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Abstract: We study the velocity gradients of the fundamental Eulerian equation;

u - Vu = F, which shows up in different contexts dictated by the different modeling of
F’s. To this end we utilize a basic description for the spectral dynami®s:péxpressed

in terms of the (possibly complex) eigenvalugss: A(Vu), which are governed by the
Ricatti-like equatiork; + u - VA + A% = (I, VFr).

We focus our investigation on four prototype models associated with different forcing
F, ranging from simple linear damping and viscous dusty medium models to the main
thrust of the paper — the restricted models of Euler/Navier—Stokes equations and Euler—
Poisson equations.

In particular, we address the question of the time regularity for these models, that is,
whether they admit a finite time breakdown, a global smooth solution, or an intermediate
scenario of critical threshold phenomena where global regularity depends on initial
configurations.

Using the spectral dynamics as our essential tool in these investigations, we obtain a
simple form of a critical threshold for the linear damping model and we identify the 2D
vanishing viscosity limit for the viscous irrotational dusty medium model. Moreover,
for then-dimensional restricted Euler equations we obfaif2] + 1 global invariants,
interesting for their own sake, which enable us to precisely characterize the local topology
at breakdown time, extending previous studies imtke 3-dimensional case. Finally, as
a fourth model we introduce thedimensional restricted Euler—Poisson (REP)system,
identifying a set ofn/2] global invariants, which in turn yield (i) sufficient conditions
for finite time breakdown, and (ii) characterization of a large class of 2-dimensional
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initial configurations leading to global smooth solutions. Consequently, the 2D restricted
Euler—Poisson equations are shown to admit a critical threshold.
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1. Introduction

Itis well known that the velocity gradients in a turbulent flow are larger than their mean
gradients by at least a factor of ordgR;, with Rs being the Reynolds number based on
internal length and velocity scales. Fluctuation gradients are limited by the mean flow
and contribute a dominant portion of the kinetic energy dissipation, but otherwise they
contribute nothing to the mean transport of momentum because of the linearity of the
viscous stress term in the Navier—Stokes equations. Consequently, much research has
been directed at gaining a better understanding of the velocity gradienMielavhich
is completely dictated by the vorticity in incompressible flows [2,9,19, 30, 6].

Motivated by such questions, the goal of this work is to present new observations on
the velocity gradients for a general class of so-called restricted flows, where the velocity
field, u, is governed by the Newtonian law,

ou+u-Vu=F, xeR", (1.1)

with F being a general forcing acting on the flow. Different regimes of the flow are
modeled by different’s. A key issue in this line of research is the control of the velocity
gradientVu, and a classical approach in this context is to consider linear combinations
of the entries oWu, controlling physically relevant quantities like vorticity, divergence,
etc., see [2,10, 30].

The novelty of the analysis taken in the present article is the use of the eigenvalues
of the velocity gradient field. The eigenvalues= 1(Vu), exhibit of course a strong
nonlinear dependence on the entriesVof, and are shown to play a crucial role in
governing the behavior of the flow. Indeed, the dynamics of these eigenvaNiesy, is
shown, in Sect. 3, to be governed by the Ricatti-like equation

IA+u-Vi+r2=(, VFr),

with I(r) being the left (right) eigenvectors &fu. Equipped with this description for
the spectral dynamics &fu, we turn to study several physical models with different
forcing, outlined in Sect. 2 and analyzed in Sects. 4—7.

We focus on four prototype models in this paper. The first two are a simple linear
damping model studied in Sect. 4, and a viscous dusty medium model in Sect. 5. Next,
the main thrust of the paper is devoted to the restricted models of Euler equations in
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Sect. 6, and in Sect. 7 we introduce the so-called restricted Euler—Poisson equations as our
fourth model problem. We focus our attention on the question of time regularity for these
models, that is, whether they admit a finite time breakdown, a global smooth solution
or an intermediate scenario of critical threshold phenomena where global regularity
depends on the initial configurations as in e.g. [15].

The question of time regularity is of fundamental importance from both mathematical
and physical points of view, and a considerable effort is still being devoted to this
issue for both compressible and incompressible Euler equations. Consult [31,20,18, 2,
9,33,26] for a partial list of recent references. In particular, the possible phenomena
of finite time breakdown for 3D incompressible flows signifies the onset of turbulence
in higher Reynolds number flows. Several simplified models for 3-D Euler equations
were proposed to understand this phenomena, see [34] for a restricted dynamics model,
[10] for a vorticity dynamics model, [11] for a so-called distorted model as well as a
stochastic model in [12].

The paper is organized as follows.

After introducing the basic spectral dynamics Lemma 3.1 in Sect. 3, we begin our
discussion of the time regularity with the simple linear damping forcing model in Sect. 4.

In Sect. 5 we deal with viscosity forces, where we study the irrotational viscous dusty
medium model, and identify its 2D vanishing viscosity limit. Here, the spectral dynamics
offers us a novel approach at the level of the velocity fieleh, V¢ —an alternative to the
classical notion of viscosity solutions for Hamilton-Jacobi equations at the level of the
potentialy. Spectral dynamics serves as an essential tool in our approach, most notably
the use of a key a priof.1-contraction estimate expressed in terms of the unintuitive
nonlinear quantity.o — A1, with A; = 4;(Vu),i = 1, 2 being the two real eigenvalues
of Vu.

In Sect. 6 we use the spectral dynamics to revisit the restricted Euler models intro-
duced by Vieillefosse in [34]. The so-called restricted Euler equations (RE for short)
refer to a localized model of the Euler/Navier—Stokes equations, where the usual global
pressure forces are replaced by their local, isotropic trace. We study the time regular-
ity of the generak-dimensional RE equations, extending the previous studies in [34,
5] for the speciah = 3 case. Here, we enjoy the advantage of using the spectral dy-
namics of sucl-dimensional flows, which enables us to identify a large set of at least
[n/2] + 1 independent integrals of the motion. Using thes&] + 1 global invariants,
interesting for their own sake, we precisely characterize the finite time breakdown for
then-dimensional RE equations.

We note in passing that the RE model has been an appealing candidate for describing
the dynamics of the local velocity gradient [1, 3]. Despite this restricted approximation
to the pressure, the RE equations can still describe the local topology of Euler equations
and capture certain statistical features of the physical flow. In this spirit we introduce, in
Sect. 7, arestricted model for the Euler—Poisson system, the so-called REP equations. For
generak-dimensional REP equations we obtain a set of at leg®] global invariants,
which in turn yields

(1) Sufficient conditions for the finite time breakdowrvirdimensional REP equa-
tions. Moreover, we characterize the precise local topology of the flow at breakdown
time;

(2) Sufficient conditions for a large class of 2D initial configurations leading to the
existence of global smooth solution for 2D REP equations.

We point out that though the RE model was sometimes argued for its unphysical finite
time singularity, our REP model does support the global smooth solutions. In particular,
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it follows that the 2D REP equations admit a critical threshold, distinguished between
initial configurations leading to either the finite time breakdown or the global smooth
solutions. We refer to [29] for a detailed study of such phenomena for this 2D REP
model.

In Sect. 8 we discuss possible extensions of the results obtained in this work and
we comment on some remaining open issues. Finally, in the Appendix we revisit the
spectral dynamics of the genenak n RE models from yet another perspective of a trace
dynamics, extending the study of tracesVu)*, k =1,---,n, initiated in [34] for
the speciak = 3 case.

2. Basic Equations — Four Prototype Models

In what follows we shall require the equations governing the dynamics of a fluid in both
the Eulerian and Lagrangian forms. We shall study the flow of a fluid which initially at
t = 0 occupies the whole spaé® for arbitrary dimensiom, although only the cases
n = 2 andn = 3 have a clear physical meaning.

Let a Cartesian coordinate system be fixeffnWe denote by the initial position
of a fluid particle. The motion of the fluid is assumed to be given, if foraryR" the
positionx (e, t) € R" of the fluid particle is known for allk € R” and for allz € R,
with x(«, 0) = «. Further,o — %x(a, t) = u(x, t) is a Lagrangian velocity field at
timet. The Lagrangian equations of the dynamics of a fluid amount to

d2

az* ="
whereF denotes the forcing acting on the fluid. The corresponding Eulerian equations
in the standard form read

u+u-Vu=F, xeR" (2.1)

Where% = % +u -V is the Lagrangian derivative. Equation (2.1) shows up in a variety
of contexts dictated by the different modeling©%.

Differentiation of the above equation with respecttgives the relation for the local
velocity gradient tenso := Vu,

WM+ (u-V)M + M?> = VF. (2.2)

The centralissue of interest here is to control the local velocity gradient tensorin (2.2) and
to clarify whether the associated distortion matiix;= dx/d«, remains nonsingular

as time evolves. In particular, one is interested to know whether there is a finite time
breakdown, a global smooth solution or an intermediate scenario of critical threshold
phenomena with a conditional breakdown, consult e.g., [15]. In the remainder of this
section we discuss four prototype examples associated with different fafFcihmgthe
following sections, we will follow the spectral dynamics of the velocity gradient tensor
associated with these four examples to demonstrate the different phenomena of global
regularity, finite time breakdown as well as the existence of critical threshold.
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2.1. Linear damping. Consider a model of the form
Ou+u-Vu=Cu, xeR" (2.3)

Here we deal with the simple forcing; = Cu, whereC is a constant matrix. The
corresponding local velocity tenséf = Vu solves

WM + (u- V)M + M2 =CM. (2.4)

In Sect. 4 we use the spectral dynamicdofo show that there exists a critical threshold
depending on the choice of the mattix

2.2. Irrotational viscous flow. Next we consider the viscous forcds,:= vAu, which
leads to the so-called viscous dusty medium model,

ou+u-Vu=vAu, x eR", (2.5)

wherev > 0 is a viscosity amplitude. Other suggested names are Burgers system [16],
Hopf system, Riemann equation (for= 1). Zeldovitch [36] proposed to consider
this system as a model describing the evolution of the rarefied gas of non-interacting
particles.
The Hopf-Cole transformation,= —2vV[log(y )], links the Burgers system to the
heat equation
oY = vAY

provided the initial datayg = u(x, 0), admits the formg = —2vV[log(vo)] for some
positive g = v (x, 0) (this is available fon = 1). The corresponding local velocity
gradient field satisfies

WM+ u-VIM + M?=vAM, xeR" (2.6)

We focus our attention on solutions to the 2D irrotational viscous flaws ", and we
use the spectral dynamics &f in order to study the inviscid limity = lim,_qu". In
particular, the limiting 2D irrotational flow is shown to be a weak solution of

oou+u-Vu=0, u=:Vgp,
which is interpreted through the Eikonal equatipn + |V¢|2/2 = 0.

2.3. Redtricted Euler/Navier—Sokes equations. For the forcing involving viscosity and
pressure, we consider the Navier—Stokes equations of incompressible fluid flow in
space dimensions, which can be expressed as the sysierm bfequations,

ou+u-Vu=vAu—Vp, xeR", >0, (2.7)
V.-u=0, (2.8)
u(x,0) = uog(x). (2.9)

Hereu is the fluid velocity,p is the scalar pressure, and> 0 is the reciprocal of the
Reynolds number. When the coefficientanishes in (2.7), we have the incompressible
Euler equations. Here we only discuss fluid flows occupying the whole space so that the
important effects of boundary layers are ignored. In most applicatidiagn extremely
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small quantity, typically ranging from 1@ to 1076 in turbulent flows. Thus one can

anticipate that the behavior of inviscid solutions of the Euler equationswithO is

rather important in describing solutions of the Navier—Stokes equationsmibamall.
The local velocity gradient tensor solves

WM+ (u-VIM + M?>=vAM — (VQ V)p. (2.10)
Taking the trace of M and noting¥ = V - u = 0 one has
trM? = —Ap. (2.11)

This givesp = —A~1(trM?). The second term in (2.10) therefore amounts tothen
time-dependent matrix

(V® V)AL (trM?) = R[trM?].

Here R[w] denotes the x n matrix whose entries are given bR[w]);; := R; R;(w)

whereR; denote the Risez transformg; = —(—A)~Y23;, i.e.,
m(g) = —i%ﬁ)(’g‘) for 1<j<n.

This yields the equivalent formulation of NS equations which reads
WM+ (u- V)M + M? = vAM + R[trM?] (2.12)
subject to the trace-free initial data
M(-,0) = My, trMg=0.

Note that the invariance of incompressibility is already taken into account in (2.12) since
o;trM = 0 and hence ™ = trMy = 0. The inviscid case = 0 in (2.12) gives the
corresponding Euler equation. It is tigobal term in the above equationg[trM?],
which makes the problem rather intricate to solve, both analytically and numerically.
Various simplifications to this pressure Hessian were sought, see, e.g. [34,12,5,11].
Here we focus our attention on the so-called restricted Euler equations proposed in
[34] as alocalized alternative to (2.12).
Specifically, we consider a gradient flow,, governed by

1
WM + (u-VIM + M? = ZtrM?1,x,. (2.13)
n

We observe that as in the global model, the incompressibility is still maintained in this
localized model, since M2 = tr[trM?21,,/n] impliesd,trM = 0.

For arbitraryn > 3, we use the spectral dynamicsMfin order to show a finite time
breakdown of (2.13), generalizing the previous result of [34]. The finite time breakdown
follows in Sect. 6 once we identify a set pf/2] + 1 global invariants in terms of
the eigenvalues oM. Moreover, the precise topology of the flow at the breakdown
time is studied in Sect. 6. Finally, in the Appendix we study the spectral dynamics of
the generak x n problem from yet another perspective, extending the study of traces,
trM*, k=1,--.,ninitiated in [34] for the special = 3 case.
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2.4. Restricted Euler—Poisson equations. The Euler—Poisson equations

o +V-(ou)=0, xeR" teRT, (2.14)
(pu)r + V- (pu @ u) = kpVe, (2.15)
Ap=p, xeR", (2.16)

are the usual statements of the conservation of mass, Newton’s second law, and the
Poisson equation defining, say, the electric field in terms of the chargek litegescaled
physical constant, which signifies the property of the underlying forcing, repulsive if
k > 0 and attractive ik < 0. The unknowns are the local density= p(x, 1), the
velocity fieldu = u(x, ), and the potentiap = ¢ (x, 1).
If follows that
ou~+u-Vu=kVe,

where the forcing” = kV¢ is the gradient of potential governed by the Poisson equation
(2.16). Differentiation yields a local velocity gradient tensor which solves

WM +u-VM + M?=k(V® V)p = kR[p],
where the coupling enters through the global té®ip], with densityp governed by
orp+u-Vo—+ ptrM = 0.

Passing to Lagrangian coordinates, that is, using the change of varables («, t)
with x (¢, t) solving

d—;‘ =u(x.1), x(@0) =a,

then Euler—Poisson equations become the coupled system

d ) d
— M+ M?=kR[p], — =29 .V, 2.17
M+ (o] 7 : +u (2.17)
d

— trM = 0, 2.18
7P +p (2.18)

subject to the initial condition

Again, itis the nonlocal ternR[ p], which is the main obstacle, in the multi-dimensional
settingn > 1, in the investigation of the Euler—Poisson system, see e.g. [21].
In this paper we introduce the corresponding restricted Euler—Poisson system

k
M +u-VM+ M?==pl,y,, (2.19)
n
op+u-Vo+ ptrM =0, (2.20)

subject to initial data

In Sect. 7 we use the spectral dynamics\iin order to study the time regularity for
this restricted Euler—Poisson model. Here we give a sufficient condition for the global
existence of the 2D solutions which applies, for example, for a class of initial config-
urations with sufficiently large vorticitywg| >> 1. With other initial configurations,
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however, the finite time breakdown of solutions may — and actually does occur. Hence
global regularity depends on whether the initial configuration crosses an intiihd@i,
critical threshold, and we refer to [29] for a detailed study of the 2D critical threshold
phenomena in this case. Moreover, for arbitrary 3 we obtain a family ofn /2] global
invariants, interesting for their own sake, with which the local topology of finite time
breakdown is also characterized in Sect. 7.

3. Spectral Dynamics of the Velocity Gradient Field
Let us rewrite the basic equation of velocity gradient fisdddas
WM+ (u-VIM + M?=VF, (3.1)

whereV F is a matrix involving spatial derivatives of the forcing.

Itis usually difficult to quantify directly all entries in the velocity gradient tendéy,
and instead, suitablenear combinations like divergence and vorticity play a distinctive
role in analysis. Here we show the special role played by the eigenvalues of the velocity
gradient tensop, (M), in governing the entries @, and we note in passing, the strong
nonlinear dependencedfM) onthe entries of/. Consult, for example, the nonintuitive
L1-contraction for the 2D dusty medium model derived in (5.9) below.

The following lemma is at the heart of the matter.

Lemma 3.1 Spectral dynamigsConsider the general dynamical system (3.1) associ-
ated with the arbitrary velocity field u and forcing F'. Let A (M) be a (possibly complex)
eigenvalue of M associated with the corresponding left(right) eigenvector [(r). Then the
dynamics of (M) is governed by the corresponding Ricatti-like equation

A +u-Vi+r2=(, VFr).

Remark 3.2. If F = 0 one has the same equation foas for M with time-independent
eigenvectors, thudf (z) are isospectral. The difficulty lies in the eigenstructure induced
by the forcing(l, VFr).

Proof. Let the left(right) eigenvectors af/ associated withk bel(r), normalized so
that/r = 1. Then one has

Mr =xr, IM =AMl

Differentiation of the first relation with respect t@ives
otMr + Moir = 0 r + A0;r.

Multiply / on the left of the above equation to obtain
10;:Mr + Mlo;r = 0; ) + AlO;r,

hence
l8tMr = 3,)»

Similarly differentiation of the relatiod/r = Ar with respect toc; leads to

0jMr + M9jr = 0jAr + A0;r.
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Multiply on the left bylu ; with Ir = 1 to get
lujdjMr = ujldjrAr = u;ojA.

Therefore
lu-VMr =u - Va.

A combination of the above facts together with2r = 12 gives
WA+ u-Vr+2r2=(, VFr).

This completes the proof.

4. Critical Thresholds for Linear Damping
Consider the convective equation
ou+u-Vu=_Cu, u(x,0 =ug),
with a simple linear damping being a constant matrix. The gradient tensor satisfies
WM +u-VM +M?>=CM,
which suggests that the eigenvalues solve
dh+u-VA+2r2=ch, (4.1)

wherec(t) = cy(t) := ICr. Herel(r) are the left(right) eigenvectors 8f associated
with the eigenvalue.. Along the particle pathh = x(«, t), defined by

d
Ex(a, 1) =u(t,x(a, 1), x(0 =0 ocR"

the Ricatti-typer-equation amounts to

5 a2 (t)r
—_— =C .
dt

The solution can be expressed in terms@j as

A (0)b(1) ( ff )
A = s b = d .
® 1+ A(0) [y b(v)d7 (1) :=exp 0 c(e)dr

From the above formula it follows that
Lemma 4.1.Consider the eigenvalue equation (4.1) with initial data A(0).

(1) If Im(A(0)b(z)) # O, then its solution remains regular for all time.
(2) If Im(A(0)b(2)) = O, then its solution remains bounded as long as

t
Re <x(0) / b(r)dt) > 1. (4.2)
0
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For the simple example of a scalar dampi@g= —S1,x., 8 > 0, one has

D= —pa
dt B ’

with a solution (corresponding fa(r) = e~#*) given by

B (e, 0)e Bt
T 14+ A 0B L —e P

A1)

This solution is bounded from below for all time if and only.ife, 0) is either complex
or

inf A(a, 0) > —
alelR” (@ 0) = =4,

whichis avery simple form of a critical threshold phenomena. For more general examples
of critical threshold phenomena, consult [14,15,29] and the study in Sect. 7 below.

5. Irrotational Viscous Flow
In this section we deal with the viscous dusty medium flews= ", governed by
oru+u-Vu=vAu, u(x,0) =ugk). (5.1)
The velocity gradient tensdWl := Vu satisfies
M +u-VM+ M?>=vAM. (5.2)

It follows that if the initial velocity is irrotationalyV x ug = 0, then the flow remains
irrotational,V x u = 0.

Lemma 5.1 {iscous Spectral DynamigsAssumethat theflowisirrotational V x ug =
0. Then the real eigenvalues . = A(Vu) satisfy

A+ u-Vi+r2=vAr+ Q.

Here Q satisfies the constraint

aCmin —A) < 0 < alimax— ), A [ et acvu,

min

{mn
where a is given by

a:=2v Z or r >0
k

and r isthe right eigenvector of Vu associated with A.
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Proof. Let I(r) be the normalized left(right) eigenvectors #f associated with the
eigenvalue., then one has

WA+ u-Vr+r2=vIAMr.

Observe tha is symmetric due to the fact th& x « = 0, and consequentlyare all
real quantities. Differentiation @i\ = Al with respect tor twice gives

AIM + 2V - VM +IAM = AM + 2VA - VI + LAl
which upon multiplication agaington the right leads to
IAMr = AL+ 2[(VA-VDr — (VI-VM)r].

Here the differentiation operators apply componentwise,@lgV M = Y ;_; loxM.
On the other hand it follows fromdr = Ar that

VMr = Vir +AVr — MVr.
This gives
(VI-VM)r =VI1-Vir +AVIl-Vr —VI[-MVr.
A combination of the above facts yields

n n
0 =2v [—,\ > olopr + Y 8klM8kr] .

k=1 k=1

Since the flow is irrotational we hawé T = M andl = r T, with upper-index denoting
the transpose. The second ternyris then bounded by

n n n
min D Okr Okr <> kIMOgr < Amax Y 0kr | 0k,
k=1 k=1 k=1

which completes the proof.

Here the question of interest for us is the convergenae-efu” asv — 0. To answer
this question, it suffices to show the precompactness of the fgmtily,-o. It is here
that we take advantage of the spectral dynamics of the velocity gradient tems&ior

the 2D case we shall show the precompactness via several lemmata. We start with the
essential

Lemma 5.2 (L!-Contraction. Let 1;, i = 1, 2, be two (real) eigenvalues of velocity
gradient field Vu” in (5.1). If (A2 — A1)(0) € L1(R?), then

[(h2 = 20Dl w2y < 102 — A (O0) [l 1 (w2)-

Proof. In the 2D case we havanin = A1 < A2 = Amax. Settingn = A2 — A1 one has
from Lemma 4.1
on+u-Vn+n1+ r2) < vAn.

Observe thaV - u = A1 + A2 which yields
n+ V- (qu) <vAn.

Spatial integration gives the! estimate fom = A» — 11 > 0 as asserted.O
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Next, from Lemma 5.1 we see that the largest eigenvalsgsatisfies the differential
inequality
Ot Amax+ U - VAmax+ )"ﬁ']ax < VAAmax

and by a comparison principle we obtain

1
= (5.3)

A ) ————— =<
maX( ) = )\,(O)_l—‘r—t =

We note in passing that this, combined with the symmetry of gradient¥ie)ds equiv-
alent to the one-sided entropy-type estimatq‘éggsTVus < 1/t, which coincides
with the well known semi-concavity property in the context of convex Hamilton-Jacobi
equations, see, e.g. [25,28,32].

The above one-sided bounds enable us to establish the following.

Lemma 5.3 (BV Bound. Consider the dusty medium equation (5.1) with compactly
supported initial data ug = u"(x, 0) such that |lug| gy w2, is bounded uniformly in v.
Then the corresponding velocity, u”, satisfies

lu” ¢, Dl gy g2y < Const
Moreover, for t1, r > 0 we also have
lu Cx. 12) = ¥ (x. 1) | 22y < Constr — 11|72, (5.4)

Proof. The one-sided upper bound fogay, (5.3), implies that the positive part of the
divergence(u, +vy)+ = (A1 + A2)4 is bounded. We observe that, 1, are essentially
supported on afinite domain in the sense of their exponential decay outside a finite region
of propagation, and hengg: (u. +v,)4 < const. This, combined witfy, u, +v, = 0,
yieldsthati; +12 = u, +v, € L1(R?). Augmented with the factthab — 11 € L1(R?)

we conclude

reLYR?, i=12 (5.5)
This gives
/ Vu"||dxdy =f [diagr1, A2)[[dxdy < oo,
R2 R?
with the usual matrix normj - ||, defined ag|M|| =: supe =1 |M&]|. In fact, since

M = Vuis symmetric, there exists a unitary mattisuch that/ " MU = diag(r1, 12),
and hence

IVul = |UTMU| = ||diag(rs, 22)]|.

Thus, theBV bound ofu” follows from (5.5). To estimate the modulus of continuity in
time, we multiply Eq. (5.1) by a smooth test functigne C§° and use the spatial BV
bound to obtain

‘/RZ V() (u(x, 12) — u(x, n))dx| < Const(tz — 1) (|00 + 1AV ]).

This inequality and the BV estimate combined with Kruzkov's interpolation theorem
[23, p. 233] yield (5.4).



Spectral Dynamics of the Restricted Flows 447

In order to identify the vanishing viscosity limit, lign,o ¥, we introduce the notion of
a weak solution for corresponding inviscid equation

ou—+u-Vu=0. (5.6)

For irrotational flow,V x u = 0,0one has - Vu = V (|u|2/2) , and the reduced inviscid
equation (5.6) can be recast into the conservative form

M2

The irrotational property of both viscous and inviscid flows suggests that there exists a
potentialg such that: = V¢, whereg solves the Hamilton-Jacobi equation

1
¢t+§|v¢|2=o, ¢(x,0) = do. (5.7)

According to the classical theory of the Hamilton—Jacobi equation [7, 8], there exists a
unique continuous solutiofi(x, ¢) to the above problem, expressed via the Hopf—Lax
formula, [13, p. 560]¢ (x, 1) = Minyegn {tlx — y12/2+ ¢o(y)} . We make

Definition 5.1. Ameasurablefunction « iscalled a weak sol ution of theinviscid equation
(5.6) if u = V¢ with the potential ¢ being the unique weak solution of the Eikonal
equation (5.7).

Equipped with this definition of a weak solution, we now turn to summarize our
convergence results by stating

Theorem 5.4 {anishing viscosity limi}. Consider the dusty mediumequation (5.1) with
irrotational initial data u”(-, 0) € L N L°°(R?) such that

u’(x,0) — up(x) in LY(R?).
Then, the local velocity ¥ converges to the unique weak solution of (5.6), i.e., we have
u’(x, 1) = ux,t) in L®([0, T]; LY(R?)), (5.8)
whereu = V¢ isthe viscosity solution of the Eikonal equation (5.6).

Proof. We begin by first assuming that' (x, 0) is compactly supported BV (R?),
uniformly with respectte. By Lemma 4.2y" have uniformly bounded spatial variation,
ie.,

(-, )]l py g2y < Const

Hence{u"(x, 1), 0 < r < T}is abounded setihlN BV (R?) and by Helly’s theorem it
is therefore precompact ih&)C(RZ). Note thatl|u" (x, ) || .1(r2) is HOlder continuous in
time, and by the Cantor diagonalization process of passing to further subsequence if nec-
essary, (5.8) follows. This completes the corresponding proof for compactly supported
BV initial data. The general case is justified by standard cutoff and BV-regularization
of arbitrary L1 N L>(RR?) initial data.

It remains to show that the limit functiom(x, ¢) satisfy the weak formulation. It
follows from the equation for” that

1
ou” +V (EWV'Z) = vAu".
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We multiply this identity byy (x, 1) € Cg° (R?) and integrate by parts to get

v|2

/ [—w,u” _ vyl ]dxdy :v/ W’ Aydxdy.
R2 2 R2

Note thatW 1 is embedded int@.2(R?) for the two-dimensional case. Thus passing to

the limit v — 0 one obtains the desired weak formulatiom

Remark 5.5. We would like to point out that the above convergence result can be ob-
tained at the level of Hamilton—Jacobi equations. The equivalence between the weak
entropy solutions to conservation laws and the viscous solutions to the corresponding
Hamilton—Jacobi equations has been known in the literature, see e.g. [4,7,24,25,22].
The point made here is that we obtain the compactness at the lexdbyofising the
spectral dynamics of its velocity gradient tenser, which is independent of a maxi-
mum principle at the level of HJ equations. In particular, the2'-contraction stated in
Lemma 5.2, recast at the level of HJ equation (5.7), amounts to the nonintuitive apriori
estimate

Vagpz=i@en| , = |Vaew?=1@o|

J(@) = buxpyy — D2
(5.9)

L’

6. Restricted Euler Dynamics

6.1. Spectral dynamics and global invariants. We now turn to discuss the restricted
Euler dynamics, which is a localized version of the full Euler/Navier—Stokes equation
(2.12):

WM+ (u-VIM + M? = vAM + R[trM?].

By the definition of the operatak, one has
RIrM?] =V @ VA I [rM3 =V ® v/ K(x — y)(trM?) (y)dy,
R"

where the kernek (-) is given by

1

s=In|x| n=2,
K@) = —2271 L n>2

(2—n)wn|x|"~ ’

with w,, denoting the surface area of the unit sphere-fimensions. A direct compu-
tation yields

;0K *trM? = trM2(y)dy.

UMZ(S lx — y128;; — n(xi — yi)(xj — ¥;)
ij + _ v|nt+2
n n wnlx — y|

This shows that the local part of the global teRftrM?] is trM?/n1,,. We thus use
this local term, tM2/n1,,, to approximate the pressure Hessian. The corresponding
local gradient field then evolves according to the following restricted Euler model

WM +u-VM+ M? =trM?/nl, . (6.1)
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This is a matrix Ricatti equation which, as we shall see below, is responsible for the
formation of singularities at finite time. We note that with this local model, all particles
evolve independently of each other. The mixing due to the global forcing in the general
Euler dynamics, however, could prevent this type of finite time breakdown.
Nevertheless, as a local approximation of the pressure Hessian, the above model,
the so-called restricted Euler dynamics, has caught great attention since it was first
introduced in [34], because it can be used to understand the local topology of the Euler
dynamics and to capture certain statistical features of the physical flow.
Consider a bounded, divergence-free, smooth vector fiel®R” x [0, T] — R”".
Letx = x(«, r) denote an orbit associated to the flow by

d
d_):zu(x,t), O<t<T, x(a,0)=acR".

Then along this orbit, the velocity gradient tensor of the restricted Euler equations (6.1)

satisfies
d

By the spectral dynamics Lemma 3.1, the corresponding eigenvalues satisfy

M + M?=trM?/nluign,

n
MAN =D A/, i=1- 0 (6.2)
k=1

3-D Spectral dynamics
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Fig. 6.1.3-D Spectral dynamics of the restricted Euler equations
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This is a closed system which serves as a simple approximation for the evolution of the
velocity gradient field.

Let us start by revisiting the cage= 3, consult [34,5], for which we will present
below a complete phase-plane analysis expressed in terifs.dbubtraction of two
consecutive equations in (6.2) gives the following equivalent system:

(In(i1 —22)1" + A1+ 22 =0,

[Nz —A3)]' + 42+ 213 =0,

[IN(A3 — A)] + A3+ A1 = 0.
Summation of these three equations and taking into account the incompressibility con-
dition, Z?:l Ai = 0, yields the following global invariant:

(A1 — A2)(A2 — A3)(A3 — A1) = const
This invariant projected onto the phase plahg A»), recast into
(A2 — A1) (A2 4+ 2X1) (212 + A1) = const,
which serves as a global invariant of thex2 system,
Ay = [—A3 + 2)3 4 20122]/3, (6.3)
Ay = [202 — 23 + 21221/3. (6.4)

We then have three separatrixes passing through the origin, which is the only rest
point in this case,

1
A=Az, AM=-2< (A2=A3), A= —Ekz < (A3 = A1).

The vector field in the phase plane is drawn in Fig. 6.1.

Three special solutions corresponding to the separatrixes can be obtained explicitly.
Consider, for example, the separatrix= X2, for which1 is necessarily a real solution
of the Ricatti equation

Ay =22,
The solution given by
M(a, 0)
rx, ) = ————— 6.5
D= 1 @ o (6:5)
is bounded if and only if the real; is nonpositive1(x, 0) < 0.

Next if 1; (0) is complex then.; remains complex later on. Léty, A2) be a complex

pair withi; = A1 = y + Bi, then (6.3), (6.4) recast into

, 1
B =-28y. v =v*+ éﬂz. (6.6)
Solving the above X 2 system gives the following invarianig? + 9y2)8 = const it

follows that the general solution passing the rest p@n0) must be real,

y(0)

/3:0, V(l)=1_y(0)t,
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which is reduced back to the first case in (6.5). Note that if the eigenvalues are complex,
the Lagrangian trajectories are rotating, and if the eigenvalues are all real, the Lagrangian
trajectories are just strain dominated, see Fig. 6.2.

We now summarize by stating the following

Lemma 6.1 (Topology of flow in 3-D restricted EulgrA global invariant of the 3D
restricted Euler equations (6.2) is given by

(A1 — A2)(A2 — A3)(A3 — A1) = const (6.7)

The three explicit solutions passing through the origin are

,0
(A1, A2, 23)(1) = {(L.1,-2),(1, -2, 1), (-2, 1, 1)}1 _a(aot(a )0);'

All other solutions will develop finite time singularity. If an eigenvalue is complex, then
the Lagrangian trajectories are rotating.

Lemma 6.1 deals with the 3-dimensional restricted Euler equations which were stud-
ied earlier in [34] using a different approach based on trace dynamics, consult the Ap-
pendix below. Here we enjoy the advantage of being able to generalize our spectral
dynamics approach taken in Lemma 6.1 to the arbittatymensional case. The global
invariants in suchz:-dimensional systems are tied to a particular set of sequences of

3-D rotational flow
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Fig. 6.2.3-D Rotational flow in restricted Euler Equations
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indicesZ = {71, 1>, ...} with eachZ; being a sequence of pairs of different indices,
(i # j), such that there exists an integér.= N (n) for which

Y GitA)=NY . YAs. (6.8)
k=1

(i,)eT
There are several ways of forming these pditsj), so that (6.8) holds. Here is one:

e Forevem = 2m,weletZ, = (i, j) = {(c(2k — 1), 0(2k))};=1.2.... m, ranging over
all permutations (-) so that (6.8) holds WitV (1), even = 1;

e Foroddn =2m + 1, we letZ,, = (i, j) = {(o (k) # n(k))}x=1.2 . »» ranging over
all permutations (-), u(-) so that (6.8) holds witV (n) 4, odg = 2.

The following lemma reveals the role su€kpairs play in forming global invariants
for the restricted Euler system (6.1).

Lemma 6.2 Global Invariants Consider the n-dimensional restricted Euler system
(6.1) subject toincompressibleinitial data, > ";_; A;(0) = 0. Thenitadmitsthefollowing
global invariantsin time:

> ni) =0, (6.9)
i=1
L, jez(i(r) — 4;(1)) = const (6.10)

Proof. Summation of the equations in (6.2) over the indejives[)_/_; 4;(1)]' = O,
which is combined with the incompressibility assumptipif_, 4;(0) = 0 to yield
Z?:l Ai(t) =0.

For (6.10) we follow our previous argument in the 3D case. Subtracting'the
equation fromi-th equation in (6.2) yields

[Oli,j]t+()ti+)»j)05i,j =0, ajj = Ai —Aj. (6.11)

Divide by «; ; and sum those equations in (6.11) with indi¢es) € Z; we have

n
[Inla;;],+NY s =0. (6.12)
k=1

By incompressibility}_;_; Ax = 0 and the global invariants asserted in (6.10) follow.
i

Two prototype examples are in order. In the 3D case we recover the global invariant
(6.7),(A1—2A2)(A2—A3)(A3— A1) = const, corresponding to the sequence of pairs=
{(1,2), (2,3, (3,1}. Inthe 4D case we have, in addition to incompressibility, the two
global invariantslly := (A1 — A2)(A3 — A4) = const andIl, := (A1 —A3) (A2 — Ag) =
consp, corresponding to the twb-sequences of indices; = {(1, 2), (3,4} andZ,; =
{(1, 3), (2, 4)}. Observe that a third global invariant correspondinf(ip 4), (1, 3)}, is
in fact generated by the difference of the first two, nam@ly= (A1 — A4)(A2 — A3) =
11 — IT2. Our next issue is therefore, a proper counting of these global invariants.



Spectral Dynamics of the Restricted Flows 453

6.2. On the number of global invariants. The proof of Lemma 6.2 makes clear the
direct linkage between eadhsequence of indicesi, j) satisfying (6.8), and a global
invariant formed by the corresponding produdy, ;,(x; — A;). Of course, not all the
different Z-sequences satisfying (6.8) should be counted, since some of them lead to
the same invariant products. We also need to remove any redundancy due to linear and
nonlinear dependence among these different invariant products. Thus, we inquire about
the following

Question. How manyindependent products,I1; jez(A; — A;) can be formed by-
sequences, i.e., sequences of indigeg) satisfying (6.8),

n
IN=Nm) eZst. > hi+ip)=NY . YA/s?
(i,j)eT k=1

We know that the number of such independent invariant products together with the
incompressibility constraint (6.9) does not exceaethe number of independent global
invariants of the restricted Euler (6.1), and hence there are no more-tiaimdependent
invariants of form (6.10). But the precise answer remains open, and in particular we are
not clear whetheall the global invariants of (6.1) are necessarily the products formed
in Lemma 6.2. Below we provide lawer bound for our question, by the construction
of [5] such independent invariants.

Let us begin by referring to the 4D example mentioned above. Starting with the
first invariant,IT; = (A1 — A2)(A3 — A4), We derive a second independent invariant
by exchanging, 2« 3, which leads tdl, = (A1 — A3)(A2 — Ag). Other possible
exchanges are redundant, say24 yields the linearly dependent produtt = (A1 —

Aa)(M2 — A3) = [11 — I, and this is consistent with the fact that 3, j = 4 plays a
symmetric role in the originalli-pair (A3 — A4). We conclude that while forming the
linearly independent productsl; jyez(A; — A;), at most one “admissible” exchange
between different pairs df-indices is permitted. Moreover, we should also exclude
nonlinear dependence. Far = 8, for example, consider the four produci$; =
(A1—22)(A3—Aa)(As—Ag)(A7—Ag), 12 = (A1 —A3)(A2—A4)(A5—Ag)(A7—Ag), TI3 =
(A1—A2)(A3—A4)(A5—A7)(Ae—Ag) andlly = (A1—A3)(A2—A4)(A5—A7)(Ae—Ag). The
four invariant products are linearly independent — ind&€dy I, = 0 with A7 = Agis
reduced to a linear combination of the last two 4D independent pairts + o414 =

0 = a3 = a4 = 0, and similarly, settingg = Ag Yyieldsa1 = a2 = 0. Nevertheless,
they are redundant in view of their nonlinear dependehige= I, x I13/T11.

Our construction of independent invariants in the generdimensional case pro-
ceeds as follows. We start, for ever= 2m, with the usual ordering; = (1, 2)(3,4) ...

(n — 1, n). Making an admissible exchange between the first and second pairs yields
the next independent invariant associated With= (1, 3)(2,4), (5,6)...(n — 1, n).

Next, we make an admissible exchange between the second and thirdZgaiss,
1,2)(3,5)(4,6)...(n—1,n),and so on. In this manner we proceed with one admissi-
ble exchange between each teamsecutive pairs, leading to the: global invariants of

the restricted Euler equations (9.1),

(A1 —A2)(A3 —Ag) -+ - (Ap—1 — Ap),
(A1 —22) - (A2k—3 — A2k—1) (Ak—2 — A2k) - - - (A1, An), (6.13)
k=23, ...,m.

Iy
I1
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To verify that thesen = 7 global invariants are independent, we note that by setting

=0,j#k
#0 j=k
Iy # F(Iy, ..., e, ..., 00y, k=1,2,...m.

A similar procedure applies to the odd cases 2m + 1. Starting with the usual ordering

71 = (1,2),(2,3),...(n,1), we make an admissible exchange between the first and
third pairs,Z> = (1, 3)(2, 3)(2,4) ..., the third and fifth pairs(1, 2)(2, 3)(3,5)(4, 5)

(4,6) ... and so on, leading to the independent global invariants

Aok—3 = Aor—2 We havel; = { },Which excludes the possible dependence

ITq :
Iy :

(A1 —A2)(A2 — A3) - - (A — A1),
(A1 —22) - A2k—3 — Aok—1) (A2k—2 — A2k—1) (A2k—2 — A2x) - - - (A — A1),
k=23, ... ,m.

(6.14)

We conclude with

Lemma 6.3 Global Invariants Then-dimensional restricted Euler system(6.1) subject
to theincompressibleinitial data, _/_; 1;(0) = 0, admitsthe following [4 ] + 1 global
invariantsin time: theincompressibility (6.10), > 7, 2;(t) = 0, and the additional n/2
(— respectively, (n — 1)/2) invariants specified in (6.13) for n even (and respectively in
(6.14) for n odd).

6.3. Behavior at the finite breakdown time. The rest of this section is devoted to study
the topology of the flow at the breakdown time based on the Lemma 6.2. We start by
noting that the level set of the integrals of the restricted flow (6.9), (6.10) are not compact,
and hence we have to perform singularity analysis to figure out in which orthant the flow
may diverge. The idea is to build local solutions around the singularities in order to
study the blow up-rate and the location where the finite-time blow-up actually occurs.
The singularity analysis is a standard method to prove the integrability of ODEs. For
readers’ convenience we sketch the main steps below, and refer to [17] and references
therein for more details of this method.

We assume a flow governed by the nonlinear ODE= f(w) diverges at a finite
time r*, and we then seek local solutions of the form

o0
w = ot? |:1+Zajrj/qj| ,

j=1

wheret = t* —t, p € R", ¢ € N anda; is a polynomial in log:* — ¢) of degree

N; < j. There are three steps to determine the above series : (1) find the so-called
balance pairw, p), such that the dominant behaviar; ?, is an exact solution of some
truncated system’ = f(w); (2) computation of the resonances, which are given by the

eigenvalues of the matri*% — diag(p); (3) the last step of the singularity analysis
consists of finding the explicit form for the different coefficieafsby inserting the full
series in the original system)’ = f(w).

Armed with the above algorithm, we proceed to carry out the singularity analysis for
the restricted Euler equations. Let the dominant behavior of tfgstem (6.2) assume
the form

At ~withi, i=1,...,n.
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Upon substitution into (6.2) one has
1 n
. pPi—L 2_2pi _ — 2_2p;
w;ip;T +wit _nZa)jr J.
j=1
Equating the powers af ast — 0 we find,p; = —1, and thew;’s satisfy the equation
1 n
, 2_ -~ 2
w; +w; = . Zla)j
j:

There is a n-parameter family of suefs,

1 1—n 1
®) — k=1,...,n.
w (n_2’ 7n_2’ ’n_z)’ 'y ’n

Due to the symmetry of the equation, the flow may divergeaut of 2* orthants. More
precisely, we have

Lemma6.4.The only n sable solutions of the spectral dynamics (6.2),
A = (A1, ...,An), associated with restricted Euler equations (6.1) are explicitly given

by

(k) (n —2a(x)

. AP = o® , k=1...,n,
R S ©O) =wa(x) n

A=APGx, ) =w

with arbitrary a(x) < 0.
To sum up, we state the following

Theorem 6.5.Consider the restricted Euler dynamics (6.2) with initial data (11(0),
+++, An(0)). Thelevel set of [4] global invariants given by

L; jez(A; — Aj) = const

are not compact. The general solution may break down at finite time in one of the n

orthants{+,+,...,—,...,+, +}aong the kth separatrix
a(x)
1,...,1-n,...,)———, , ,
( " )n—2—a(x)t "

whenever a(x) > 0.

Remark 6.6. Other possible variants of the local restricted Euler equations can be written

in the form

d 2 2
EM +O0(M?* —trM?/nl,x,) =0
with 6 € (0, co). This equation becomes anisotropic, but the local topology of the
solution remains the same as in the isotropic model (6.1) below. Indeed a hyperbolic
scaling,(z, x) — (0t, 6x), leads to the isotropic model correspondingte- 1.
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7. Restricted Euler—Poisson Dynamics

We begin by introducing the so-called restricted Euler—Poisson equations. As argued in
Sect. 6 we retain the local part of the nonlocal tétRij o] in the Lagrangian form of the
Euler—Poisson (EP) system (2.17), (2.18) to obtain a restricted Euler—Poisson system
(2.19), (2.20), i.e.,

k
WM +u-VM+M?==plyun,
n
op~+u-Vp+ptrM =0.

If we let A;(x, t) denote the eigenvalues of velocity gradient tergar then by the
spectral dynamics Lemma 3.1, the eigenvalues and the denaity coupled through

n
dp+u-Vp+py rj=0, (7.1)
=1
2_ke .
OAhi+u-Vri+rr=—, i=1--- ,n (7.2)
n

Thisis a closed system governing the restricted Euler—Poisson equations, which serves as
a simple approximation for the evolution of the full Euler—Poisson system (2.14)—(2.16).

In this section we use the spectral dynamics of the restricted Euler—Poisson equations
to show two main points:

(1) The global existence of the smooth solutions for a large class of 2D initial configu-
rations — consult Theorem 7.1 below.

(2) The finite time blowup of th@-dimensional solutions subject to another class of
initial data outlined in Theorem 7.4 below. As a consequence of 1) and 2), it follows
that the 2D restricted Euler—Poisson equations admit a critical threshold which dis-
tinguishes between initial configurations leading to finite time breakdown and global
smooth solutions. A detailed study of this 2-dimensional critical threshold phenom-
ena in this contextis provided in [29]. This complements the study of critical thresh-
old phenomena for isotropic configurations in the general (global) Euler—Poisson
equations presented in [15].

We start with the global regularity of 2-D restricted Euler—Poisson solutions. By well
known arguments, the global regularity follows from local existence complemented by
a boot-strap argument based on the apriori estimaté/af| . ~. For the 2D restricted
Euler—Poisson model, the velocity gradient teng8aris completely controlled by its
eigenvaluesy;,i = 1, 2, consult [29] for a detailed statement of this argument. With
this in mind, it is left to obtain the apriori uniform bound &f's yielding a sufficient
condition for the global existence of smooth solutions for the restricted Euler—Poisson
model.

Theorem 7.1 Global existence The solutions of the 2-D restricted Euler—Poisson
equations (7.1),(7.2) remains smooth for all time ¢ > O if both »;(0), i = 1,2 are
complex, i.e., Im(x;(«, 0)) # 0.

Proof. In the 2-D case the density equation (7.1) becomes

p'+pGi+22) =0, =0 +u-Vi.
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From (7.2) it follows that the evolution of the divergente= A1 + X2, is governed by
d' +d? — 2o = kp,

and the evolution oA = A1A2 is given by
k
AN +dA = zpd. (7.3)

Introduce the “indicator” function,

t
rae) = exp(f d(x(a, 1), ‘L’)dl’),
0

then the density equation gives

p(x, 1) = po(e)/ (e, 1), 1>0.

Noting that
I’ =dr, I = (d®+d)T,

we then have
" — 2AT = kpo. (7.4)

Substitution off = I'’/T" andp = pg/ T into the A equation (7.3) it follows that
k
(TA) = %[lnr‘]’.
Integration once gives

k
TA = %lnr + Ao, Ag:= (M) (@, 0),

which when inserted into (7.4) yields
I'" =kpoInT + 2A0 + kpo.

The integral energy becomes

r
[['12 = d& + 2(2A0 + kpo) (T — 1) + 2kpo / In&dé
1
= d3 + 4Ao(T — 1) + 2kpol" InT..

Assume that the solution breaks down at a finite tilmée.,I"(¢*) = 0, then at this time
one has
[I')? = d§ — 4Ao = (h10 — A20)>.

Therefore finite time breakdown can not occukif«, 0) is complex. O

Remark 7.2. The above sufficient condition is satisfied, for example, by the initial ve-
locity with large enough vorticityo := u, — v,, associated with the scaled velocity

(o(Bx, y), vo(x, By)) with (uo({, ), vo(-, 1)) such thatwo| ~ B2 >> |dol, implying
Im(x10) # O.
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Remark 7.3. What happens with a possible blow-up if bail are real? Let* be afinite
blow-up time. It follows that the blow-up rate is necessarily of the forin- n1Lie.,

dt) ~ — as 1 t*.

[*

This follows from a simple analysis on the following relations

t

0>TI'(t*) = Ao — Ao = tﬂm,d(t)r(t)’ re) = exp(/o d(r)dr).

The loss of smoothness of the velocity field is closely related with the intricate
problem of weak convergence in the absence of strong convergence. The open question
in this context is how the nonlocal term affects the topology of the flow.

To gain further insight on the question of global regularity vs. finite time breakdown,
we continue with the-dimensional restricted Euler—Poisson dynamics (7.1)—(7.2). As
before, we subtract two consecutive eigenvalue equations in (7.2) to obtain

Un(hi —A)] + A +4; =0, for i#j.

Summation oveti, j) € Z, with Z defined in (6.8), gives

n
[Un(U;( ez (ki — 1) + N Zkk =0.
k=1

Combined with the density equatioiizp]’ + > ;_; A« = 0, this yields the following
global invariants

U ez (hi —Aj)

oN

The level set of the above invariants is not compact and the finite time singularity can
not be ruled out, and in fact, noncompactness implies that a certain portion of the phase
space must lead to finite time breakdown.

In order to perform a singularity analysis similar to the one provided in Sect. 6, we
consider a truncated system

n
pl==pY M.
i=1

M=-22 i=1...,n

= const (7.5)

Finding its dominant solution of the form

(P, ALy .oy Ap) ~ (wo, w1, ..., wn)fp

with p = (po, p1, ..., pp) @andr = t* — ¢ leads to
n
— wopor? = —wor™ Y " w;Thi,
j=1

—wipithi = —a)l-ztzl”'.
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This gives the balancev, p) with
wo=>Q-1,...,-D, p=(-n,-1,...,-1),

wherewg > 0 is chosen so that it is consistent with the positivity of the density.
Therefore, there exists a general Puiseux-series solution [17] based on the above
balance pair, and the blow-up may occur on the ortlyant-, - - - , —}. This, combined
with the noncompact integrals derived in (7.5), shows that the solution must exhibit
finite-time blow-up in the above orthant.
To summarize, we state the following.

Theorem 7.4 Global invariants fon > 2). Consider the restricted Euler—Poisson dy-
namics (7.1)-(7.2) with real initial data (o, 21(0), - - - , 1,(0)). Then, there exist [ 5]
global invariants

Ui pezi —2j) |1, neven
— = const, N =15 04d (7.6)
The general solution may break down at finitetimein the orthant {+, —, ..., —}.

Two particular cases are worth mentioning. In the 2-D case we have one global
invariant(x2 —11)/p = const, while the global invariantin the 3-D case, corresponding
toZ ={(1,2), (2, 3), (3,1}, is given by

(A1 — A2)(A2 — A3)(A3 — A1)
2

= const

8. Concluding Remarks

This work provides a general framework for several variants of the restricted Euler-
dynamics in the multi-dimensional case, extending the previous study initiated in [34].
The maintool in this paper is the spectral dynamics analysis. We should point out that this
analysis enables us to derive global invariants which are otherwise difficult to detect —
one such example was used with the viscous dusty medium modelin Sect. 5. In particular,
we obtain a family of global spectral invariants, interesting for their own sake, for both
restricted Euler equations (6.9)—(6.10) and the restricted Euler—Poisson equations (7.6).

Noncompactness of the level set of these global invariants implies the finite time
breakdown for a class of initial configurations, for which the local topology of the
restricted flow is analyzed. This was demonstrated in Theorem 6.5 in the context of the
restricted Euler equations. The finite time breakdown in this restricted model does not
necessarily bear on the full, non-restricted Euler equations. On the other extreme we have
the possible scenario of a global existence of smooth solutions for restricted models such
as restricted Euler—Poisson equations, for which we have the global existence once a
critical threshold condition is met. Here, we believe, the global existence does carry over
to the question of global existence for the full non-restricted Euler—Poisson equations.
In particular, in Sect. 7 we have shown the existence of a critical threshold for the 2D
restricted model, which in turn suggests the critical threshold phenomena for the full 2D
Euler—Poisson equations.

We close this section with the following comments:
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Remark 8.1. Suggesting other nonlocal restricted models. To gain further insight on the
fine structure of the flow we propose the following restricted nonlocal models for both
Euler—Poisson equations and the incompressible Euler-equations, the analysis of which
will appear elsewhere.

e Euler—Poisson equations. We take the diagonal part of the right side &f-tguation
in the Euler—Poisson dynamics (2.17), (2.18) to obtain

op+u-Vo+ ptrM =0, (8.1)
OM +u-VM+ M?=k(RiR;(0)8i)). (8.2)

o Restricted Euler-dynamics. A restricted nonlocal Euler dynamics
dM +u-VM+ M? = (R;R;(tr M?)5;). (8.3)
We note that of coursgtr M = 0 and the incompressibility is still invariant.

Remark 8.2. Is the spectral dynamics sufficient? We are aware that the spectral dynamics
does not tell the whole story for general fluid flows. The following example of a Burgers
shear-layer [19, 30] demonstrates this point. Here the simplest solutions of the inviscid
Euler equations are the Burgers shear-layer solutions with the velocity field given by

u = (h(XZﬂ t)7 Ov 0) + (07 —YXx2, VXS)
The velocity gradient tensor,

0hy O
Vu=|0-y 0],
00 vy

has eigenvalues-y, 0, y} which reflect strain effects, but otherwise are independent
of the arbitrary shear-layer effesixy, r). Thus, the eigenvalues can not capture the
complete behavior of this—dependent flow.

Remark 8.3. A main issue in this context is how the restricted Euler-type dynamics
relates to real flows and at what scale of motion it might apply. In the Navier—Stokes
equations, for instance, the nonlocal term should not be ignored at both large and small
scales. At large scales the pressure-driven eddy intersections are important and at small
scales the velocity gradients are limited by viscous diffusion. We refer the reader to [12]
for a detailed discussion on this issue. Another interesting issue left for future research
is the recovery of the gradient velocity tensor from the known spectral dynamics.

9. Appendix. Trace Dynamics for the Restricted Euler-Equations

This appendix is devoted to an alternative formulation of the spectral dynamics in terms
of the traces o*, k =1,---,n, whereM solves the restricted Euler equation

d 1
—M + M? = ZtrM? 1L, . (9.1)
dt n
This is motivated by the trace dynamics originally studied in [34}fet 3.

Here we seek an extension for the generdimensional setting, which is summarized
in the following
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Lemma 9.1.Consider the n-dimensional restricted Euler system (9.1) subject to the
incompressibility condition my := trM = 0. Then the traces m; = trM* for k =
2,---,n satisfy a closed dynamical system, see (9.2)—9.4) with (9.6) below, which
governs the local topology of the restricted flow.

Proof. Based on Eq. (9.1) the transport equations for higher produgfsuain be written
as

d 2
—M?%+2M°3 = ZMtrMm?,
dt n

d 3

— M3+ 3M* = ZMArm?,

dt n

d
EM" + M = M m2,

Taking the trace of the above equations and using= trM?2 with m1 = 0 leads to

%mz +2mz =0, 9.2)

© ma + 3ma = Sm% (9.3)

d

Emn +nmpy1 = my_1ma. (9.4)
To close the system, it remains to express.1 in terms of(my, ... , m,). To this end

we utilize the Cayley—Hamilton theorem
M" + @M + - guaM + gul =0, (9.5)

expressed in terms of the characteristic coefficients

1
g1=-m1=0, gq2= M2 43 = —m3/3, qa=—ma/4+m3/8,

Note that the's can be expressed interms(oefy, . . . , m,). (The procedure for comput-
ing these coefficients is given at the end of this appendix.) Using the Cayley—Hamilton
relation (9.5) one may reduee, 1 in (9.4) to lower-order products. In fact( x (9.5))
gives

Myy1+ gomp—1+ -+ + gu_1mp = 0. (9.6)
Substitution into (9.4) yields the closed system we sought for.

We now turn to consider two examples which demonstrate the above procedure.
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Example 1 (3-dimensional case = 3, see [34,5] In the three dimensional case one
has

1 1
qg1=0, g2=—-mp, 613=det(M)=—§m3,

2
hence 1 .
M3 - Esz - §m3 =0.
This gives
_ 1
mqg = 2m2
Thus a closed system is obtained,
d + 2 0 (9.7)
—m m3 = 0, .
i 3
d 1,

The invariant of E'n% = mg + const, could be easily obtained. We consider the phase

plane (m2, m3), except for the separatrixm% = m% all other solutions would not
approach the origin and have the finite time breakdown, see Fig. 9.1.

Example 2 (4-dimensional cadeln the four dimensional case one has

1 1 ma m%
= 0 = —— = — = = - -
q1 , 42 zmz, q3 3m3, q4 2 + 8
Hence )
1 1 mg  m5
M® — —moM* — —m3M — — + —==0
2mz 3m3 2 + 8

Multiplying by M and taking the trace we have

1 n 1 )
mg = 2m2m3 3m3m2_ 6m2m3.

Therefore the resulting closed system becomes

d

;M2 + 2m3 (9.9)
d 3

d 7

Em4 = —§m3m2. (911)

This system is still integrable with the following two invariants
3C
3m%=mg~|— Tlmz—l—Cz, 12my = 7m%+C1,

whereC1, C» are constants integrals of the flow.
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3-D Trace dynamics

le— = -~ R AN AN B -~ = = ==
=== < _— e = = e |
08— e—=—=—<=—" <= === —_—]

- e e = = = = = = <<= <= === =— =— . — _
0b6Fe— = = = = = =— =— = = = =<— =< = = «— =— . — _— _~

e e e e = = < = S < < < < < <« e e o .

Fig. 9.1.3-D Trace-dynamics in restricted Euler equations

Remark 9.2. Note that whenC; = 0, the projection of the trajectory on the, —ms3
plane has the same topology as that in the 3-D case. See Fig. 9.2 for the vector field in
(m2, m3, mg) Space.

To gain further insight on the formation of the singularity in this case, we try the dominant
solution of the formxt? with © = t* — ¢, for the truncated system

d

— = —2ma3,
;M2 3
—m3 = —-m5,

FTR Y

d 7
;a4 = —gmamy.

A simple computation gives

p=(-2 -3 -4, a= (4, _4, %8)

which shows that the flow may diverge in the orthéht —, +}.
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4-D Trace dynamics

Fig. 9.2.4-D Trace-dynamics in restricted Euler equations

Remark 9.3. The above examples demonstrate the difficulty in deriving the global in-
variants for arbitraryn > 3 equations, without the insight provided by the spectral
dynamics.

We now conclude this appendix by presenting a procedure of computing the coeffi-
cients in the characteristic polynomial for a given matrix.

Lemma 9.4.Let A be a square matrix of order n; its characteristic polynomial reads

n

detl — A) = an_kx".
k=0

Then g; = tr(A7(A)), where A/ (A) isthe j tensor product of A.

Proof. We note that foe = —A~1,
n
det(/ +€A) = Z(—l)quek.
k=0

On the other hand, ik| is small, then

tr A¥

trlog(l +€A) = Z(—1)’<+1 .

k=1
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converges. These two relations when combined with the identity

det(/ + €A) = exp(trlog(I + € A))

yield

n o0 trAk
D Dfqret =exp| 3 (D=
k=0 k=1

Equating the same powers©bn both sides gives

qo =1,
q1 = —ay,
2

ap af
2___+_7
g 22

az  aiaz  aj
g3=—— +—"— =,

3772 3

as  ajaz a5 adlay af
Ga=——+——+ 2 — + 1.,

wherea, = trAX. This procedure gives the expression of eaghn terms ofq, for
k=1,---,n.

Acknowledgements. Research was supported in part by ONR Grant No. N00014-91-J-1076 (ET) and by NSF
grant #DMS01-07917 (ET, HL). We thank Noga Alon for enlightening discussion on counting the different
combinatorial arrangements of global invariants in Sect. 6.2.

References

1.

2.

10.
11.
12.

13.
. Liu, H., Tadmor, E.: Critical thresholds in a convolution model for nonlinear conservation laws. SIAM

Ashurst, W., Kerstein, A., Kerr, R., Gibson, C.: Alignment of vorticity and scalar gradient with strain rate
in simulated Navier—Stokes turbulence. Phys. FI3@2343 (1987)

Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler
equations. Commun. Math. Phyget, 61 (1984)

. Borue, V., Orszag, S.A.: Local energy flux and subgrid scale statistics in three-dimensional turbulence.

J. Fluid Mech 336, 1 (1998)

. Caselles, V.: Scalar conservation laws and Hamilton—-Jacobi equations in one-space variable. Nonlinear

Anal. 18, 461-469 (1992)

. Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids

A 4, 782-793 (1992)

. Chorin, A.:\orticity and Turbulence. New York: Springer-Verlag, 1994
. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton—-Jacobi equations. Trans. Am. Math. Soc.

277,142 (1983)

. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton—Jacobi

equations. Trans. Am. Math. Sd282, 487-502 (1984)

. Constantin, P., Fefferman, Ch., Majda, A.: Geometric constraints on potentially singular solutions for the

3D Euler equations. Commun. Partial Diff. Equatid@is 559 (1996)

Constantin, P., Lax, P.D. Majda, A.: A simple one-dimensional model for the three-dimensional vorticity

equation. Comm. Pure Appl. MatB8, 715-724 (1985)

Constantin, P.: Note on loss of regularity for solutions of the 3-D incompressible Euler and related
equations. Commun. Math. Phyi94, 311-326 (1986)

Chertkov, M., Pumir, A, Shraiman, B.: Lagrangian tetrad dynamics and the phenomenology of turbulence.
Physics of Fluidd 1, 2394-2410 (1999)

Evans, L.C.Partial Differential Equations. Rhode Island: AMS Providence, 1998

J. Math. Anal.33, 1323-1343



466 H. Liu, E. Tadmor

15. Engelberg, S., Liu, H., Tadmor, E.: Critical Thresholds in Euler—Poisson Equations , Indiana Univ. Math.
J.50, 109-157 (2001)

16. E, W, Sinai, Y.: Recent results on mathematical and statistical hydrodynamics. Preprint (2000)

17. Goriely, A., Hyde, C.: Necessary and sufficient conditions for finite time singularities in ordinary differ-
ential equations. J. Diff. EQL61, 422—448 (2000)

18. Grassin, M.: Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. M&th. J.
1397-1432 (1998)

19. Galanti, B., Gibbon, J.D., Heritage, M.: Vorticity alignment results for the three-dimensional Euler and
Navier—Stokes equations. Nonlinearity, 1675-1694 (1997)

20. Grassin, M., Serre, D.: Existence de solutions globales et réguliéres aux équations d’'Euler pour un gaz
parfait isentropique. C. R. Acad. Sci. Paris Sér. | M&26, 721-726 (1997)

21. Guo,Y.: Smooth irrotational flows in the large to the Euler—Poisson systﬁﬁﬁ'h Comm. Math. Phys.
195, 249-265 (1998)

22. Jin, S., Xin, Z.: Numerical passage from systems of conservation laws to Hamilton—Jacobi equations,
relaxation schemes. SIAM J. Numer. Anah, 2385-2404 (1998)

23. Kruzkov, S.N.: First order quasilinear equations in several independent variables. Mat. 8ho2dik—
243 (1970)

24. Kruzkov, S.N.: Generalized solutions to the Hamilton—Jacobi equations of Eikonal type, |. M2Z, Sb.
406-446 (1975) (in Russian)

25. Lions, P.L.:Generalized solutions of Hamilton-Jacobi equations, Pitmann Res. Notes Math. S&9.
Harlow, UK: Longmann, 1982

26. Lions, P.L.: Mathematical Topics in Fluid Mechanics : Incompressible Models. Oxford Lecture Series
in Mathematics and Its Application3, Vols. 1-2, Oxford: Oxford Univ. Press, 1996

27. Lin,C.-T., Tadmor, E.: High-Resolution Non-Oscillatory Central Schemes for Hamilton—-Jacobi equations.
SIAM J. Sci. Comput21, 2163-2186 (2000)

28. Lin, C.-T., Tadmor, E.:Ll—StabiIity and Error Estimates for Approximate Hamilton—Jacobi Solutions.
Numer. Math.87, 701-735 (2001)

29. Liu,H.-L., Tadmor, E.: Critical Thresholds in two-dimensional restricted Euler—Poisson equations. UCLA
CAM report 02-07, http://www.math.ucla.edu/applied/cam/index.html

30. Majda, A.: Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math.
39,187 (1984)

31. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys.
101, 475-485 (1985)

32. Souganidis, P.E.: (private communication).

33. Tadmor, E.: On a new scale of regularity spaces with applications to Euler’'s equations, Nonligarity
513-532 (2001)

34. Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible flow: J. Phys.
(Paris)43, 837 (1982)

35. Yudovich, V.I.: On the loss of smoothness of the solutions of the Euler equations and inherent instability
of flows of an ideal fluid. Chao%0, 705—-719 (2000)

36. Zeldovitch,Ya.B.: Gravitational instability: An approximate theory for large density perturbations. Astron.
and Astrophys5, 84—-89 (1970)

Communicated by P. Constantin



