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Whenever you can settle a question by explicit construction, be
not satisfied with purely existential arguments.
Hermann Weyl [43] p. 326]

Abstract

We construct uniformly bounded solutions for the equations divU = f and
curl U = fin the critical cases f € Lg (Td,R) and f € Lg (T3, R3), respec-
tively. Criticality in this context manifests itself by the lack of a linear solution
operator mapping Lg — L°°(Td). Thus, the intriguing aspect here is that
although the problems are linear, construction of their solutions is not.

Our constructions are special cases of a general framework for solving linear
equations of the form LU = f, where L is a linear operator densely defined in
Banach space B with a closed range in a (proper subspace) of Lebesgue space
Lﬁ (2), and with an injective dual £L* The solutions are realized in terms of a

multiscale hierarchical representation, U = Z,OO=1 u;, interesting for its own

sake. Here, the u;’s are constructed recursively as minimizers of
— ; . . p
i1 = arglfnll‘l {“u”B + A’j +1 ”"j - ‘C’u“LP(Q)}7
. . j . .
where the residuals r; := f —[,.(Z %=1 Uk) areresolved in terms of a dyadic se-
quence of scales A; 41 := A12/ with large enough A1 X ||f||}‘_pp The nonlin-

ear aspect of this construction is a counterpart of the fact that one cannot linearly

solve LU = f in critical regularity spaces. © 2016 Wiley Periodicals, Inc.

1 Introduction and Statement of Main Results

We begin with a prototype example for the class of equations alluded to in the
title of the paper. Let Lg (T4) denote the Lebesgue space of periodic functions
with zero mean over the d-dimensional torus T¢. Given f € Lﬁ (T9), we seek a
uniformly bounded solution of the problem

(1.1) divU = f, U e L®(T% RY).

The classical elliptic solution of the first half of (1.1), U = VA~!f, lies in
W#l’d (T9), which may fail to satisfy the uniform bound sought in the second
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half of (I.T). Thus, the question is whether (I.1)) admits a solution that gains uni-
form boundedness, ||U||Le < || f|lza, at the expense of giving up on the irro-
tationality condition curl U = 0. This question was addressed by Bourgain and
Brezis [7, prop. 1]. They proved that (I.1I)) admits uniformly bounded solutions
for all f € Ljf (T), with the intricate aspect that a solution operator mapping
Ljf > L% must be nonlinear; in particular, therefore, the uniform boundedness of
an irrotational elliptic solution must fail. The existence of such uniformly bounded
solutions was proved in [7] by using a straightforward duality argument based on
the closed range theorem.

The purpose of this paper is to present an alternative approach for the existence
of such solutions. Our approach is constructive: the solution U is constructed as
a hierarchical sum, U = Z;‘;l u;, where the {u;}’s are computed recursively as
appropriate minimizers,

d

aiv( 3 we-+u)

k=1

U4 =argmin{||u||Loo + A2/ } j=0,1,...,
u

La
and A; is a sufficiently large parameter specified below. As an example, we refer
to [37] for the computation of a uniformly bounded hierarchical solution of the
equation divU = AG with G := xq|Inr|/3¢(r) € LZ(T?) where () is a
radial cutoff away from the origin [[7, sec. 3, remark 7]. The elliptic solution, U =
VG, has a fractional logarithmic growth at the origin, whereas the computation
confirms that the hierarchical solution U = ) u; remains uniformly bounded,
Ul < IAG] 2 < oo.

The above construction is in fact a special case of our main result that applies to
general linear problems of the form

(1.2) LU=f [felLl(Q), QcR% 1<p<oc.

Here, £ : B — LZ(Q) is a linear operator densely defined on a Banach space B
with a closed range in Lﬁ (£2). The subscript {-}# indicates an appropriate subspace
of LP,

LL(Q) = L?(Q) N Ker(P),
where P : L? + L7 is alinear operator whose null is “compatible” with the range
of L so that the dual of L is injective; namely, there exists 8 > 0 such that

(1.3) lg —P*gll,» < BlILlB+ Vg e LP(Q).

The closed range theorem combined with the open mapping principle tells us that
if the a priori duality estimate assumed in (I.3) holds, then equation (I.2]) admits
a solution, |U|lg < yl|lfllL» with a constant y = y(8, p,d). Our main result
explains the existence of such U’s by explicit construction.

THEOREM 1.1. Fix 1 < p < oo and assume that the a priori estimate (I.3)) holds.
There exists y < oo (depending on p and linearly on B) such that for any given
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f € Lﬁ (R2), the equation LU = f admits a hierarchical solution of the form
U= Z;il u; € B,
(1.4) IUls < vl fllLr, v <oo.

Here, the {u;} are constructed recursively as minimizers of

f—E(Xj:uk +u)

k=1

p

(15) wyer = argmind ol + Ay L=
u

Lr
where {1 };>1 is a dyadic sequence, Aj 1 1= 2127 with A > ,B||f||1L:,p.

Remark 1.2 (Exponential Convergence). The description of U as the sum U =
> u; provides a multiscale hierarchical decomposition of a solution for a (I.2)) for
rapidly increasing sequence of scales, Aj11 = A1{ J with any ¢ > 1. The role
of the {A;} as the different scales associated with the u; is reflected through the
exponential decay bound (consult (4.23)) below)

Aj+1 i ; ¢/
)l < ]p/ ~ e A=A~ ———. 1< p<oc
A /1l
J Ly

For simplicity, we limit our discussion to the dyadic case { = 2.

Remark 1.3 (On the A Priori Duality Estimate (1.3). The a priori estimate (I.3)) is
exactly what is needed for the hierarchical construction ) _ u; to converge. It should
be emphasized, however, that the construction does not require knowledge of the
precise value of the constant 8 appearing in estimate (I.3)). Indeed, the parameter f8
enters through the initial scale, A1, which is to be chosen large enough,

1_
A= Bl
so that by Lemma(A.3] it dictates a nontrivial first hierarchical step,
u; = argmin{|[ullg + 1]/ — Lul|7,}.
u

What happens if the initial scale A; is underestimated relative to an unknown
value of 8? Then, as noted in Lemma below, the variational statement
will yield zero hierarchical terms, u; = 0 for an increasing sequence of scales
X127, j =1,2,..., until reaching the critical scale such that 1,2/0 = ,3||f||1L:,p,
which will dictate the first nontrivial step of the hierarchical decomposition, U =
> j=j, Wj- In this sense, the construction of a hierarchical solution U = dou;is
independent of the precise value of § in (I.3): the latter is only needed to guarantee
that the hierarchical construction will indeed pick up the first nontrivial minimizer
after finitely many steps jo.

Remark 1.4 (The Limiting Cases p = 1,00). The L”-valued hierarchical con-
structions in Theorem can be extended to a more general setup of operators
valued in Orlicz spaces (outlined in Remark [4.8] below). The limiting cases, how-
ever, are excluded; for example, there exist no W LP solutions of divU = f for
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general f € L? with p = 1,00 [[7, sec. 2], [14]. The iterative aspect of the
hierarchical construction is reminiscent of the Artola and Tartar construction of
LP(R)-functions for the end case p = 1 as a limiting case for interpolation of
W L1 (R?)-traces [39, sec. IT], [[17].

L?-based hierarchical decompositions were introduced by us in the context of
image processing [3536] and motivated the present construction of solutions in
the more general setup of the closed range theorem. We demonstrate such hierar-
chical constructions of the solution to two important examples of critical regularity
studied by Bourgain and Brezis [[7,/8]]. These are the constructions of uniformly
bounded solutions to divU = f € Lg (Td ), discussed in Section [2| and the con-
struction of uniformly bounded solutions to curlU = f € L; (T3,R3), discussed
in Section [3] The critical regularity in these cases manifests itself in terms of the
lack of right inverses for £ bounded on the corresponding critical L? spaces, or
equivalently, Ker £ that cannot be complemented in L*° [[7} sec. 3], [3| sec. 5.3].

The main novelty of theorem [I.1]is using these hierarchical decompositions for
explicit construction of solutions for general equations governed by operators with
a closed range in Lf: , 1 < p < oo. The proof of the special case p = 2 is given in
Section .1} here, we trace precise bounds and clarify their role in the hierarchical
construction. The L2-case serves as the prototype case for the general setup of
hierarchical constructions in L?-spaces in Section 4] Finally, the characterization
of minimizers, such as those encountered in (I.5]), is summarized in the Appendix
on V-minimizers.

2 Bounded Solutions of divU = f € L7 (2,R)

Let P denote the averaging projection Pg := g, where g is the average value
of g. Given f € Lﬁ(Td) = {g € LP(T%) | g = 0}, then according to Theo-
rem [I.1] we can construct hierarchical solutions of
2.1 divU = f, feLl(T%, 1<p<oo,

in an appropriate Banach space, U € B, provided the corresponding a priori esti-
mate (I.3]) holds; namely, there exists a constant 8 > 0 (which may vary, of course,
depending on p, d, and B) such that
(2.2) lg =2l r < BIVels- Vg e L?(TY).
We specify four cases of such relevant B’s.

Case 1. Solution of divU = f € Lf with U € WP,

Since
lg = gl Loray < UVEl -1 (ragay VY& €LY (T,

we can construct hierarchical solutions of @.I) in B = W1?(T4 R%), 1 <
p < oo. This is the same integrability space of the irrotational solution of 2.1),
VA~ f e Whp (T4, RY).
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Case 2. Solutionof divU = f € Lf; with U € LP".
By the Sobolev inequality, for all g € L? (T?) there holds

_ 1 1 1
(2.3) ”g_g”Lp’(Td) = ,B”Vg“[,(p*)’(']rd,Rd)a ? = ; vk d < p <o
the case p = d corresponds to the isoperimetric Gagliardo-Nirenberg inequality
[13,15] |lg — EHLd’(Td) < Bligllpy(ra)- We distinguish between two cases.

(1) Thecased < p < oo: the equationdivU = f € Lf (T4) has a solution
UelLP" (T d Rd). This is the same integrability space of the irrotational solution
VA=l f e whp(T4 RY) c LP" (T4, RY).

(ii) The case d = p: the equation divU = f € L,ff (T4) has a solution
U e L®(T4,R?). This is the prototype example discussed in the beginning of the
introduction. According to the intriguing observation of Bourgain and Brezis [/7,
prop. 2], there exists no bounded right inverse K : Lﬁ > L°° for the operator div,
and therefore there exists no linear construction of solutions f + U (in particular,
VA~! £ cannot be uniformly bounded). Theorem provides a nonlinear hier-
archical construction of such solutions. The computation of such L°°-solutions

using hierarchical iterations in the two-dimensional critical case was carried out
in [37].

Remark 2.1 (Homogeneity). We rewrite the hierarchical iteration (I.5) with A1 =
1-p .
Cll fll;," in the form

j Iz

-1
A

[Wj+1,77+1] = argmin { [ullp + C2
Lu+r=r;
P / =0,
j = j .

—E(Zizl llk), j =1
Observe that if [uy, 1] is the first minimizer associated with ro = f, then the
corresponding first minimizer associated with of is [euy, ar;], and recursively, the
next hierarchical components are [ou;, ar;]. Thus, as noted in [36, remark 1.1],

the hierarchical solution is homogeneous of degree 1: if U = Uy specifies the
(nonlinear) dependence of the hierarchical solution on f', then Uy sy = aUy.

Case 3. Solution of divU = f € L with U € L® N W14,

A central question raised and answered in [7]] is whether (2.1]) has a solution that
captures the joint regularity, U € B = L™ N WH4 (T4 R¥). To this end, one
needs to verify the duality estimate (2.2), which now reads

(2.4) lg — gl cpay < BIVEN 1 yyip—rarpa gay Y& € LY (TY).
(T4) + (T4,R4)

This key estimate was proved in [7]. Thus, Theorem [I.1] converts (2.4) into a
constructive proof of the following:
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COROLLARY 2.2. The equation divU = f € L,ff (T?) admits a solution U €
L% N Whd(T4 R4, which is given by the hierarchical decomposition U =
> j=1W;. This is constructed by the refinement step

d

b

J
f—div(Zuk—i—u)

k=1

w1 = argming [[ull; conpirra + A127
u
j=0,1,...,

with sufficiently large A1 > B|| f ||]1;,d .

Remark 2.3. We comment here on the key role of the duality estimate (2.4). The
case d = 2 was proved by a direct method outlined in [7, sec. 4]; alternative two-
dimensional proofs were given by Maz'ya [26] and Mironescu [28]. For d > 2,
however, the derivation of (2.4)) was proved in Bourgain and Brezis [7, theorem 1]
as a byproduct of their construction of L°° N Wt solutions for divU = f.
The construction, based on an intricate Littlewood-Paley decomposition, is rather
involved [[7, sec. 6], and to our knowledge, a simpler, direct derivation of (2.4) is
still open. Thus, Corollary [2.2—which still depends on the construction of Bour-
gain and Brezis to justify (2.4)—offers a simpler alternative for the construction of
such L% N W14 _bounded solutions in terms of the minimizers,

Vai (. A) = infu{ [l copyirta + Allr —divul 9, ).

Computations of the related L°°-based minimizers were carried out in [[1823]], and
it would be desirable to develop efficient algorithms to compute the corresponding
minimizers of Vg, (r, A; L% N W14). Spectral approximation of such minimizers
was discussed in [25]].

Since the proof of the dual estimate (2.4) in d > 2 dimensions is indirect, a
specific value of B is not known. As noted in remark[I.3] however, the hierarchical
construction can proceed without a priori knowledge of the precise value of g: if
onesets A1 = || f ”}sz , and this initial scale underestimates a correct value of, say,
B > 1, then it will take at most jo ~ log(B) steps before picking up nontrivial
terms in the hierarchical decomposition, U = }_;_ ; u;.

Case 4. Solution of divU = f € L (Q) with U € L>® N W4 (Q).
The constructions of bounded solutions for (2.1)) extend to the case of Lipschitz
domains, Q C Rd; see [7, sec. 7.2]. For future reference we state the following:

COROLLARY 2.4. Given f € LE(Q) := {g € LURQ) | [qg(x)dx = 0}, the
equation divU = f admits a solution U € L*° N Wol’d (., R?) such that

10 oo racay < 71 Lag@y-
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It is given by the hierarchical decomposition U =) j=1Wj, Which is constructed
by the refinement step

J d
u;y; = argmin ”u”L‘x’ﬂWl'd(Q) + A2\ f —diV(Z uy + u) },
wup=0 k=1 LA(Q)
j=0,1...,
with sufficiently large A1 Z ﬂ||f||1L;‘gQ)

3 Bounded Solution of curlU = f € L}(T3,R?)

Let L; (T3, R3) denote the L3-subspace of divergence-free 3-vectors with zero
mean. We seek solutions of
(3.1 curlU =f, fe L3(T3 R3),

in an appropriate Banach space U € B. We appeal to the framework of hierarchical
solutions in Theorem|(1.1, where P : L3(T3,R3) > L3(T3,RR3) is the irrotational
portion of Hodge decomposition with a dual, P*g := VA~! divg — g. According
to Theorem [I.1] we can construct hierarchical solutions U € B of (3.1)) provided

(T.3) holds,
(3:2) lg —P*gll s < Blleurlgls-. g L¥*(T°.R?).

Since ||g—P*gl|3/2 < llcurl g|lj,—1.3/2, we can construct hierarchical solutions
of (3.1) in W13 This has the same integrability as the divergence-free solution of
(B-1), (—=A)~! curl f. A more intricate question is whether (3.1)) admits a uniformly
bounded solution, since such a solution cannot be constructed by a linear proce-
dure. These solutions were constructed by Bourgain and Brezis in [8, cor. 8],
which in turn imply the key a priori estimate: for all g € L3/2(T3, R3) such that
divg = g = 0 there holds,

(3.3) g — P*g”L3/2(T3,R3) = ,3||curlg||L1+W,1,3/2(T3,R3).
Granted (3.3), Theorem offers a simpler alternative to the construction in [§]]
based on the following hierarchical decomposition:

COROLLARY 3.1. The equation curlU = f € L; (T3, R3) admits a solution U €
L>®nW3(T3R3),
||U||L°°ﬂW1~3(’]I‘3,]R3) = V||f||L3(T3’R3),

which can be constructed by the (nonlinear) hierarchical expansion, U = ) u 7,

J
f— Curl(z u; + u)

k=1

3
w1 = argming [[ufl; coqpirrs + A2/ } ,
u L3(T3,R3)

j=01,...,

with sufficiently large A1 > 8 ||f||z§(T3 R3)’
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4 Construction of Hierarchical Solutions for LU = f € L ;’ ()
4.1 A Prototype Example: Hierarchical Solution of divU = f € Lﬁ(’]I‘Z)

We begin our discussion on hierarchical constrictions with a two-dimensional
prototype example of

@1)  divU = f feLXT?:= {g e L2(T?) ) /g(x)dx - o}.
’]I‘Z

Our starting point for the construction of a uniformly bounded solution of (@.I) is
a decomposition of f,

(4.2a) f =diva; +r, feL¥T?),

where [uy, r{] is a minimizing pair of the functional,

(4.2b) [uy,ri] = argmin {”ll”Loo + /\1||r||iz ! ue CO(']TZ), re Lﬁ(Tz)}.
divatr=f

Here A, is a fixed parameter at our disposal: if we choose A; large enough, A; >
1/(2|| f |sv), then according to LemmalA.3|below (with ¢(r) = 2r and L* = —V),
(4.2Db) admits a minimizer [u;, r;] satisfying

Vr = ||r = —,
IVrillam = lrilisy 78

where the space of Radon measures M arises here as the dual of C°. To proceed
we invoke the isoperimetric Gagliardo-Nirenberg inequality, which states that there
exists B > 0 (any B > 1/+/4x will do) such that for all bounded variation g’s with
zero mean,

(43) lelz = Blihav. [ gtdx =o.
T2
Since f has a zero mean, so does the residual r| and (4.3) yields
< = —,
Irillz2 < Blirillav o
We conclude that the residual r; € Lﬁ (T?), and we can therefore implement the
same variational decomposition of f in (4.2)) and use it to decompose r; with scale
A=Az > A1 = 1/Q2||r1)]||gy. This yields
ry =divuy 4 1o,

[up, 7] = argmin {”ll”Loo + /\2||r||2Lz ‘ uc CO(TZ), re Lﬁ(Tz)}.
diva+r=r
Combining this with {#.2a) we obtain f = div U, + rp, where U, := u; + u
is viewed as an improved approximate solution of (4.I) in the sense that it has a
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smaller residual 5,
Ir2ll 2 = Blir2llay = 57—
L 245"
when compared with the previous residual B||r;||gy = B/(2A1). This process can
be repeated: if r; € Lﬁ(Tz) is the residual at step j, then we decompose it

(4.4a) rj =divuj 1 +rj41,
where [u;41,7;+1] is a minimizer over all pairs (u, r) € (C%(T?), L2(T?)),

(4.4b)  [wir1,rj41] = argmin {|[uflze + Aj1llrll3.}. =0.1.....
divutr=r;

For j = 0, the decomposition (@.4) is interpreted as (4.2)) by setting o := f. Note
that the recursive decomposition (#.4a) depends on the invariance of r; € LZ(T?):
if ; has a zero mean, then so does 7 41, and by @3) rj 41 € Lﬁ(Tz). The iterative
process depends on a sequence of increasing scales, A1 < Ay < -+ < Aj41, which
are yet to be determined.

The telescoping sum of the first k& steps in (4.4a) yields an improved approximate
solution Uy := Z}C:l u;:

: B

4.5) f=divUx+rk, |rellpz < Blrellsv = m 10, k=1,2,....

The key question is whether the Ug’s remain uniformly bounded, and it is here
that we use the freedom in choosing the scaling parameters A;: comparing the
minimizing pair [u; 41, rj41] of (4.4b) with the trivial pair [u = 0, r;] implies, in

view of (#.5),

2 2
lwjtillzee + Aj4allrj+1ll72 < Aj4allriliz2

(4.6) MIfI3. J =0,
< 29 .
T\ =12
J

We conclude by choosing a sufficiently rapidly increasing A; such that

D Xj1A;? < oo
J

then the approximate solutions Uy = Zlf u; form a Cauchy sequence in L*°
whose limit, U = Y 7° u;, satisfies the following:

THEOREM 4.1. Fix B such that @3) holds. Then, for any given f € L3(T?),
there exists a uniformly bounded solution of ([@.1),

“4.7) divU = f. |[UllLee = 2B fll2-
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The solution U is given by U = Z;’;l u;, where the {u; }'s are constructed recur-
sively as minimizers of

[Wit1.7741] = argmin {[luflzee + 2127 [7]17,}.
divu+r=r;
4.8) 8
ro := f, ll = .
I/ 122

PROOF. With A; = 1,2/~! we have Uy — UgllLee S Y Aj4147% S 275,
k > £ > 1. Let U be the limit of the Cauchy sequence {Uy }; then ||U; —U || oo +

divU; — » < 277 — 0, and since div has a closed graph on its domain
J L grap
= {u € L™ :diva € L?(T?)}, it follows that div U = f. By ([#.6) we have

,62 o 1 ,32
W 2]—3_11||f||L2+—-

o0
1Ullzoe < ) llwjllzes < Xallf1I72 + .

j=1
Here A1 > 1/(2| f|lgv) is a free parameter at our disposal: we choose A; :

B/l fl 2, which by @.3) is admissible, A1 = B/(| fllL2) > 1/l fllzv). and
@) follows.

Remark 4.2 (Energy Decomposition). A telescoping summation of the left inequal-
ity of (4.6) yields

1

2 .
> lwjllzee < 1172
i—1 J

J
setting A; = B 2771/ f | .2) we conclude the “energy bound”

(e.¢]

I B
4.9) > sl < SIS la

Jj=1

In fact, a precise energy equality can be formulated in this case, using the character-
ization of the minimizing pair (consult Theorem below), 2(rj+1.divu; 1) =
lwjt1|lzoo/Aj41: by squaring the refinement step r; = r; 11 + divu; 41, we find

2 2 : : 2
Irill72 = lrj+1lly2 = 2(rj41, divaj41) + [[diva; 4172

1 . 5
= lwj1llzee + ldiveay 1172
Aj+1

A telescoping sum of the last equality yields the following:

Corollary 4.3. Let U = Z —1W; € L* be a hierarchical solution of divU = f,
fe Lz(TZ). Then

L , B
4.10) 7121 = 1||u]||L°°+Zl”d'v“f”mr2>:”f”Lzarzr M=
j= J

We mention two examples related to the two-dimensional setup of Theorem 4.1]
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Oscillations and Image Processing
As noted earlier, there exists no linear construction of solutions of (.1) for
general f € L?. Yet, for the “slightly smaller” Lorenz space L?!, we have

VAT feL® feLy(T?.

(We note in passing that L2! is a limiting case for the linearity of f +— U to
survive the L?**-based nonlinearity result argued in the proof of [[7, prop. 2]).
Thus, the nonlinear aspect of constructing hierarchical solutions for (.1]) becomes
essential for highly oscillatory functions such that € L2\ L?! (and in particular,
f ¢ BV(T?)). Such f’s are encountered in image processing in the form of noise,
texture, and blurry images [[10,/27]]. Hierarchical decompositions in this context
of images were introduced by us in [35]] and were found to be effective tools in
image denoising, image deblurring, and image registration, [5,10,21}31,32,36,38]],
including graph-based signals [19}[20]. Here, we are given a noisy and possibly
blurry observed image, f = LU + r € L?(R?), and the purpose is to recover a
faithful description of the underlying “clean” image, U ~ “£~1” f, by denoising r
and deblurring £. The inverse “£~1” f should be properly interpreted, say, in the
smaller space BV(R?) C L?(IR?), which is known to be well-adapted to represent
edges. The resulting inverse problem can solved by the corresponding variational
problem of [11}]12}/34],

(4.11) [u,r] = argmin {Jullpy + Allrl72g2))-
Lut+r=f

which is a special case of Tikhonov regularization [29,30,40]. The (BV, L?)-
hierarchical decomposition corresponding to (4.11)) reads [35}/36]

m
f = LUn, Um:Zuj»
4.12) J=1

[W41.7j41] = argmin {|ullgy + 1127 |7}
Lu+tr=r;

The oscillatory nature of noise and texture in images was addressed by Y. Meyer
[27], who advocated replacing L? with the larger space of “images” G := {f |
divu = f, u € L°°}. The equation divu = f arises here with one-signed measure
f’s, and its L°° solutions were characterized in [27, sec. 1.14], [33]: the space G +
coincides with the Morrey space M i ():

MZ(Q)={;L€M‘fd,u§r, VB, C Q.
B,
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For one-signed measures, M er (£2) coincides with Besov space Bo_ol’oo. The corre-
sponding Meyer’s energy functional then reads

.71 = argmin {ullsyc@) + A7l 5t
utr=f

numerical simulations with this model are found in [42].
L1(T?)-Bounds and H1 (T2)-Compactness
Here is a simple application of Theorem Let f € H™'(T?) be given. For

arbitrary g € H'(T2) we have £ig(f) e Lﬁ(Tz), and by Theorem there exist
bounded U;; € L*(T?) such that

586 = 6016 +&Un@),
£28(8) = 51U21(8) +6U2(8),

Thus, expressed in terms of the Riesz transforms, R/JTﬁ(E) = @(S)S /1€, we have

”Ul] ||L°° = ”g”Hl(TZ)

1 1
g = E(Ull + Up) + E(R% — R3)(U11 — Uz2) + R R (U2 + Uzy).

Since R% — R% and R; R, agree up to rotation, we conclude that: every g €
H'(T?) can be written as the sum

g=Ui+ RiRUs, |Uillze + [Uzllzee S llgll i p2y forallg € H'(T?),

Here, U1, U are given by a linear combination of the U;;’s in their Cartesian and
their rotated coordinates. The last representation shows that although an L1 (T ?)-
bound of f does not imply f € H™Y(T2), f does belong to H~! if f and its
repeated Riesz transform, Ry R, f, are L!-bounded.

COROLLARY 4.4. The following bound holds:
(4.13) 1A =12y S 1 flrer2y + IR1R2 fllLi(r2)-

As an example, consider a family of divergence-free two-vector fields, ué(z, - ) €
L?(T?2,R?), which are approximate solutions of two-dimensional incompressible
Euler’s equations. One is interested in their convergence to a proper weak so-
lution, with no concentration effects [[16]]. It was shown in [24]] that {u€} con-
verges to such a weak solution if the vorticity, w€(z-) := dju5(z,-) — 2u§(t,-), is
compactly embedded in H~1(T?). By Corollary H~!-compactness holds if
{R1Rrw¢(t,)} = LY(T?); consult [41].

4.2 Hierarchical Solutions for LU = f € L f (2): Approximate Solutions

We turn our attention to the construction of hierarchical solutions for equations
of the general form

(4.14) LU=f fell(Q), 1<p<oo.

A solution U is sought in a Banach space B := {U : ||U||g < oo}. The general
framework, involving two linear operators £ and P is outlined below.
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The linear operator £ is assumed to be densely defined on B with a closed graph
in LY := L? N Ker(P) for an appropriate P : L? > L?. We let L*: L? s B*
denote the formal dual of £, acting on L? " with the natural pairing (effectively, £*
is acting on Lf;/ := L?" N Ker(P), since R(P*) is in the null of £*)

(L*s,u) = (g, Lu), ge DL ueb,

and let || - ||g* denote the dual norm
(L7g.u)
L% ||g+ := sup ——=—, g€ D(L").
wto [ullB

We begin by constructing an approximate solution of @.14), U, : LU, ~ f,
such that the residual rj := f — LU, is driven to be small by a proper choice of a
scaling parameter A at our disposal. The approximate solution is obtained in terms
of minimizers of the variational problem,

(4.15) V(f,iA):= inf {|ulg +Allr|f, :ueB, reLy}.
Lutr=f
In Theorem [A.T|below, we show that if A is chosen sufficiently large,

(4.16) o(f):= psen(HIf 177

A > !

L% (f) I+
then the functional v ( f, 1) in (4.15) admits a minimizer, u = uy, such that the size
of the residual, r) := f — Lu,, is dictated by the dual statement

" 1
(4.17) L7 () B> = T

Fix the scale A = A1 > 1/||L*(f)||B+. We construct an approximate solution,
LUy ~ f, Uy := uy, where uy is a minimizer of V( f, A1),

f=Luy+ry, [up,r]= argmin V(f, A1)
Lutr=f

Borrowing the terminology from image processing, we note that the corresponding
residual 71 contains “small” features that were left out of u;. Of course, whatever
is interpreted as small features at a given A;-scale may contain significant features
when viewed under a refined scale, say A, > A;. To this end we assume that the
residual r; € Lf so that we can repeat the VV-decomposition of ry, this time at the
refined scale A:

ry = Lup +rp, [up,rp] = argmin V(ry, Az).
Lu+r=rq

Combining the last two steps, we arrive at a better two-scale representation of U
given by U, := uj + up as an improved approximate solution of LU, ~ f.
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Features below scale A, remain unresolved in U,, but the process can be continued
by successive applications of the refinement step,

ri=Lujy1 +rjr1, [Wigr,rje1) = argmin V(rj, A1),
(4.18) Lu+r=r;
j=12,....

To enable this process we require the residuals r; to remain in Lf; . In view of the
dual bound (4.17)), we therefore make the following assumption:

Assumption (A Closure Bound). There exists a constant n = n(p,d) < oo such
that the following a priori estimate holds:

(4.19) Igl?, < nllLY%(@)lI5.. ¢(g) = psgn(g)lgl?".

We postpone the discussion of this bound to Theorem [4.5| below and continue
with the generic hierarchical step where [u;1,7;41] is constructed as a mini-
mizing pair of V(r;j,Aj41): since this minimizer is characterized by satisfying
|L*(rj+1)|lB* = 1/A;41, the closure bound (4.19) implies that rj1q € L7;
moreover, since r; and R(£) are in Ker(P),

riv1 =1 — Luj1 € Ker(P),

and we conclude that r; 1 € Lf: . In this manner, the iteration step [u;,r;] —
[wjt1,7j41], is well-defined on B x L% . After k such steps we have

S =Lu+n
=Lu; + Luy + 1

= Luy + Luy + --- + Lug + rg.

We end up with a multiscale hierarchical representation of an approximate so-

Iution of (4.14) Uy, := Zj;l u; € B such that LUy ~ f. Here the approximate
equality ~~ is interpreted as the convergence of the residuals,

1
L% (re) B+ = " —0, rp:=f—LU,
dictated by the sequence of scales, A1 < A < --- < Ag, which is at our disposal.
We summarize with the following theorem.

THEOREM 4.5 (Approximate Solutions). Consider £ : B — L% (Q2) and assume
its dual is injective so that (1.3) holds,

lg =P gl < BIL B Vg € L7 (),

for some P : LP > LP whose range is “compatible” with the range of L. Then,
the equation LU = f € L,f (£2) admits an approximate solution U, € B such that
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LUy >~ f in the sense that the residuals ry, := f — LUy satisfy

(4.20) I L% (ri) I = re = f — LU.

1
Ak
The approximate solution admits the hierarchical expansion U, = Zj?:l u;,

where the u;’s are constructed as minimizers,

[uj41.rj41) = argmin {Jullg + 410712} ro= f.
Lu+r=r;

PROOF. We verify that the a priori duality estimate assumed in (I.3]) implies the
closure bound sought in @19). Fix g € L (Q). Then ¢(g) := psgn(g)|g|?~! €
L?' (), and since g € Ker(P) we find

p/ g|? dx = /gw(g)dx = /g(<p(g)—7’*<p(g))dx
Q Q Q
< lglzrlle() =P ()l -
The a priori dual estimate assumed in (I.3) then yields

pligls < lglerllel@) — P o)l
< BliglzrlIL%(®)llp~ Ve € L{(RQ),
and the closure bound @.19) follows, with 5 := (8/p)?’,

4B
(4.21) lgls," < ;nﬁ*«)(g)ng*.

This allows us to proceed with the hierarchical iterations (4.18),
[uj,rj] e B x Lf: = uj_|_1,rj+1]
;= argmin V(rj,A; 1) € B x L?, j=12,...,
Lu+r=r;
starting with [ug, ro] = [0, f]. A telescoping summation of (4.I8) yields an ap-
proximate solution Uy = Z}c:l u; such that its residual ry = f — LUy satisfies

#.20). O

Remark 4.6 (On the Closure Bound). As an example for the closure bound (#.21))
for £’s with an injective dual, consider the critical case of £L = div : L*®
L4(T?), and let P denote the zero averaging projection Pg = g — g. The corre-
sponding dual estimate (1.3) reads

lg — 2l ar < 1Ly

This is the isoperimetric Gagliardo-Nirenberg inequality, and it implies, along the
lines of Theorem [.5] the following closure bound corresponding to (@.19):

lglfatray S Isen(@lel gyray Ve € LE(T).
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Equivalently, we can rewrite this inequality in terms of ¢(g) = p sgn(g)|g|?~! as
lo@l e < lle(@llpy(ra)- The observant reader will notice that the latter is a
slight variant of the Gagliardo-Nirenberg inequality, since for d > 2, ¢(g) need
not have zero average; only g does.

4.3 From Approximate to Exact Solutions

We now turn to showing that the approximate solutions, Uy = Zj;l u;, con-

verge to a limit U = 372, u;, which is an exact solution sought for @.14), uni-
formly bounded in B.

We start by comparing the minimizer [w; 41,7 +1] of V(rj, A;41) in with
the trivial pair [u = 0, r;], which yields the key refinement estimate

1 .
(4.22) Il = s ||uj+1||IB +lrjsllf,. j=0.1.....
In particular, the closure bound #.19) followed by (4.20) implies

=Ml fI70. Jj =0
4.23) |u <A r A .
( ) “ ]+1||B ]+1” ]”LP < Aj+1n”£ (rj)”l/p f 1;1-,177’ ] Z 1’
where {A;} is an increasing sequence of scales at our disposal. Setting A; =

212771, we conclude that the approximate solutions, Uy = Zlf u;, form a Cauchy
sequence:

k
Uk —Uells s Y 270770 <1, k>e3>1,
j=t+1
which has a limit, U = Z]oil u;, such that |LU; — f||€,, — 0. Since £ has
a closed graph in L?, LU = f. It remains to show that the limit U has a finite
B-norm, which brings us to the following proof:

PROOF OF THEOREM L1l Using @23) with n = (8/p)? yields

. .
M2J77
U8 < uls + Z oy t1lls < Al AL, + ) ————
Jj= —1 )‘1 )
AN
< MlfIZ, + (— - .
Lr p Af 1(2p/_1 _ 1)

Set A1 = B\ f ||2_pp . Such a choice of kl satisfies the admissibility requirement
(@T6). Indeed, according to @21), [lg[|7," < B ||£ ©(2)|IB*; hence
1

P 1-p _—
1 =Bl fll, > L% (f)IB*
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and the uniform bound (I.4)) follows:

2\ 1
@z Wwie o v =81+ () my ) n
Remark 4.7. We summarize the two main aspects in the hierarchical construc-
tion.

(i) The existence of minimizers {u;} of V(r;_1, A;) follows from basic prin-
ciples in uniformly convex Banach spaces. We use here the mere existence of such
minimizers instead of standard duality-based existence arguments in the closed
range theorem, e.g., [46, VILS], [44, 1.A.13-14], [9, theorem 2.20]. We note in
passing that existence of minimizers and duality principles in uniformly convex
Banach spaces can be deduced from each other [22].

(i) The exponential decay of these minimizers and hence the uniform bound
of their sum, [|[U|lg < ) |l < || fllzr, follow from the key a priori dual
estimate (|1.3)) used in the refinement step |b

Remark 4.8 (Extension to Orlicz Spaces). The hierarchical construction extends to
equations valued in more general Orlicz spaces,

LU = f € L := L® N Ker(P*),

(425) 1* = {751l s= [ @rhar <oc].
Q

for a proper N -function ® satisfying the A, condition [2| sec. 8], [6, sec. 4.8].
Assume that the following a priori closure bound holds: there exists an increas-
ing function n : R4 — R such that

1
glo < n1L%@l). [ 2P ds <

Then the problem (4.25) admits the bounded hierarchical solution U = ) wu;
such that |U|lp < [f]e. The closure bound enters through the initial scale A1 2
1/77Y([f]e). The L? setup corresponds to ®(r) = ¢? and 5(s) ~ s?’.

Remark 4.9 (Sharp Bounds). The bound (4.24) with p = 2 shows that if £*is
injective so that (T-3) holds with constant 8, then LU = f € L? admits a solution
lUIB < ¥ fIlz2, with twice the bound y = 28 (in agreement with the L2-case
in Theorem . Using a rapidly growing scale A; 1 = A1¢ J with ¢ > 1yields a
tighter bound y. A sharp form of the B-bound (#.24)) for general 1 < p < oo,

(4.26) IUllg < vl fllpr foranyy > B,

can be argued by invoking the Hahn-Banach theorem. To this end, we reproduce
here a slight generalization of [7, prop. 1]. Normalize || f||» = 1 and consider
the two nonempty convex sets: the ball

By :={ueB:|ullp <y}, ve:=(1+6)B,
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and C := {U € B : LU = f}. The claim is that By, N C # @ and the
desired estimate [(4.26),} ¥ = ye, then follows with arbitrarily small €. If not,
By, N C = @, and by Hahn-Banach there exists a nontrivial g* € L?’ such that
for some o € R4

(4.27a) (g¥,uy<a VueB,
and
(4.27b) (¢*.U)>a VU eC.

If V' e Ker(£) then by applying with U +— U + §V € C we obtain
+8(g*, V) = 0or (g*, V) = 0; that is, g* € Ker(£)t = R(L*) is of the form
g* = L*g forsome g € D(L* C L.

Now, by
(g w) «

lg*llg= =  sup < .
lulg=ye» Ve/2 Ve/2

and the a priori estimate assumed in (I.3)) implies

o
Il < BIC gl = Blg” s = 7.

But this leads to a contradiction: pick U € C (which we recall is not empty); then

(#@.27b) implies
o< (g"U)= (L% U)=(g. f)=lglpr I fllLr =

1+¢€/2

Appendix: On V-minimizers

To study the hierarchical expansions (4.18), we characterize the minimizers of
the Vv-functionals (4.13)),

[u,r] := argmin V(f, 1),
Lutr=f

(A1) .
V(L= inf {uls + A7, u e B,
Here £ : B — LY () is densely defined into a subspace of L? () over a Lipschitz
domain 2 C R¥. The characterization summarized below extends related results
that can be found in [27, theorem 4], [4} chap. 1], [36, theorem 2.3].
Recall that || - ||+ denotes the dual norm, ||L*g||g+ = sup,(L*g,u)/|u|B, so
that the usual duality bound holds

(A2) (L'g.u) < |ullsllL*¢lB+. g€ D(LY), ueB

(and the convention that ||L*g|g+ = oo if g lies outside (the closure of) D(L¥)).
We say that u and £*g are an extremal pair if equality holds above. The theorem
below characterizes [u, 7] as a minimizer of the V-functional if and only if u and
L*p(r) form an extremal pair.
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THEOREM A.l. Let L : B — Lﬁ(Q) be a linear operator with dual L*, and let
V(f, A) denote the associated functional ({4.15).

(i) The variational problem (A.1)) admits a minimizer w. Moreover, if || - || is
strictly convex, then the minimizer u is unique.
(i) u € B is a minimizer of (A1) if and only if the residual r == f — Lu

satisfies

* _ . * _ ”u“IB
s (%)) = lulls - 1%l = 152,

@(r) := psgn(r)|r|P~t e L7,

PROOF.

(i) The existence of a minimizer for the V-functional follows from standard
arguments which we omit, consult [1,27]. We address the issue of uniqueness.
Assume u; and u, are minimizers with the corresponding residuals r; = f — Lu;
andrp = [ — Lup

lills + Alrill7» = vmine @ = 1,2,

We end up with the one-parameter family of minimizers ug := u; + 6(uz — uy),
0 € [0,1],

Umin < lluglls + Allrall? ,
< Oluzllg + (1 =) |uills + OAlr2ll? , + (1 = O)AIr1lf 5 = Vimin-

Consequently, ||r9||€p = 9||r2||{,, + (1 - 9)||r1||i,7 and hence ri{ = rp. In
particular, |[r1||7, = |lr2||¥, implies that the two minimizers satisfy |ju;||p =
|luz|lB, and we conclude that the ball |ju||g = |lui||g # O contains the segment
{ug, 0 € [0, 1]}, which by strict convexity must be the trivial segment, i.e., up =
u;. We note in passing that strict convexity is in fact necessary for uniqueness,
e.g., the counterexample of lack of uniqueness over the £°°-unit ball [27, p. 40].

(ii) If uis a minimizer of (A.I]), then for any v in the domain of £ we have
lulls + Allf = Lull}, = v(u,2)

<v(u+ev,A)
= lu+evlp +Allf — L@+ eV)],
(A4) < lullp + le[ - [vlB + Allf — Lul7,

— pAe(sen(f — Lu)|f — Lul?~1 Lv) + o(e).

Since the domain of £ is assumed to be densely defined in B, it follows that for all
vebd,

(LY%(r). V)| < %”V”B +o(), ¢(r) = psgn(r|P~!, r:= f - Lu,
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and by letting e — 0
1
(AS5) 1£% () s <
To verify the reverse inequality, we set v = tuand 0 < € < 1 in (A.4), yielding
lullg + Allf = Lull7, < A £e)lulp + Al f — LuF eLull7,,

and hence +¢|lu|lg F Ae(p(f — Lu), Lu) + o(¢) > 0. Dividing by € and letting
€ | 04, we obtain |Jul|p = A(L¥(r),u) and (A.3) follows:

1 1

7 vl = (L%(r),u) < L% () |B*|lullp < 7 ulle-

Conversely, we show that if (A.3) holds, then u is a minimizer. The convexity
of L? yields

If =L@+ WI2, = lr—£vI2,
> [r12 gy — P(sen()r[P ™ L+ v)
+ p(sen(r)|r|?". Lu)
= If = Lulll, — (L%(r). (u+ V) + (L) ).
#1 #2

By the equalities assumed in (AJ)), || L¥(r)|gx = 1/A ~ —A(#1) > —||u + v|B,
and moreover, A(#2) = |lu||g. We conclude that for any v € B,

V+v.A) = [utvip +Alf =L@+ w7,
> [+ vl + Al f = Lull], — pA(#1) + pA(#2)
> |[ullg +Allf = Lull], = V(1)
Thus, u is a minimizer of (A.T). O

The next two assertions are a refinement of Theorem[A.T] depending on the size

of | L% (f) B~

LEMMA A.2 (The Case | L¥*o(f)|lg+ < 1/4). Let L : B — L (Q) with adjoint
L* and let v denote the associated functional .15). Then A||L*(f)|p+ < 1 if
and only if u = 0 is a minimizer of (A.J).

PROOF. Assume || L*¢(f)|lB* < 1/A. Then by convexity of L?
lullg +Alf = Lullf,

> ulls + A / f1P dx — A / (@(f). Luydx
Q Q

> |lullp + lf | f17 dx = ML)« lulls = AlLFI7 .
Q
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which tells us that u = 0 is a minimizer of {.15). Conversely, if u = 0 is a
minimizer of (A1), then €|u||g + All f — eLul|?, > A[| f||7, forallu € B. It
follows that

ellulls — €A / (0(f). Lu)dx + o(e) = 0.
Q

Letting € | 0, we conclude A(L¥p(f),u) < |lu|; hence ||[L*o(f)|p+ < 1/A.
O

LEMMA A.3 (The Case ||[L*(f)|g+ > 1/A). Let L : B — LI (Q) with ad-
joint L*, and let v denote the associated functional @.13). If 1 < A||[L¥(f)|p* <
oo, then u is a minimizer of (A1) if and only if Lu and ¢(r) are an extremal pair
and

1 [ulB
(A.6) I£%(r) B+ = T (u. L7%(r)) = -
PROOF. Since ||[L*¢o(f)|lg+ > 1/A, we have ||u||g # 0 and can now divide the
equality on the right of (A.3) by |lu||p # 0 and (A.6) follows. O
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