is that the
different concentration factors yield different convergence patterns in the
smooth regions of the image.

As exhibited in Figs. 21 and 22, application of the minmod algorithm
(4.1), further enhanced by (3.22), enables complete segmentation of the
images.

Let us now consider an example of a real image, a transversal slice of
a human brain provided by the Gabrieli Lab [4], exhibited in Fig. 23.

Since the data is real, random noise is prevalent throughout the image.
An outside scaling parameter is introduced to help distinguish noise from
true image data in the Gabrieli brain image figures. A discussion of how
the effects of noise is reduced on the concentration method (3.1) can be
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Fig. 21. The minmod procedure (4.1) applied to the Shepp-Logan brain phantom (a) at the
cross section (x,0) and (b) with nonlinear enhancement (3.22).
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Fig. 22. The nonlinear enhancement procedure (3.22) applied to the Shepp-Logan brain
phantom image.
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Fig. 23. Contour plot of the Gabrieli brain image.
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Fig. 24. The concentration method (3.1) applied to the Gabrieli image using (a) the first
order polynomial concentration factor (3.7) and (b) the exponential concentration factor
(3.21) at the cross section (x,0).
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Fig. 25. Edge detection of the Gabrieli image by applying the (a) minmod algorithm (4.1)
(b) minmod and nonlinear enhancement (3.22) procedures at the cross section (x,0).

found in [2]. Figure 24 displays the concentration method (3.1) applied to
the Gabrieli image on a one dimensional cross section using the first order
polynomial (3.7) and exponential (3.21) concentration factors. As exhibited
in Fig. 25(a), the minmod algorithm improves the results by “adapting” the
concentration method. Here, we first mplemented a Gaussian smoothing for
noise reduction. Then, the nonlinear enhancement procedure (3.22), shown
in Figs. 25(b) and 26(a), completes the clarification of the distinct structures
of the Gabrieli image.

Finally, we see in Fig. 26(b) that the minmod (4.1) and nonlinear
enhancement procedures (3.22) enables high resolution reconstruction of
the Gabrieli lab MRI via the Gegenbauer reconstruction procedure [10].
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Fig. 26. Contour plot of the (a) edge detection of the Gabrieli image by applying the
minmod and nonlinear enhancement procedures one dimension at a time. (b) Gegenbauer
reconstruction after the edges have been located.

6. CONCLUSION

In this paper we provide a complete description of edge detection
from both the physical and spectral data view points. As discussed in
Sec. 3, the local and global edge detection method are consistent in their
approaches. The minmod procedure (4.1) provides a computationally effi-
cient and robust method to produce edges of images without the need of
any outside scaling parameters. Thus, the nonlinear enhancement proce-
dure (3.22) works efficiently to “pinpoint” the edges of an image. The
numerical results given throughout this paper and specifically in Sec. 5
demonstrate the efficacy of our method, particularly in its ability to enable
high resolution reconstruction and the segmentation of images. Overall,
the minmod detector followed by the enhancement procedure seem to pro-
vide an optimal startegy of edge detection.

ACKNOWLEDGMENTS

Research was supported in part by NSF DMS #01-07428 (AG and
ET), by NSF EAR #02-22327, CNS #03-24957 and NIH EB #02533-01
(AG) and by ONR #N00014-91-J-1076 and NSF #DMS04-07704 (ET).
Part of the research was carried out while A. Gelb was visiting the Cen-
ter for Scientific Computation and Mathematical Modeling (CSCAMM)
at the University of Maryland, College Park.

REFERENCES

1. Archibald, R., and Gelb, A. (2002). Reducing the effects of noise in image reconstruc-
tion. J. Sci. Comp. 17(1–4), 167–180.



306 Gelb and Tadmor

2. Archibald, R., and Gelb, A. (2002). A method to reduce the Gibbs ringing artifact in
MRI scans while keeping tissue boundary Integrity. IEEE T. Med. Imaging, 21(4).

3. Bauer, R. (1995). Band Filters for Determining Shock Locations, Ph.D. thesis, Applied
mathematics, Brown University.

4. Brainiac, Scanning and Analysis Resources, Gabrieli Lab., Stanford University,
http://gablab.stanford.edu/brainiac.

5. Eckhoff, K. S. (1995). Accurate reconstructions of functions of finite regularity from
truncated series expansions. Math. Comp. 64, 671–690.

6. Fornberg, B. (1996). A Practical Guide to Pseudospectral Methods, Cambridge University
Press, Cambridge.

7. Gelb, A., and Tadmor, E. (1999). Detection of edges in spectral data. Appl. Comp. Har-
monic Anal. 7, 101–135.

8. Gelb, A., and Tadmor, E. (2001). Detection of edges in spectral data II. Nonlinear
Enhancement, SIAM J. Numer. Anal. 38, 1389–1408.

9. Gelb, A., and Tadmor, E. (2002). Spectral reconstruction of piecewise smooth functions
from their discrete data. Math. Model. Numer. Anal. 36(2), 155–175.

10. Gottlieb, D., and Shu, C.-W. (1997). On the Gibbs phenomenon and its resolution,
SIAM Rev.

11. Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49, 357–393.

12. Jeffrey, A. (1995). Handbook of Mathematical Formulas and Integrals, Academic Press.
13. Kvernadze, G. (1998). Determination of the jump of a bounded function by its Fourier

series. J. Approx. Theory 92, 167–190.
14. Liang, Z., and Lauterbur, P. (2000). Principles of Magnetic Resonance Imaging, a Signal

Processing Perspective, IEEE Press.
15. Tadmor, E. (1998). Approximate solutions of nonlinear conservation laws, Advanced

Numerical Approximation of Nonlinear Hyperbolic Equations, (A. Quarteroni ed.) Lecture
notes in Mathematics, Vol. 1697, 1997 C.I.M.E. course in Cetraro, Italy, Springer Verlag,
pp. 1–149.

16. Tadmor, E., and Tanner, J. (2002). Adaptive mollifiers – high resolution recovery of
piecewise smooth data from its spectral information. Foundations Comput. Math. 2(2),
155–189.

17. Tadmor, E., and Tanner, J. Adaptive filters for piecewise smooth spectral data, IMA J.
Numer. Anal. To appear.


