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Whenever you can settle a question by explicit construction, be
not satisfied with purely existential arguments.

Hermann Weyl [43, p. 326]

Abstract

We construct uniformly bounded solutions for the equations divU D f and
curlU D f in the critical cases f 2 Ld# .T

d ;R/ and f 2 L3# .T
3;R3/, respec-

tively. Criticality in this context manifests itself by the lack of a linear solution
operator mapping Ld# 7! L1.Td /. Thus, the intriguing aspect here is that
although the problems are linear, construction of their solutions is not.

Our constructions are special cases of a general framework for solving linear
equations of the form LU D f , where L is a linear operator densely defined in
Banach space B with a closed range in a (proper subspace) of Lebesgue space
L
p
# .�/, and with an injective dual L�. The solutions are realized in terms of a

multiscale hierarchical representation, U D
P1
jD1 uj , interesting for its own

sake. Here, the uj ’s are constructed recursively as minimizers of

ujC1 D arg min
u

˚
kukB C �jC1krj � Lukp

Lp.�/

	
;

where the residuals rj WD f �L.
Pj
kD1 uk/ are resolved in terms of a dyadic se-

quence of scales �jC1 WD �12
j with large enough �1 >� kf k

1�p
Lp

. The nonlin-

ear aspect of this construction is a counterpart of the fact that one cannot linearly

solve LU D f in critical regularity spaces. © 2016 Wiley Periodicals, Inc.

1 Introduction and Statement of Main Results
We begin with a prototype example for the class of equations alluded to in the

title of the paper. Let Ld# .T
d / denote the Lebesgue space of periodic functions

with zero mean over the d -dimensional torus Td . Given f 2 Ld# .T
d /, we seek a

uniformly bounded solution of the problem

(1.1) divU D f; U 2 L1.Td ;Rd /:

The classical elliptic solution of the first half of (1.1), U D r��1f , lies in
W
1;d

# .Td /, which may fail to satisfy the uniform bound sought in the second
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half of (1.1). Thus, the question is whether (1.1) admits a solution that gains uni-
form boundedness, kU kL1 . kf kLd , at the expense of giving up on the irro-
tationality condition curlU D 0. This question was addressed by Bourgain and
Brezis [7, prop. 1]. They proved that (1.1) admits uniformly bounded solutions
for all f 2 Ld# .T

d /, with the intricate aspect that a solution operator mapping
Ld# 7! L1 must be nonlinear; in particular, therefore, the uniform boundedness of
an irrotational elliptic solution must fail. The existence of such uniformly bounded
solutions was proved in [7] by using a straightforward duality argument based on
the closed range theorem.

The purpose of this paper is to present an alternative approach for the existence
of such solutions. Our approach is constructive: the solution U is constructed as
a hierarchical sum, U D

P1
jD1 uj , where the fuj g’s are computed recursively as

appropriate minimizers,

ujC1 D arg min
u

�
kukL1 C �12j





f � div
� jX
kD1

uk C u
�



d

Ld

�
; j D 0; 1; : : : ;

and �1 is a sufficiently large parameter specified below. As an example, we refer
to [37] for the computation of a uniformly bounded hierarchical solution of the
equation divU D �G with G WD x1jln r j1=3�.r/ 2 L2#.T

2/ where �.�/ is a
radial cutoff away from the origin [7, sec. 3, remark 7]. The elliptic solution, U D
rG, has a fractional logarithmic growth at the origin, whereas the computation
confirms that the hierarchical solution U D

P
uj remains uniformly bounded,

kU kL1 . k�GkL2 <1.
The above construction is in fact a special case of our main result that applies to

general linear problems of the form

(1.2) LU D f; f 2 L
p
# .�/; � � Rd ; 1 < p <1:

Here, L W B 7! L
p
# .�/ is a linear operator densely defined on a Banach space B

with a closed range inLp# .�/. The subscript f�g# indicates an appropriate subspace
of Lp,

L
p
# .�/ D L

p.�/ \ Ker.P/;
where P W Lp 7! Lp is a linear operator whose null is “compatible” with the range
of L so that the dual of L is injective; namely, there exists ˇ > 0 such that

(1.3) kg � P�gkLp0 � ˇkL
�gkB� 8g 2 Lp

0

.�/:

The closed range theorem combined with the open mapping principle tells us that
if the a priori duality estimate assumed in (1.3) holds, then equation (1.2) admits
a solution, kU kB . 
kf kLp with a constant 
 D 
.ˇ; p; d/. Our main result
explains the existence of such U ’s by explicit construction.

THEOREM 1.1. Fix 1 < p <1 and assume that the a priori estimate (1.3) holds.
There exists 
 < 1 (depending on p and linearly on ˇ) such that for any given
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f 2 L
p
# .�/, the equation LU D f admits a hierarchical solution of the form

U D
P1
jD1 uj 2 B,

(1.4) kU kB � 
kf kLp ; 
 <1:

Here, the fuj g are constructed recursively as minimizers of

(1.5) ujC1 D arg min
u

�
kukB C �jC1





f � L
� jX
kD1

uk C u
�



p

Lp

�
; j D 0; 1; : : : ;

where f�j gj�1 is a dyadic sequence, �jC1 WD �12j with �1 � ˇkf k
1�p
Lp .

Remark 1.2 (Exponential Convergence). The description of U as the sum U DP
uj provides a multiscale hierarchical decomposition of a solution for a (1.2) for

rapidly increasing sequence of scales, �jC1 D �1�
j with any � > 1. The role

of the f�j g as the different scales associated with the uj is reflected through the
exponential decay bound (consult (4.23) below)

kuj kB .
�jC1

�
p0

j

� kf kLp#
��

j
p�1 ; �jC1 D �1�

j
�

�j

kf k
p�1

L
p
#

; 1 < p <1:

For simplicity, we limit our discussion to the dyadic case � D 2.

Remark 1.3 (On the A Priori Duality Estimate (1.3)). The a priori estimate (1.3) is
exactly what is needed for the hierarchical construction

P
uj to converge. It should

be emphasized, however, that the construction does not require knowledge of the
precise value of the constant ˇ appearing in estimate (1.3). Indeed, the parameter ˇ
enters through the initial scale, �1, which is to be chosen large enough,

�1 � ˇkf k
1�p
Lp ;

so that by Lemma A.3, it dictates a nontrivial first hierarchical step,

u1 D arg min
u

˚
kukB C �1kf � LukpLp

	
:

What happens if the initial scale �1 is underestimated relative to an unknown
value of ˇ? Then, as noted in Lemma A.2 below, the variational statement (1.5)
will yield zero hierarchical terms, uj � 0 for an increasing sequence of scales
�12

j ; j D 1; 2; : : : , until reaching the critical scale such that �12j0 >
� ˇkf k

1�p
Lp ,

which will dictate the first nontrivial step of the hierarchical decomposition, U DP
jDj0

uj . In this sense, the construction of a hierarchical solution U D
P

uj is
independent of the precise value of ˇ in (1.3): the latter is only needed to guarantee
that the hierarchical construction will indeed pick up the first nontrivial minimizer
after finitely many steps j0.

Remark 1.4 (The Limiting Cases p D 1;1). The Lp-valued hierarchical con-
structions in Theorem 1.1 can be extended to a more general setup of operators
valued in Orlicz spaces (outlined in Remark 4.8 below). The limiting cases, how-
ever, are excluded; for example, there exist no PW 1;p solutions of divU D f for
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general f 2 Lp with p D 1;1 [7, sec. 2], [14]. The iterative aspect of the
hierarchical construction is reminiscent of the Artola and Tartar construction of
Lp.R/-functions for the end case p D 1 as a limiting case for interpolation of
W 1;1.R2/-traces [39, sec. II], [17].

L2-based hierarchical decompositions were introduced by us in the context of
image processing [35, 36] and motivated the present construction of solutions in
the more general setup of the closed range theorem. We demonstrate such hierar-
chical constructions of the solution to two important examples of critical regularity
studied by Bourgain and Brezis [7, 8]. These are the constructions of uniformly
bounded solutions to divU D f 2 Ld# .T

d /, discussed in Section 2, and the con-
struction of uniformly bounded solutions to curlU D f 2 L3#.T

3;R3/, discussed
in Section 3. The critical regularity in these cases manifests itself in terms of the
lack of right inverses for L bounded on the corresponding critical Lp spaces, or
equivalently, KerL that cannot be complemented in L1 [7, sec. 3], [3, sec. 5.3].

The main novelty of theorem 1.1 is using these hierarchical decompositions for
explicit construction of solutions for general equations governed by operators with
a closed range in Lp# ; 1 < p <1. The proof of the special case p D 2 is given in
Section 4.1: here, we trace precise bounds and clarify their role in the hierarchical
construction. The L2-case serves as the prototype case for the general setup of
hierarchical constructions in Lp-spaces in Section 4. Finally, the characterization
of minimizers, such as those encountered in (1.5), is summarized in the Appendix
on _-minimizers.

2 Bounded Solutions of div U D f 2 L
p

# .�; R/

Let P denote the averaging projection Pg WD xg, where xg is the average value
of g. Given f 2 Lp# .T

d / WD fg 2 Lp.Td / j xg D 0g, then according to Theo-
rem 1.1, we can construct hierarchical solutions of

(2.1) divU D f; f 2 L
p
# .T

d /; 1 < p <1;

in an appropriate Banach space, U 2 B, provided the corresponding a priori esti-
mate (1.3) holds; namely, there exists a constant ˇ > 0 (which may vary, of course,
depending on p, d , and B) such that

(2.2) kg � xgkLp0 � ˇkrgkB� 8g 2 Lp
0

.Td /:

We specify four cases of such relevant B’s.

Case 1. Solution of divU D f 2 Lp# with U 2 PW 1;p.
Since

kg � xgkLp0 .Td / � krgk PW �1;p0 .Td ;Rd / 8g 2 L
p0.Td /;

we can construct hierarchical solutions of (2.1) in B D PW 1;p.Td ;Rd /, 1 <

p < 1. This is the same integrability space of the irrotational solution of (2.1),
r��1f 2 PW 1;p.Td ;Rd /.
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Case 2. Solution of divU D f 2 Lp# with U 2 Lp
�

.
By the Sobolev inequality, for all g 2 Lp

0

.Td / there holds

(2.3) kg� xgkLp0 .Td / � ˇkrgkL.p�/0 .Td ;Rd /;
1

p�
D
1

p
�
1

d
; d � p <1I

the case p D d corresponds to the isoperimetric Gagliardo-Nirenberg inequality
[13, 15] kg � xgkLd 0 .Td / � ˇkgkBV.Td /. We distinguish between two cases.

(i) The case d < p <1: the equation divU D f 2 Lp# .T
d / has a solution

U 2 Lp
�

.Td ;Rd /. This is the same integrability space of the irrotational solution
r��1f 2 W 1;p.Td ;Rd / � Lp

�

.Td ;Rd /.
(ii) The case d D p: the equation divU D f 2 Ld# .T

d / has a solution
U 2 L1.Td ;Rd /. This is the prototype example discussed in the beginning of the
introduction. According to the intriguing observation of Bourgain and Brezis [7,
prop. 2], there exists no bounded right inverseK W Ld# 7! L1 for the operator div,
and therefore there exists no linear construction of solutions f 7! U (in particular,
r��1f cannot be uniformly bounded). Theorem 1.1 provides a nonlinear hier-
archical construction of such solutions. The computation of such L1-solutions
using hierarchical iterations in the two-dimensional critical case was carried out
in [37].

Remark 2.1 (Homogeneity). We rewrite the hierarchical iteration (1.5) with �1 D
Ckf k

1�p
Lp in the form

ŒujC1; rjC1� D arg min
LuCrDrj

(
kukB C C2j



r

p
Lp

kf k
p�1
Lp

)
;

rj WD

(
f; j D 0;

f � L
�Pj

kD1
uk
�
; j � 1:

Observe that if Œu1; r1� is the first minimizer associated with r0 D f , then the
corresponding first minimizer associated with f̨ is Œ˛u1; ˛r1�, and recursively, the
next hierarchical components are Œ˛uj ; ˛rj �. Thus, as noted in [36, remark 1.1],
the hierarchical solution is homogeneous of degree 1: if U D Uf specifies the
(nonlinear) dependence of the hierarchical solution on f , then Uf f̨ g D ˛Uf .

Case 3. Solution of divU D f 2 Ld# with U 2 L1 \ PW 1;d .
A central question raised and answered in [7] is whether (2.1) has a solution that

captures the joint regularity, U 2 B D L1 \ PW 1;d .Td ;Rd /. To this end, one
needs to verify the duality estimate (2.2), which now reads

(2.4) kg � xgkLd 0 .Td / � ˇkrgkL1C PW �1;d 0 .Td ;Rd / 8g 2 L
d 0.Td /:

This key estimate was proved in [7]. Thus, Theorem 1.1 converts (2.4) into a
constructive proof of the following:
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COROLLARY 2.2. The equation divU D f 2 Ld# .T
d / admits a solution U 2

L1 \ PW 1;d .Td ;Rd /, which is given by the hierarchical decomposition U DP
jD1 uj . This is constructed by the refinement step

ujC1 D arg min
u

�
kuk

L1\ PW 1;d C �12
j





f � div
� jX
kD1

uk C u
�



d

Ld

�
;

j D 0; 1; : : : ;

with sufficiently large �1 � ˇkf k1�dLd
.

Remark 2.3. We comment here on the key role of the duality estimate (2.4). The
case d D 2 was proved by a direct method outlined in [7, sec. 4]; alternative two-
dimensional proofs were given by Maz0ya [26] and Mironescu [28]. For d > 2,
however, the derivation of (2.4) was proved in Bourgain and Brezis [7, theorem 1]
as a byproduct of their construction of L1 \ PW 1;d solutions for divU D f (!).
The construction, based on an intricate Littlewood-Paley decomposition, is rather
involved [7, sec. 6], and to our knowledge, a simpler, direct derivation of (2.4) is
still open. Thus, Corollary 2.2—which still depends on the construction of Bour-
gain and Brezis to justify (2.4)—offers a simpler alternative for the construction of
such L1 \ PW 1;d -bounded solutions in terms of the minimizers,

_div.r; �/ WD infu
˚
kuk

L1\ PW 1;d C �kr � div ukd
Ld

	
:

Computations of the relatedL1-based minimizers were carried out in [18,23], and
it would be desirable to develop efficient algorithms to compute the corresponding
minimizers of _div.r; �IL

1 \ PW 1;d /. Spectral approximation of such minimizers
was discussed in [25].

Since the proof of the dual estimate (2.4) in d > 2 dimensions is indirect, a
specific value of ˇ is not known. As noted in remark 1.3, however, the hierarchical
construction can proceed without a priori knowledge of the precise value of ˇ: if
one sets �1 D kf k1�dLd

, and this initial scale underestimates a correct value of, say,
ˇ > 1, then it will take at most j0 � log.ˇ/ steps before picking up nontrivial
terms in the hierarchical decomposition, U D

P
jDj0

uj .

Case 4. Solution of divU D f 2 Ld# .�/ with U 2 L1 \ PW 1;d
0 .�/.

The constructions of bounded solutions for (2.1) extend to the case of Lipschitz
domains, � � Rd ; see [7, sec. 7.2]. For future reference we state the following:

COROLLARY 2.4. Given f 2 Ld# .�/ WD fg 2 L
d .�/ j

R
� g.x/dx D 0

	
, the

equation divU D f admits a solution U 2 L1 \ PW 1;d
0 .�;Rd / such that

kU k
L1\ PW 1;d .�/

� 
kf kLd .�/:
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It is given by the hierarchical decomposition U D
P
jD1 uj , which is constructed

by the refinement step

ujC1 D arg min
uWuj@�D0

�
kuk

L1\ PW 1;d .�/
C �12

j





f � div
� jX
kD1

uk C u
�



d

Ld .�/

�
;

j D 0; 1; : : : ;

with sufficiently large �1 >
� ˇkf k

1�d
Ld .�/

.

3 Bounded Solution of curl U D f 2 L3
# .T 3; R3/

Let L3#.T
3;R3/ denote the L3-subspace of divergence-free 3-vectors with zero

mean. We seek solutions of

(3.1) curlU D f; f 2 L3#.T
3;R3/;

in an appropriate Banach spaceU 2 B. We appeal to the framework of hierarchical
solutions in Theorem 1.1, where P W L3.T3;R3/ 7! L3.T3;R3/ is the irrotational
portion of Hodge decomposition with a dual, P�g WD r��1 div g � g. According
to Theorem 1.1, we can construct hierarchical solutions U 2 B of (3.1) provided
(1.3) holds,

(3.2) kg � P�gkL3=2 � ˇkcurl gkB� ; g 2 L3=2.T3;R3/:

Since kg�P�gkL3=2 . kcurl gk PW �1;3=2 , we can construct hierarchical solutions
of (3.1) in PW 1;3. This has the same integrability as the divergence-free solution of
(3.1), .��/�1 curl f. A more intricate question is whether (3.1) admits a uniformly
bounded solution, since such a solution cannot be constructed by a linear proce-
dure. These solutions were constructed by Bourgain and Brezis in [8, cor. 80],
which in turn imply the key a priori estimate: for all g 2 L3=2.T3;R3/ such that
div g D g D 0 there holds,

(3.3) kg � P�gkL3=2.T3;R3/ � ˇkcurl gk
L1C PW �1;3=2.T3;R3/:

Granted (3.3), Theorem 1.1 offers a simpler alternative to the construction in [8]
based on the following hierarchical decomposition:

COROLLARY 3.1. The equation curlU D f 2 L3#.T
3;R3/ admits a solution U 2

L1 \ PW 1;3.T3;R3/,

kU k
L1\ PW 1;3.T3;R3/ � 
kfkL3.T3;R3/;

which can be constructed by the (nonlinear) hierarchical expansion, U D
P

uj ,

ujC1 D arg min
u

�
kuk

L1\ PW 1;3 C �12
j





f � curl
� jX
kD1

uk C u
�



3

L3.T3;R3/

�
;

j D 0; 1; : : : ;

with sufficiently large �1 � ˇkfk�2L3.T3;R3/.
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4 Construction of Hierarchical Solutions for LU D f 2 L
p

# .�/

4.1 A Prototype Example: Hierarchical Solution of div U D f 2 L2
# .T2/

We begin our discussion on hierarchical constrictions with a two-dimensional
prototype example of

(4.1) divU D f; f 2 L2#.T
2/ WD

�
g 2 L2.T2/

ˇ̌̌ Z
T2

g.x/dx D 0

�
:

Our starting point for the construction of a uniformly bounded solution of (4.1) is
a decomposition of f ,

(4.2a) f D div u1 C r1; f 2 L2#.T
2/;

where Œu1; r1� is a minimizing pair of the functional,

(4.2b) Œu1; r1� D arg min
div uCrDf

˚
kukL1 C �1krk2L2

ˇ̌
u 2 C 0.T2/; r 2 L2#.T

2/
	
:

Here �1 is a fixed parameter at our disposal: if we choose �1 large enough, �1 >
1=.2kf kBV/, then according to Lemma A.3 below (with '.r/ D 2r and L�D �r),
(4.2b) admits a minimizer Œu1; r1� satisfying

krr1kM D kr1kBV D
1

2�1
;

where the space of Radon measures M arises here as the dual of C 0. To proceed
we invoke the isoperimetric Gagliardo-Nirenberg inequality, which states that there
exists ˇ > 0 (any ˇ � 1=

p
4� will do) such that for all bounded variation g’s with

zero mean,

(4.3) kgkL2 � ˇkgkBV;

Z
T2

g.x/dx D 0:

Since f has a zero mean, so does the residual r1 and (4.3) yields

kr1kL2 � ˇkr1kBV D
ˇ

2�1
:

We conclude that the residual r1 2 L
2
#.T

2/, and we can therefore implement the
same variational decomposition of f in (4.2) and use it to decompose r1 with scale
� D �2 > �1 D 1=.2kr1/kBV. This yields

r1 D div u2 C r2;

Œu2; r2� D arg min
div uCrDr1

˚
kukL1 C �2krk2L2

ˇ̌
u 2 C 0.T2/; r 2 L2#.T

2/
	
:

Combining this with (4.2a) we obtain f D divU2 C r2, where U2 WD u1 C u2
is viewed as an improved approximate solution of (4.1) in the sense that it has a



CONSTRUCTION OF HIERARCHICAL SOLUTIONS IN CRITICAL REGULARITY SPACES 1095

smaller residual r2,

kr2kL2 � ˇkr2kBV D
ˇ

2�2
;

when compared with the previous residual ˇkr1kBV D ˇ=.2�1/. This process can
be repeated: if rj 2 L2#.T

2/ is the residual at step j , then we decompose it

(4.4a) rj D div ujC1 C rjC1;

where ŒujC1; rjC1� is a minimizer over all pairs .u; r/ 2 .C 0.T2/; L2#.T
2//,

(4.4b) ŒujC1; rjC1� D arg min
div uCrDrj

˚
kukL1 C �jC1krk2L2

	
; j D 0; 1; : : : :

For j D 0, the decomposition (4.4) is interpreted as (4.2) by setting r0 WD f . Note
that the recursive decomposition (4.4a) depends on the invariance of rj 2 L2#.T

2/:
if rj has a zero mean, then so does rjC1, and by (4.3) rjC1 2 L2#.T

2/. The iterative
process depends on a sequence of increasing scales, �1 < �2 < � � � < �jC1, which
are yet to be determined.

The telescoping sum of the first k steps in (4.4a) yields an improved approximate
solution Uk WD

Pk
jD1 uj :

(4.5) f D divUk C rk; krkkL2 � ˇkrkkBV D
ˇ

2�k
# 0; k D 1; 2; : : : :

The key question is whether the Uk’s remain uniformly bounded, and it is here
that we use the freedom in choosing the scaling parameters �k: comparing the
minimizing pair ŒujC1; rjC1� of (4.4b) with the trivial pair Œu � 0; rj � implies, in
view of (4.5),

kujC1kL1 C �jC1krjC1k2L2 � �jC1krj k
2
L2

�

8<:�1kf k
2
L2
; j D 0;

ˇ2�jC1

4�2
j

; j D 1; 2; : : : :

(4.6)

We conclude by choosing a sufficiently rapidly increasing �j such thatX
j

�jC1�
�2
j <1I

then the approximate solutions Uk D
Pk
1 uj form a Cauchy sequence in L1

whose limit, U D
P1
1 uj , satisfies the following:

THEOREM 4.1. Fix ˇ such that (4.3) holds. Then, for any given f 2 L2#.T
2/,

there exists a uniformly bounded solution of (4.1),

(4.7) divU D f; kU kL1 � 2ˇkf kL2 :



1096 E. TADMOR

The solution U is given by U D
P1
jD1 uj , where the fuj g’s are constructed recur-

sively as minimizers of

(4.8)

ŒujC1; rjC1� D arg min
div uCrDrj

˚
kukL1 C �12j krk2L2

	
;

r0 WD f; �1 D
ˇ

kf kL2
:

PROOF. With �j D �12
j�1 we have kUk � U`kL1 .

P
�jC1�

�2
j . 2�`,

k > `� 1. Let U be the limit of the Cauchy sequence fUkg; then kUj �U kL1C
kdivUj � f kL2 . 2�j ! 0, and since div has a closed graph on its domain
D WD fu 2 L1 W div u 2 L2.T2/g, it follows that divU D f . By (4.6) we have

kU kL1 �

1X
jD1

kuj kL1 � �1kf k2L2 C
ˇ2

4�1

1X
jD2

1

2j�3
D �1kf k

2
L2
C
ˇ2

�1
:

Here �1 > 1=.2kf kBV/ is a free parameter at our disposal: we choose �1 WD
ˇ=kf kL2 , which by (4.3) is admissible, �1 D ˇ=.kf kL2/ > 1=.2kf kBV/, and
(4.7) follows. �

Remark 4.2 (Energy Decomposition). A telescoping summation of the left inequal-
ity of (4.6) yields

1X
jD1

1

�j
kuj kL1 � kf k2L2 I

setting �j D ˇ2j�1=.2kf kL2/ we conclude the “energy bound”

(4.9)
1X
jD1

1

2j�1
kuj kL1 �

ˇ

2
kf kL2 :

In fact, a precise energy equality can be formulated in this case, using the character-
ization of the minimizing pair (consult Theorem A.1 below), 2.rjC1; div ujC1/ D
kujC1kL1=�jC1: by squaring the refinement step rj D rjC1C div ujC1, we find

krj k
2
L2
� krjC1k

2
L2
D 2.rjC1; div ujC1/C kdiv ujC1k2L2

D
1

�jC1
kujC1kL1 C kdiv ujC1k2L2 :

A telescoping sum of the last equality yields the following:

Corollary 4.3. Let U D
P1
jD1 uj 2 L1 be a hierarchical solution of divU D f ,

f 2 L2#.T
2/. Then

(4.10)
1

�1

1X
jD1

1

2j�1
kuj kL1 C

1X
jD1

kdiv uj k2L2# .T2/
D kf k2

L2# .T
2/
; �1 D

ˇ

2kf kL2
:

We mention two examples related to the two-dimensional setup of Theorem 4.1.
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Oscillations and Image Processing
As noted earlier, there exists no linear construction of solutions of (4.1) for

general f 2 L2. Yet, for the “slightly smaller” Lorenz space L2;1, we have

r��1f 2 L1; f 2 L
2;1
# .T2/:

(We note in passing that L2;1 is a limiting case for the linearity of f 7! U to
survive the L2;1-based nonlinearity result argued in the proof of [7, prop. 2]).
Thus, the nonlinear aspect of constructing hierarchical solutions for (4.1) becomes
essential for highly oscillatory functions such that f 2 L2nL2;1 (and in particular,
f … BV.T2/). Such f ’s are encountered in image processing in the form of noise,
texture, and blurry images [10, 27]. Hierarchical decompositions in this context
of images were introduced by us in [35] and were found to be effective tools in
image denoising, image deblurring, and image registration, [5,10,21,31,32,36,38],
including graph-based signals [19, 20]. Here, we are given a noisy and possibly
blurry observed image, f D LU C r 2 L2.R2/, and the purpose is to recover a
faithful description of the underlying “clean” image, U � “L�1”f , by denoising r
and deblurring L. The inverse “L�1”f should be properly interpreted, say, in the
smaller space BV.R2/ � L2.R2/, which is known to be well-adapted to represent
edges. The resulting inverse problem can solved by the corresponding variational
problem of [11, 12, 34],

(4.11) Œu; r� D arg min
LuCrDf

˚
kukBV C �krk2L2.R2/

	
;

which is a special case of Tikhonov regularization [29, 30, 40]. The .BV; L2/-
hierarchical decomposition corresponding to (4.11) reads [35, 36]

(4.12)
f ' LUm; Um D

mX
jD1

uj ;

ŒujC1; rjC1� D arg min
LuCrDrj

˚
kukBV C �12j krk2L2

	
:

The oscillatory nature of noise and texture in images was addressed by Y. Meyer
[27], who advocated replacing L2 with the larger space of “images” G WD ff j
div u D f; u 2 L1g. The equation div u D f arises here with one-signed measure
f ’s, and its L1 solutions were characterized in [27, sec. 1.14], [33]: the spaceGC
coincides with the Morrey space M 2

C
.�/:

M 2.�/ D

�
� 2M

ˇ̌̌ Z
Br

d� . r; 8Br � �

�
:
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For one-signed measures, M 2
C
.�/ coincides with Besov space PB�1;11 . The corre-

sponding Meyer’s energy functional then reads

Œu; r� D arg min
LuCrDf

˚
kukBV.�/ C �krk PB�1;11 .�/

	
I

numerical simulations with this model are found in [42].

L1.T2/-Bounds and PH �1.T2/-Compactness
Here is a simple application of Theorem 4.1. Let f 2 PH�1.T2/ be given. For

arbitrary g 2 PH 1.T2/ we have �jbg.�/ 2 L2#.T2/, and by Theorem 4.1, there exist
bounded Uij 2 L1.T2/ such that(

�1bg.�/ D �1bU 11.�/C �2bU 12.�/;
�2bg.�/ D �1bU 21.�/C �2bU 22.�/; kUij kL1 . kgk PH1.T2/:

Thus, expressed in terms of the Riesz transforms, bRj .�/ WD b .�/�j =j�j, we have

g D
1

2
.U11 C U22/C

1

2

�
R21 �R

2
2

�
.U11 � U22/CR1R2.U12 C U21/:

Since R21 � R
2
2 and R1R2 agree up to rotation, we conclude that: every g 2

PH 1.T2/ can be written as the sum

g D U1 CR1R2U2; kU1kL1 C kU2kL1 . kgk PH1.T2/ for all g 2 PH 1.T2/:

Here, U1; U2 are given by a linear combination of the Uij ’s in their Cartesian and
their rotated coordinates. The last representation shows that although an L1.T2/-
bound of f does not imply f 2 PH�1.T2/, f does belong to PH�1 if f and its
repeated Riesz transform, R1R2f , are L1-bounded.

COROLLARY 4.4. The following bound holds:

(4.13) kf k PH�1.T2/ . kf kL1.T2/ C kR1R2f kL1.T2/:

As an example, consider a family of divergence-free two-vector fields, u�.t; � / 2
L2.T2;R2/, which are approximate solutions of two-dimensional incompressible
Euler’s equations. One is interested in their convergence to a proper weak so-
lution, with no concentration effects [16]. It was shown in [24] that fu�g con-
verges to such a weak solution if the vorticity, !�.t �/ WD @1u�2.t; �/ � @2u

�
1.t; �/, is

compactly embedded in H�1.T2/. By Corollary 4.4, H�1-compactness holds if
fR1R2!

�.t; � /g ,! L1.T2/; consult [41].

4.2 Hierarchical Solutions for LU D f 2 L
p

# .�/: Approximate Solutions
We turn our attention to the construction of hierarchical solutions for equations

of the general form

(4.14) LU D f; f 2 L
p
# .�/; 1 < p <1:

A solution U is sought in a Banach space B WD fU W kU kB < 1g. The general
framework, involving two linear operators L and P is outlined below.
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The linear operator L is assumed to be densely defined on B with a closed graph
in Lp# WD L

p \ Ker.P/ for an appropriate P W Lp 7! Lp. We let L� W Lp0 7! B�

denote the formal dual of L, acting on Lp
0

with the natural pairing (effectively, L�

is acting on Lp
0

# WD L
p0 \ Ker.P/, since R.P�/ is in the null of L�)

hL�g;ui D .g;Lu/; g 2 D.L�/; u 2 B;

and let k � kB� denote the dual norm

kL�gkB� WD sup
u¤0

hL�g;ui
kukB

; g 2 D.L�/:

We begin by constructing an approximate solution of (4.14), U� W LU� � f ,
such that the residual r� WD f �LU� is driven to be small by a proper choice of a
scaling parameter � at our disposal. The approximate solution is obtained in terms
of minimizers of the variational problem,

(4.15) _.f; �/ WD inf
LuCrDf

˚
kukB C �krk

p
Lp W u 2 B; r 2 Lp#

	
:

In Theorem A.1 below, we show that if � is chosen sufficiently large,

(4.16) � >
1

kL�'.f /kB�
; '.f / WD p sgn.f /jf jp�1;

then the functional _.f; �/ in (4.15) admits a minimizer, u D u�, such that the size
of the residual, r� WD f � Lu�, is dictated by the dual statement

(4.17) kL�'.r�/kB� D
1

�
:

Fix the scale � D �1 > 1=kL�'.f /kB� . We construct an approximate solution,
LU1 � f; U1 WD u1, where u1 is a minimizer of _.f; �1/,

f D Lu1 C r1; Œu1; r1� D arg min
LuCrDf

_.f; �1/

Borrowing the terminology from image processing, we note that the corresponding
residual r1 contains “small” features that were left out of u1. Of course, whatever
is interpreted as small features at a given �1-scale may contain significant features
when viewed under a refined scale, say �2 > �1. To this end we assume that the
residual r1 2 L

p
# so that we can repeat the _-decomposition of r1, this time at the

refined scale �2:

r1 D Lu2 C r2; Œu2; r2� D arg min
LuCrDr1

_.r1; �2/:

Combining the last two steps, we arrive at a better two-scale representation of U
given by U2 WD u1 C u2 as an improved approximate solution of LU2 � f .
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Features below scale �2 remain unresolved in U2, but the process can be continued
by successive applications of the refinement step,

(4.18)
rj D LujC1 C rjC1; ŒujC1; rjC1� WD arg min

LuCrDrj
_.rj ; �jC1/;

j D 1; 2; : : : :

To enable this process we require the residuals rj to remain in Lp# . In view of the
dual bound (4.17), we therefore make the following assumption:

Assumption (A Closure Bound). There exists a constant � D �.p; d/ < 1 such
that the following a priori estimate holds:

(4.19) kgk
p
Lp � �kL

�'.g/k
p0

B� ; '.g/ D p sgn.g/jgjp�1:

We postpone the discussion of this bound to Theorem 4.5 below and continue
with the generic hierarchical step where ŒujC1; rjC1� is constructed as a mini-
mizing pair of _.rj ; �jC1/: since this minimizer is characterized by satisfying
kL�'.rjC1/kB� D 1=�jC1, the closure bound (4.19) implies that rjC1 2 Lp;
moreover, since rj and R.L/ are in Ker.P/,

rjC1 D rj � LujC1 2 Ker.P/;

and we conclude that rjC1 2 L
p
# . In this manner, the iteration step Œuj ; rj � 7!

ŒujC1; rjC1�, is well-defined on B � Lp# . After k such steps we have

f D Lu1 C r1
D Lu1 C Lu2 C r2
:::

D Lu1 C Lu2 C � � � C Luk C rk :

We end up with a multiscale hierarchical representation of an approximate so-
lution of (4.14) Uk WD

Pk
jD1 uj 2 B such that LUk ' f . Here the approximate

equality' is interpreted as the convergence of the residuals,

kL�'.rk/kB� D
1

�k
! 0; rk WD f � LUk;

dictated by the sequence of scales, �1 < �2 < � � � < �k , which is at our disposal.
We summarize with the following theorem.

THEOREM 4.5 (Approximate Solutions). Consider L W B 7! L
p
# .�/ and assume

its dual is injective so that (1.3) holds,

kg � P�gkLp0 � ˇkL
�gkB� 8g 2 Lp

0

.�/;

for some P W Lp 7! Lp whose range is “compatible” with the range of L. Then,
the equation LU D f 2 Lp# .�/ admits an approximate solution Uk 2 B such that
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LUk ' f in the sense that the residuals rk WD f � LUk satisfy

(4.20) kL�'.rk/kB� D
1

�k
; rk WD f � LUk :

The approximate solution admits the hierarchical expansion Uk D
Pk
jD1 uj ,

where the uj ’s are constructed as minimizers,

ŒujC1; rjC1� D arg min
LuCrDrj

˚
kukB C �jC1krk

p
Lp

	
; r0 D f:

PROOF. We verify that the a priori duality estimate assumed in (1.3) implies the
closure bound sought in (4.19). Fix g 2 Lp# .�/. Then '.g/ WD p sgn.g/jgjp�1 2
Lp
0

.�/, and since g 2 Ker.P/ we find

p

Z
�

jgjp dx D

Z
�

g'.g/dx D

Z
�

g.'.g/ � P�'.g//dx

� kgkLpk'.g/ � P�'.g/kLp0 :

The a priori dual estimate assumed in (1.3) then yields

pkgk
p
Lp � kgkLpk'.g/ � P�'.g/kLp0

� ˇkgkLpkL�'.g/kB� 8g 2 L
p
# .�/;

and the closure bound (4.19) follows, with � WD .ˇ=p/p
0

,

(4.21) kgk
p�1
Lp �

ˇ

p
kL�'.g/kB� :

This allows us to proceed with the hierarchical iterations (4.18),

Œuj ; rj � 2 B � Lp# 7! ujC1; rjC1�

WD arg min
LuCrDrj

_.rj ; �jC1/ 2 B � Lp# ; j D 1; 2; : : : ;

starting with Œu0; r0� D Œ0; f �. A telescoping summation of (4.18) yields an ap-
proximate solution Uk D

Pk
jD1 uj such that its residual rk D f � LUk satisfies

(4.20). �

Remark 4.6 (On the Closure Bound). As an example for the closure bound (4.21)
for L’s with an injective dual, consider the critical case of L D div W L1 7!
Ld .Td /, and let P denote the zero averaging projection Pg D g � xg. The corre-
sponding dual estimate (1.3) reads

kg � xgkLd 0 . kL�gkBV:

This is the isoperimetric Gagliardo-Nirenberg inequality, and it implies, along the
lines of Theorem 4.5, the following closure bound corresponding to (4.19):

kgkd�1
Ld .Td / . ksgn.g/jgjd�1kBV.Td / 8g 2 L

d
# .T

d /:
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Equivalently, we can rewrite this inequality in terms of '.g/ D p sgn.g/jgjp�1 as
k'.g/kLd 0 . k'.g/kBV.Td /. The observant reader will notice that the latter is a
slight variant of the Gagliardo-Nirenberg inequality, since for d > 2, '.g/ need
not have zero average; only g does.

4.3 From Approximate to Exact Solutions
We now turn to showing that the approximate solutions, Uk D

Pk
jD1 uj , con-

verge to a limit U D
P1
jD1 uj , which is an exact solution sought for (4.14), uni-

formly bounded in B.
We start by comparing the minimizer ŒujC1; rjC1� of _.rj ; �jC1/ in (4.18) with

the trivial pair Œu � 0; rj �, which yields the key refinement estimate

(4.22) krj k
p
Lp �

1

�jC1
kujC1kB C krjC1k

p
Lp ; j D 0; 1; : : : :

In particular, the closure bound (4.19) followed by (4.20) implies

(4.23) kujC1kB � �jC1krj k
p
Lp

8<:D �1kf k
p
Lp ; j D 0;

� �jC1�kL�'.rj /k1=p
0

B� �
�jC1�

�
p0

j

; j � 1;

where f�j g is an increasing sequence of scales at our disposal. Setting �j D
�12

j�1, we conclude that the approximate solutions, Uk D
Pk
1 uj , form a Cauchy

sequence:

kUk � U`kB .
kX

jD`C1

2j.1�p
0/
� 1; k > `� 1;

which has a limit, U D
P1
jD1 uj , such that kLUj � f kpLp ! 0. Since L has

a closed graph in Lp, LU D f . It remains to show that the limit U has a finite
B-norm, which brings us to the following proof:

PROOF OF THEOREM 1.1. Using (4.23) with � D .ˇ=p/p
0

yields

kU kB � ku1kB C
1X
jD1

kujC1kB � �1kf k
p
Lp C

1X
jD1

�12
j��

�12j�1
�p0

� �1kf k
p
Lp C

�
ˇ

p

�p0 2p
0

�
p0�1
1 .2p

0�1 � 1/
:

Set �1 WD ˇkf k
1�p
Lp . Such a choice of �1 satisfies the admissibility requirement

(4.16). Indeed, according to (4.21), kgkp�1Lp �
ˇ
p
kL�'.g/kB� ; hence

�1 D ˇkf k
1�p
Lp >

1

kL�'.f /kB�
;
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and the uniform bound (1.4) follows:

�(4.24) kU kB � 
kf kLp#
; 
 D ˇ

�
1C

�
2

p

�p0 1

2p
0�1 � 1

�
:

Remark 4.7. We summarize the two main aspects in the hierarchical construc-
tion.

(i) The existence of minimizers fuj g of _.rj�1; �j / follows from basic prin-
ciples in uniformly convex Banach spaces. We use here the mere existence of such
minimizers instead of standard duality-based existence arguments in the closed
range theorem, e.g., [46, VII.5], [44, I.A.13-14], [9, theorem 2.20]. We note in
passing that existence of minimizers and duality principles in uniformly convex
Banach spaces can be deduced from each other [22].

(ii) The exponential decay of these minimizers and hence the uniform bound
of their sum, kU kB �

P
kuj kB . kf kLp# , follow from the key a priori dual

estimate (1.3) used in the refinement step (4.23).

Remark 4.8 (Extension to Orlicz Spaces). The hierarchical construction extends to
equations valued in more general Orlicz spaces,

LU D f 2 Lˆ# WD Lˆ \ Ker.P�/;

Lˆ D

�
f W Œf �ˆ WD

Z
�

ˆ.jf j/dx <1

�
;

(4.25)

for a proper N -function ˆ satisfying the �2 condition [2, sec. 8], [6, sec. 4.8].
Assume that the following a priori closure bound holds: there exists an increas-

ing function � W RC 7! RC such that

Œg�ˆ � �.kL�'.g/kB/;
Z 1

sD0

�.s/

s2
ds <1:

Then the problem (4.25) admits the bounded hierarchical solution U D
P

uj
such that kU kB . Œf �ˆ. The closure bound enters through the initial scale �1 >

�

1=��1.Œf �ˆ/. The Lp setup corresponds to ˆ.t/ D tp and �.s/ � sp
0

.

Remark 4.9 (Sharp Bounds). The bound (4.24) with p D 2 shows that if L� is
injective so that (1.3) holds with constant ˇ, then LU D f 2 L2 admits a solution
kU kB � 
kf kL2 , with twice the bound 
 D 2ˇ (in agreement with the L2-case
in Theorem 4.1). Using a rapidly growing scale �jC1 D �1�j with � � 1 yields a
tighter bound 
 . A sharp form of the B-bound (4.24) for general 1 < p <1,

(4.26)
 kU kB � 
kf kLp#
for any 
 > ˇ;

can be argued by invoking the Hahn-Banach theorem. To this end, we reproduce
here a slight generalization of [7, prop. 1]. Normalize kf kLp D 1 and consider
the two nonempty convex sets: the ball

B
� WD fu 2 B W kukB < 
�g; 
� WD .1C �/ˇ;
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and C WD fU 2 B W LU D f g. The claim is that B
� \ C ¤ ¿ and the
desired estimate (4.26)
 , 
 D 
�, then follows with arbitrarily small �. If not,
B
� \ C D ¿, and by Hahn-Banach there exists a nontrivial g� 2 Lp

0

such that
for some ˛ 2 RC

hg�;ui � ˛ 8u 2 B
�(4.27a)

and

hg�; U i � ˛ 8U 2 C:(4.27b)

If V 2 Ker.L/ then by applying (4.27b) with U 7! U ˙ ıV 2 C we obtain
˙ıhg�; V i � 0 or hg�; V i D 0; that is, g� 2 Ker.L/? D R.L�/ is of the form
g� D L�g for some g 2 D.L�/ � Lp0 .

Now, by (4.27a)

kg�kB� D sup
kukBD
�=2

hg�;ui

�=2

�
˛


�=2
;

and the a priori estimate assumed in (1.3) implies

kgk
L
p0

#
� ˇkL�gkB� D ˇkg�kB� �

˛

1C �=2
:

But this leads to a contradiction: pick U 2 C (which we recall is not empty); then
(4.27b) implies

˛ � hg�; U i D hL�g;U i D hg; f i � kgkLp0kf kLp �
˛

1C �=2
:

Appendix: On _-minimizers
To study the hierarchical expansions (4.18), we characterize the minimizers of

the _-functionals (4.15),
Œu; r� WD arg min

LuCrDf
_.f; �/;

_.f; �/ WD inf
LuCrDf

˚
kukB C �krk

p
Lp W u 2 B

	
:

(A.1)

Here L W B 7! L
p
# .�/ is densely defined into a subspace ofLp.�/ over a Lipschitz

domain � � Rd . The characterization summarized below extends related results
that can be found in [27, theorem 4], [4, chap. 1], [36, theorem 2.3].

Recall that k � kB� denotes the dual norm, kL�gkB� D supuhL�g;ui=kukB, so
that the usual duality bound holds

(A.2) hL�g;ui � kukBkL�gkB� ; g 2 D.L�/; u 2 B

(and the convention that kL�gkB� D 1 if g lies outside (the closure of) D.L�/).
We say that u and L�g are an extremal pair if equality holds above. The theorem
below characterizes Œu; r� as a minimizer of the _-functional if and only if u and
L�'.r/ form an extremal pair.
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THEOREM A.1. Let L W B ! L
p
# .�/ be a linear operator with dual L�, and let

_.f; �/ denote the associated functional (4.15).

(i) The variational problem (A.1) admits a minimizer u. Moreover, if k � kB is
strictly convex, then the minimizer u is unique.

(ii) u 2 B is a minimizer of (A.1) if and only if the residual r WD f � Lu
satisfies

hL�'.r/;ui D kukB � kL�'.r/kB� D
kukB
�

;

'.r/ WD p sgn.r/jr jp�1 2 Lp
0

:

(A.3)

PROOF.

(i) The existence of a minimizer for the _-functional follows from standard
arguments which we omit, consult [1, 27]. We address the issue of uniqueness.
Assume u1 and u2 are minimizers with the corresponding residuals r1 D f �Lu1
and r2 D f � Lu2

kuikB C �krik
p
Lp D vmin; i D 1; 2:

We end up with the one-parameter family of minimizers u� WD u1 C �.u2 � u1/,
� 2 Œ0; 1�,

vmin � ku�kB C �kr�k
p
Lp

� �ku2kB C .1 � �/ku1kB C ��kr2k
p
Lp C .1 � �/�kr1k

p
Lp D vmin:

Consequently, kr�k
p
Lp D �kr2k

p
Lp C .1 � �/kr1k

p
Lp and hence r1 D r2. In

particular, kr1k
p
Lp D kr2k

p
Lp implies that the two minimizers satisfy ku1kB D

ku2kB, and we conclude that the ball kukB D ku1kB ¤ 0 contains the segment
fu� ; � 2 Œ0; 1�g, which by strict convexity must be the trivial segment, i.e., u2 D
u1. We note in passing that strict convexity is in fact necessary for uniqueness,
e.g., the counterexample of lack of uniqueness over the `1-unit ball [27, p. 40].

(ii) If u is a minimizer of (A.1), then for any v in the domain of L we have

kukB C �kf � LukpLp D _.u; �/
� _.uC �v; �/

D kuC �vkB C �kf � L.uC �v/kpLp
� kukB C j�j � kvkB C �kf � LukpLp(A.4)

� p��
�
sgn.f � Lu/jf � Lujp�1;Lv

�
C o.�/:

Since the domain of L is assumed to be densely defined in B, it follows that for all
v 2 B,

jhL�'.r/; vij �
1

�
kvkB C o.1/; '.r/ D p sgn.r/jr jp�1; r WD f � Lu;
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and by letting � ! 0

(A.5) kL�'.r/kB� �
1

�
:

To verify the reverse inequality, we set v D ˙u and 0 < � < 1 in (A.4), yielding

kukB C �kf � LukpLp � .1˙ �/kukB C �kf � Lu� �LukpLp ;

and hence ˙�kukB � ��.'.f � Lu/;Lu/C o.�/ � 0. Dividing by � and letting
� # 0C, we obtain kukB D �hL�'.r/;ui and (A.3) follows:

1

�
kukB D hL�'.r/;ui � kL�'.r/kB�kukB �

1

�
kukB:

Conversely, we show that if (A.3) holds, then u is a minimizer. The convexity
of Lp yields

kf � L.uC v/kpLp D kr � LvkpLp
� krk

p

Lp.�/
� p

�
sgn.r/jr jp�1;L.uC v/

�
C p

�
sgn.r/jr jp�1;Lu

�
D kf � LukpLp � hL

�'.r/; .uC v/i„ ƒ‚ …
#1

ChL�'.r/;ui„ ƒ‚ …
#2

:

By the equalities assumed in (A.3), kL�'.r/kB� D 1=� Ý ��.#1/ � �kuC vkB,
and moreover, �.#2/ D kukB. We conclude that for any v 2 B,

_.uC v; �/ D kuC vkB C �kf � L.uC v/kpLp
� kuC vkB C �kf � LukpLp � p�.#1/C p�.#2/

� kukB C �kf � LukpLp D _.u; �/:

Thus, u is a minimizer of (A.1). �

The next two assertions are a refinement of Theorem A.1, depending on the size
of kL�'.f /kB� .

LEMMA A.2 (The Case kL�'.f /kB� � 1=�). Let L W B ! L
p
# .�/ with adjoint

L� and let _ denote the associated functional (4.15). Then �kL�'.f /kB� � 1 if
and only if u � 0 is a minimizer of (A.1).

PROOF. Assume kL�'.f /kB� � 1=�. Then by convexity of Lp

kukB C �kf � LukpLp

� kukB C �
Z
�

jf jp dx � �

Z
�

.'.f /;Lu/dx

� kukB C �
Z
�

jf jp dx � �kL�'.f /kB�kukB � �kf kpLp ;
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which tells us that u � 0 is a minimizer of (4.15). Conversely, if u � 0 is a
minimizer of (A.1), then �kukB C �kf � �LukpLp � �kf k

p
Lp for all u 2 B. It

follows that

�kukB � ��
Z
�

.'.f /;Lu/dx C o.�/ � 0:

Letting � # 0, we conclude �hL�'.f /;ui � kukB; hence kL�'.f /kB� � 1=�.
�

LEMMA A.3 (The Case kL�'.f /kB� > 1=�). Let L W B ! L
p
# .�/ with ad-

joint L�, and let _ denote the associated functional (4.15). If 1 < �kL�'.f /kB� �
1, then u is a minimizer of (A.1) if and only if Lu and '.r/ are an extremal pair
and

(A.6) kL�'.r/kB� D
1

�
; hu;L�'.r/i D

kukB
�

:

PROOF. Since kL�'.f /kB� > 1=�, we have kukB ¤ 0 and can now divide the
equality on the right of (A.3) by kukB ¤ 0 and (A.6) follows. �

Acknowledgments. I am indebted to Haim Brezis for discussions on the works
[7, 8], to François Golse, Giuseppe Savaré, and Terence Tao, who, respectively,
brought to my attention references [22], [17, 39], and [3], and to Przemyslaw Wo-
jtaszczyk for his comments on an earlier version of this paper [45]. Research was
supported by National Science Foundation grants DMS10-08397 and RNMS11-
07444 (KI-Net) and Office of Naval Research Grant #N00014-1210318.

Bibliography
[1] Acar, R.; Vogel, C. R. Analysis of bounded variation penalty methods for ill-posed problems.

Inverse Problems 10 (1994), no. 6, 1217–1229.
[2] Adams, R. A.; Fournier, J. J. F. Sobolev spaces. Second edition. Pure and Applied Mathematics

(Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
[3] Ajiev, S. On Chebyshev centres, retractions, metric projections and homogeneous inverses for

Besov, Lizorkin-Triebel, Sobolev and other Banach spaces. East J. Approx. 15 (2009), no. 3,
375–428.

[4] Andreu-Vaillo, F.; Caselles, V.; Mazón, J. M. Parabolic quasilinear equations minimizing linear
growth functionals. Progress in Mathematics, 223. Birkhäuser, Basel, 2004. doi:10.1007/978-
3-0348-7928-6

[5] Athavale, P.; Xu, R.; Radau, P.; Nachman, A.; Wright, G. Multiscale TV flow with ap-
plications to fast denoising and registration. Proc. SPIE 8669 (2013), 86692K–86692K-7.
doi:10.1117/12.2007190

[6] Bennett, C.; Sharpley, R. Interpolation of operators. Pure and Applied Mathematics, 129. Aca-
demic Press, Boston, 1988.

[7] Bourgain, J.; Brezis, H. On the equation divY D f and application to control of phases.
J. Amer. Math. Soc. 16 (2003), no. 2, 393–426 (electronic). doi:10.1090/S0894-0347-02-00411-
3

[8] Bourgain, J.; Brezis, H. New estimates for elliptic equations and Hodge type systems. J. Eur.
Math. Soc. (JEMS) 9 (2007), no. 2, 277–315. doi:10.4171/JEMS/80

http://dx.doi.org/doi:10.1007/978-3-0348-7928-6
http://dx.doi.org/doi:10.1007/978-3-0348-7928-6
http://dx.doi.org/doi:10.1117/12.2007190
http://dx.doi.org/doi:10.1090/S0894-0347-02-00411-3
http://dx.doi.org/doi:10.1090/S0894-0347-02-00411-3
http://dx.doi.org/doi:10.4171/JEMS/80


1108 E. TADMOR

[9] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011.

[10] Buades, A.; Coll, B.; Morel, J. M. A review of image denoising algorithms, with a new one.
Multiscale Model. Simul. 4 (2005), no. 2, 490–530. doi:10.1137/040616024

[11] Chambolle, A.; Lions, P.-L. Image restoration by constrained total variation minimization and
variants. Proc. SPIE 2567 (1995), 50–59. doi:10.1117/12.218480

[12] Chambolle, A.; Lions, P.-L. Image recovery via total variation minimization and related prob-
lems. Numer. Math. 76 (1997), no. 2, 167–188. doi:10.1007/s002110050258

[13] Cordero-Erausquin, D.; Nazaret, B.; Villani, C. A mass-transportation approach to sharp
Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182 (2004), no. 2, 307–332.
doi:10.1016/S0001-8708(03)00080-X

[14] Dacorogna, B.; Fusco, N.; Tartar, L. On the solvability of the equation div u D f in L1 and
in C 0. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003),
no. 3, 239–245 (2004).

[15] Del Pino, M.; Dolbeault, J. Best constants for Gagliardo-Nirenberg inequalities and applications
to nonlinear diffusions. J. Math. Pures Appl. (9) 81 (2002), no. 9, 847–875. doi:10.1016/S0021-
7824(02)01266-7

[16] DiPerna, R. J.; Majda, A. J. Concentrations in regularizations for 2-D incompressible flow.
Comm. Pure Appl. Math. 40 (1987), no. 3, 301–345. doi:10.1002/cpa.3160400304

[17] Gaglirado, E. Caratterizzazioni delle tracce sulla frontiera relative ad alcuni classi di funzioni
in n variabili. Rend. Scm. Mat. Univ. Padova 27 (1957), 284–305.

[18] Garnett, J. B.; Le, T. M.; Meyer, Y.; Vese, L. A. Image decompositions using bounded variation
and generalized homogeneous Besov spaces. Appl. Comput. Harmon. Anal. 23 (2007), no. 1,
25–56. doi:10.1016/j.acha.2007.01.005

[19] Hidane, M.; Lézoray, O.; Elmoataz, A. Nonlinear multilayered representation of graph-signals.
J. Math. Imaging Vision 45 (2013), no. 2, 114–137. doi:10.1007/s10851-012-0348-9

[20] Hidane, M.; Lézoray, O.; Ta, V.-T.; Elmoataz, A. Nonlocal multiscale hierarchical decomposi-
tion on graphs. Computer Vision – ECCV 2010, 638–650. Lecture Notes in Computer Science,
6314. Springer, Berlin-Heidelberg, 2010. doi:10.1007/978-3-642-15561-1_46

[21] Hintermüller, M.; Rincon-Camacho, M. M. Expected absolute value estimators for a spatially
adapted regularization parameter choice rule in L1-TV-based image restoration. Inverse Prob-
lems 26 (2010), no. 8, 085005, 30 pp. doi:10.1088/0266-5611/26/8/085005

[22] James, R. C. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math.
Soc. 61 (1947), 265–292. doi:10.2307/1990220

[23] Le, T. M.; Vese, L. A. Image decomposition using total variation and div(BMO). Multiscale
Model. Simul. 4 (2005), no. 2, 390–423. doi:10.1137/040610052

[24] Lopes Filho, M. C.; Nussenzveig Lopes, H. J.; Tadmor, E. Approximate solutions of the incom-
pressible Euler equations with no concentrations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17
(2000), no. 3, 371–412. doi:10.1016/S0294-1449(00)00113-X

[25] Maday, Y. L1-stable approximation of a solution to div.Y/ D f for f 2 L2 in two dimen-
sions. J. Sci. Comput. 28 (2006), no. 2-3, 451–458. doi:10.1007/s10915-006-9073-0

[26] Maz0ya, V. Bourgain-Brezis type inequality with explicit constants. Interpolation theory and
applications, 247–252. Contemporary Mathematics, 445. American Mathematical Society,
Providence, R.I., 2007. doi:10.1090/conm/445/08605

[27] Meyer, Y. Oscillating patterns in image processing and nonlinear evolution equations. Univer-
sity Lecture Series, 22. American Mathematical Society, Providence, R.I., 2001.

[28] Mironescu, P. On some inequalities of Bourgain, Brezis, Maz0ya, and Shaposhnikova re-
lated to L1 vector fields. C. R. Math. Acad. Sci. Paris 348 (2010), no. 9-10, 513–515.
doi:10.1016/j.crma.2010.03.019

[29] Morozov, V. A. Methods for solving incorrectly posed problems. Springer, New York, 1984.
doi:10.1007/978-1-4612-5280-1

http://dx.doi.org/doi:10.1137/040616024
http://dx.doi.org/doi:10.1117/12.218480
http://dx.doi.org/doi:10.1007/s002110050258
http://dx.doi.org/doi:10.1016/S0001-8708(03)00080-X
http://dx.doi.org/doi:10.1016/S0021-7824(02)01266-7
http://dx.doi.org/doi:10.1016/S0021-7824(02)01266-7
http://dx.doi.org/doi:10.1002/cpa.3160400304
http://dx.doi.org/doi:10.1016/j.acha.2007.01.005
http://dx.doi.org/doi:10.1007/s10851-012-0348-9
http://dx.doi.org/doi:10.1007/978-3-642-15561-1_46
http://dx.doi.org/doi:10.1088/0266-5611/26/8/085005
http://dx.doi.org/doi:10.2307/1990220
http://dx.doi.org/doi:10.1137/040610052
http://dx.doi.org/doi:10.1016/S0294-1449(00)00113-X
http://dx.doi.org/doi:10.1007/s10915-006-9073-0
http://dx.doi.org/doi:10.1090/conm/445/08605
http://dx.doi.org/doi:10.1016/j.crma.2010.03.019
http://dx.doi.org/doi:10.1007/978-1-4612-5280-1


CONSTRUCTION OF HIERARCHICAL SOLUTIONS IN CRITICAL REGULARITY SPACES 1109

[30] Morozov, V. A. Regularization methods for ill-posed problems. CRC Press, Boca Raton, Fla.,
1993.

[31] Paquin, D.; Levy, D.; Schreibmann, E.; Xing, L. Multiscale image registration. Math. Biosci.
Eng. 3 (2006), no. 2, 389–418. doi:10.3934/mbe.2006.3.389

[32] Paquin, D.; Levy, D.; Xing, L. Hybrid multiscale landmark and deformable image registration.
Math. Biosci. Eng. 4 (2007), no. 4, 711–737. doi:10.3934/mbe.2007.4.711

[33] Phuc, N. C.; Torres, M. Characterizations of the existence and removable singularities of
divergence-measure vector fields. Indiana Univ. Math. J. 57 (2008), no. 4, 1573–1597.
doi:10.1512/iumj.2008.57.3312

[34] Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys-
ica D 60 (1992), no. 1-4, 259–268. doi:10.1016/0167-2789(92)90242-F

[35] Tadmor, E.; Nezzar, S.; Vese, L. A multiscale image representation using hierarchical
(BV;L2) decompositions. Multiscale Model. Simul. 2 (2004), no. 4, 554–579 (electronic).
doi:10.1137/030600448

[36] Tadmor, E.; Nezzar, S.; Vese, L. Multiscale hierarchical decomposition of images with applica-
tions to deblurring, denoising and segmentation. Commun. Math. Sci. 6 (2008), no. 2, 281–307.

[37] Tadmor, E.; Tan, C. Hierarchical construction of bounded solutions of div U D F in crit-
ical regularity spaces. Nonlinear partial differential equations, 255–269. Abel Symposia, 7.
Springer, Berlin-Heidelberg, 2012. doi:10.1007/978-3-642-25361-4_14

[38] Tang, L.; He, C. Multiscale texture extraction with hierarchical (BV;Gp ; L2) decomposition.
J. Math. Imaging Vision 45 (2013), no. 2, 148–163. doi:10.1007/s10851-012-0351-1

[39] Tartar, L. Remarks on some interpolation spaces. Boundary value problems for partial differen-
tial equations and applications, 229–252. RMA: Research Notes in Applied Mathematics, 29.
Masson, Paris, 1993.

[40] Tikhonov, A. N.; Arsenin, V. Y. Solutions of ill-posed problems. Scripta Series in Mathematics.
V. H. Winston, Washington, D.C.: Wiley, New York–Toronto–London, 1977.

[41] Vecchi, I. Gagliardo-Nirenberg imbeddings and DiPerna-Majda sequences. Proc. Roy. Soc.
London Ser. A 439 (1992), no. 1906, 337–340. doi:10.1098/rspa.1992.0153

[42] Vese, L. A.; Osher, S. J. Image denoising and decomposition with total variation min-
imization and oscillatory functions. J. Math. Imaging Vision 20 (2004), no. 1-2, 7–18.
doi:10.1023/B:JMIV.0000011316.54027.6a

[43] Weyl, H. The Princeton University Bicentennial Conference on the Problems of Mathematics.
A century of mathematics in America. Part II, 309–333. History of Mathematics, 2. American
Mathematical Society, Providence, R.I., 1989.

[44] Wojtaszczyk, P. Banach spaces for analysts. Cambridge Studies in Advanced Mathematics, 25.
Cambridge University Press, Cambridge, 1991. doi:10.1017/CBO9780511608735

[45] Wojtaszczyk, P. Private communication, 2010.
[46] Yosida, K. Functional analysis. Sixth edition. Grundlehren der mathematischen Wis-

senschaften, 123. Springer, Berlin–New York, 1980.

EITAN TADMOR
Department of Mathematics
Center of Scientific Computation

and Mathematical Modeling
and

Institute for Physical Science
and Technology

University of Maryland
College Park, MD 20742
E-mail: tadmor@cscamm.umd.edu

Received July 2014.
Revised October 2014.

http://dx.doi.org/doi:10.3934/mbe.2006.3.389
http://dx.doi.org/doi:10.3934/mbe.2007.4.711
http://dx.doi.org/doi:10.1512/iumj.2008.57.3312
http://dx.doi.org/doi:10.1016/0167-2789(92)90242-F
http://dx.doi.org/doi:10.1137/030600448
http://dx.doi.org/doi:10.1007/978-3-642-25361-4_14
http://dx.doi.org/doi:10.1007/s10851-012-0351-1
http://dx.doi.org/doi:10.1098/rspa.1992.0153
http://dx.doi.org/doi:10.1023/B:JMIV.0000011316.54027.6a
http://dx.doi.org/doi:10.1017/CBO9780511608735
mailto:tadmor@cscamm.umd.edu

	1. Introduction and Statement of Main Results
	2. Bounded Solutions of 
	3. Bounded Solution of 
	4. Construction of Hierarchical Solutions for 
	Appendix: On -minimizers
	Bibliography

