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Abstract

A new method for stabilizing viscoelastic flows is proposed suitable for high-order discretizations. It em-
ploys a mode-dependent diffusion operator that guarantees monotonicity while maintaining the formal accu-
racy of the discretization. Other features of the method are: a high-order time-splitting scheme, modal spectral
element expansions on a single grid, and the use of a finitely extensible non-linear elastic-Peterlin (FENE-P)
model. The convergence of the method is established through analytic examples and benchmark problems in
two and three dimensions, and unsteady flow past a three-dimensional (3D) ellipsoid is studied at high Reynolds
number.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There has been substantial progress in the development of high-order methods and specifically spec-
tral methods for viscoelastic flows started with the workiff, see, for exampl¢2] and references
therein. However, complex-geometry flows and high Weissenberg and Reynolds number regimes still
present formidable difficulties. The loss of monotonicity of the solution of the stress field for many
viscoelastic models becomes an even greater challenge for high-order methods. However, new ideas
developed in the context of aerodynamic flows, e.g. discontinuous Galerkin methods and new stabi-
lization techniques, have provided a new framework for developing robust high-order solvers for vis-
coelastic flows in complex-geometry domains. Another effective approach demonstrdtzd]irs
the use of Lagrangian and semi-Lagrangian methods that provide high-order accuracy and enhanced
stability.
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Recent studies by Fan et al. witp finite elementg$5] have examined standard benchmark problems
using thestreamline upwind Petrov—Galerkin (SUPG) technique combined with three different formu-
lations: theelastic viscous split stress (EVSS), thediscrete EVSS (DEVSS) and a third one, called
MIX1, which proves to be very efficient in computational resources. Chauviére and J@jehave
also used the SUPG in conjunction with features of discontinuous Galerkin methods (the SUPG-EE
element-by-element method) for a variety of models. These include macroscopic models such as the
Oldroyd-B, the finitely extensible non-linear elastic-Peterlin (FENE-P) and the Phan—Thien—Tanner (PTT)
model, but also mesoscopic models such as the FENE middilat do not possess closed-form consti-
tutive equations.

The dumbbell model has been in the center of viscoelastic studies due to its physical significance.
The model suggests that dilute polymeric solutions are a mixture of the solvent and the polymer,
where the solvent can stretch and convect the polymer molecules that are assumed to behave like
elastic springs. In the limiting case of the spring being able to be stretched infinitely, the model be-
comes the simpler macroscopic Oldroyd-B model (or Hookean dumbbell model), which is less physi-
cal. A non-linearity was introduced first by Warr[&} to assign a maximum value to the extensibility
of the spring, thus resulting to the FENE model. This model cannot be considered macroscopic, as
stated above, but the modifiedsemble-averaged FENE model, known as FENE-P, can. This model
has been extensively studied by van Heel e{3l. where they proposed a slight modification of the
original model. Beris and co-workef$0,11] have also used the model to demonstrate turbulent drag
reduction.

In this work we will examine the standard FENE-P model as it appears in the literature and with some
small scaling variations, as those appear in the work$2fL3] The discretization in space is based on
themodal version of spectralip elements while in time a high-order splitting scheme is empl¢yéd
Monotonicity is maintained using a diffusion convolution kernel that controls the high-order modes, the
so-called spectral vanishing viscosity (SVV) method.

SVV was first introduced by Tadmor {i5] in the context of constructingionotonicity-preserving
discretizations to hyperbolic conservation laws. More recently, it has been employed successfully in
formulating alternative large-eddy simulation (LES) approag¢h6és Also, in[17], the Legendre spec-
tral vanishing method was shown to effectively control the Gibbs phenomenon, whilejinthe
SVV approach was employed in two-dimensional (2D) simulation of waves in stratified atmosphere.
The SVV approach guarantees an essentially non-oscillatory behavior although some small oscilla-
tions of bounded amplitude may be present in the solution. This theory is based on three key
components:

1. Avanishing viscosity amplitude which decreases with the mode number.
2. Aviscosity-free spectrum for the lower most energetic modes.
3. An appropriate viscosity kernel for the high wavenumbers.

This effective regularization is determined by parameters whose range is given directiyby-theear
theory for advection-dominated systems. More recent work has extended the method to superviscosity
formulations, first by Tadmdd.9] and later by M420,21], in order to extend the range of thiscosity-free
spectrum.

In this paper, we demonstrate the use and effectiveness of this technique using both analytic solutions
as well as standard benchmark problems in two and three dimensions. We also present new results fo
unsteady flow past a three-dimensional ellipsoid at Reynolds numberRgx=t01075.
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2. Mathematical formulation
2.1. Governing equations for the FENE-P model

Incompressible viscoelastic flows for diluted polymer solutions can be modeled by a set of three
equations: the equation for momentum conservation, the constitutive relationship describing the evolution
of the non-Newtonian part of the stress tensor and, finally, the divergence-free condition for the velocity
components. In this work we will specifically examine the FENE-P model. This model is based on the
assumption of a dumbbell shape for the polymer chains, and is further described by a function due
to Peterlin that incorporates the maximum value allowed for the extension of the polymer chains. The
non-dimensional momentum conservation equation takes the form:

u
ot

whereu denotes the velocity vectordenotes the stress contribution due to the viscoelastic properties of
the fluid, ands denotes the ratio of the viscositigs/ (ns + np). Herens is the viscosity of the solvent and

np the viscosity of the polymer. Clearly, wheh= 1 this reduces to the Newtonian case. The Reynolds
number in the above equation is definedRas= pUL/(ns+ np), with U, L andp denoting characteristic
values of the velocity, length and density of the flow, respectively. The FENE-P model is based on a
non-linear relation between thatress tensors and theconformation tensore. The stress tensor is
defined througle by:

fine—1
S=—5 )
HereWe denotes the Weissenberg number definedas- A«, wherex is a typical shear rate of the flow
anda a characteristic time constant related to the phenomenon of stress relaxation, typical of viscoelastic
fluids. We can further define the Deborah number= A/ T, where the unit of tim& should be a typical
time scale of the flow. However, we will only be using the Weissenberg number definition throughout. In
the above equatiori() can be identified as theeterlin function:

LZ_RZ
f(’”)=m» 3)

+u-Vu=—Vp+Rie[/3V2u+(l—ﬁ)V-s]+F, Q)

wherer? = tracec) and the small correctioR is usually set to zero, by redefininge and L. However,
for consistency with other definitions, e[@0,12), here we will requireR = +/3 (for three dimensions)
andR = +/2 (for two dimensions) since this proves to be convenient when we derive the conformation
tensor analytic solution in the convergence studies. In the above relatisthe maximum extensibility
of the polymer chain. The conformation tensor has been non-dimensionalized iy, whereky, is
the Boltzmann constanty the absolute temperature afdthe spring constant of the FENE-P dumbbell.
The evolution equation for the conformation tensas given by:
dc T fe—1
o +u-Ve—[c-(Vu)+ (Vu)' - c] = T (4)
where T denotes transposition. The left-hand sid¢4dfis known as theupper convected derivative.
The boundary conditions for the conformation tensor will be specifically discussed in the problems of
Sections 3-5
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2.2. Discretization

For the temporal discretization of the Navier—Stokes equations we use a time-splitting stiffly-stable
scheme. Stiffly-stable type schemes enhance stability through backwards differentiation. The imple-
mented scheme has three different steps and it is an extension of the high-order splitting scheme propose
in [22].

1. Non-linear step:
J.—1 J.—1

i=Y ou"+AtY B, [—(u"q Vw1
q=0 q=0

wheres is the contribution from the polymer computed from:
fe" =1

= . 6

e (6)

The evolution equation of the conformation tensor is discretized using the following scheme:

Lo =1 g

1-8 e .
VST F q] (5)

Jo—1
¢ =c"+At Z £, [c”—‘f VU (V)T e — (V) —
q=0

For stabilization a convolution kernel that introduces the proper amount of diffusion is then employed
(see next section) as follows:

n+1 1 n+l __ é
eV - (On V") Atc =7 (8)

whereQ y is a smooth kernel that controls which modes (wavenumbers) are affected.

The implemented boundary condition for the two-dimensional casé@i@” |, = 0 and
"L = ¢|r. In the three-dimensional case we only implemented the latter. We have systemati-
cally studied the effect of both of the above boundary conditions, showing that accuracy is not affected
by them. From the numerical experiments that we performed, the Neumann boundary condition seems
to enhance stability. Also, our benchmark results do not show any appreciable differences as will be
shown inSections 3 and.4

In the above notatiod, € {1, 2, 3} is the extrapolation order for the velocity field, = 2 the inte-
gration order of the conformation tensethe current time step,, 8, are coefficients associated with
the stiffly-stable schen{@2] as shown imable 1 £, coefficients associated with the Adams—Bashforth
scheme, T denotes matrix transpositiidenotesvVth polynomial order(x) denotes the convolution
operator, and finally- denotes value evaluation at the boundary.

2. Pressure step:

VZ n+1 =V i , 9
= (4) ©
with the boundary condition
Jp—1
apn+l . ,3 P .
—S—=n —u+R—eZﬂqu(vXu | . (10)

q=0
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Table 1
Coefficients,, B,, vo associated with the stiffly-stable scheme
Coefficient First order Second order Third order
Yo 1 3/2 11/6
[640) 1 2 3
o 0 -1/2 -3/2
oo 0 0 1/3
Bo 1 2 3
B1 0 -1 -3
B2 0 0 1
3. Viscous step:
Re Re . Re
VZ _ Yo un+l - _ Yo i+ Yo Vpn+l. (11)
BAt BAt B

In the above notationy, € {1, 2, 3} is the extrapolation order for the pressure. The overall temporal
accuracy of the scheme @@(Ar?) and it is dictated byl = 2; it can be readily extended to third-order
in time similar to the velocity solver in the Newtonian c§22].

Forspatial discretizationwe have adopted the specthgelement method, s¢#4]. It employs standard
unstructured and hybrid grids unlike previous approaches that require special structured grids. This new
version of spectral element uses a hierarchical basis based on Jacobi polynomials with mixed weights that
accommodate accurate numerical quadrature and flexibility in discretization by empbolynepr phic
subdomains. The degenerate case corresponds to a linear finite element discretization with the vertices
corresponding to linear modes. Each element consigtsnbdes per direction but no gridding within the
element is required as all computations are done in modal space. Specifically, each element is separatec
into linear vertex modes, edge modes, face modes and interior or bubble modes.

For asmooth solution, the errorin a Galerkin projection of a smooth function is converging exponentially
fast to zero by simply increasing the number of modes per element/subdomain. This allows for selective
refinement and sharp a priori error estimates in the numerical solution without the overhead cost associated
with re-generation of a three-dimensional mesh. Another distinction with other versionstyf finie
element methods that employ monomials is that very high-order is readily employed (e.@2) and
that the multi-dimensional basis is a tensorial product in the transformed d@id&iithis, in turn, leads
to good efficiency in simulations with high-ordar.

The new method has been implemented in the serial and parallel versions of the computer code named
NexTar [23].

2.3. The spectrally vanishing viscosity (SVV) method

Tadmor[15] first introduced the concept of spectral vanishing viscosity for hyperbolic conservation
laws. Specifically, he used the inviscid Burgers’ equation:

9 0 (u(x,n\
Eu(x, t)—l—a ( 2 ) =0, (12)
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subject to given initial and boundary conditions. The distinct feature of solutions to this problem is that
spontaneous jump discontinuities (shock waves) may be developed, andhletasssof weak solutions

can be admitted. Within this class, there are many possible solutions, and in order to single out the
physically relevant one an additional entropy condition is applied, of the form:

3 [u?(x,1) d [ud(x,1)
&( > )—Fa(—s )50. (13)

In the context of viscoelastic flows the objective is to obtain a unique stable solution of the conformation
stress equation. Tadm{t5] introduced the spectral vanishing viscosity method, which adds a small
amount ofmode-dependent dissipation that satisfies the entropy condition, yet retains spectral accuracy.
It is based on viscosity solutions of non-linear Hamilton—Jacobi equations, which have been studied
systematically irf24]. Specifically, the viscosity solution for the Burgers’ equation has the form:

9 9 [ u?(x,1) 9 ou
514(36, N+ — ( ) =€ [Qea—x] ; (14)

0x 2

wheree (—0) is a viscosity amplitude and. a viscosity kernel. Convergence may then be established by
compactness estimates combined with entropy dissipation argufBpt$o respect spectral accuracy,
the SVV method makes use of viscous regularization, Bnd(14)may be rewritten in discrete form
(retainingN modes):

d 0 u?(x, 1) d ou N
&MN(X, l‘)+a|:,PN( 5 )] Zéa [QN*W]’ (15)

where the sta(x) denotes convolution ar#y is a projection operator) y is a viscosity kernel, which
is only activated for high wavenumbers. In Fourier space, this kind of spectral viscosity can be efficiently
implemented as multiplication of the Fourier coefficienta pfwith the Fourier coefficients of the kernel

On, i.e.

€ [QN * _x] = —¢€ Z K2 Qv (1)t (€™,

M<|k|<N

wherek is the wavenumbery the number of Fourier modes, aiMl the wavenumber above which the
spectral vanishing viscosity is activated.
Originally, Tadmor15] used

R 0, |kl=M
k:

16

1, |kl > M, 19
with eM ~0.25 based on the consideration of minimizing the total-variation of the numerical solution. In
subsequent work, however, a smooth kernel was used, since it was found tGét #moothness 0
improves the resolution of the SVV method. For Legendre pseudo-spectral methods, Mad§g5t al.
usede ~ N1, activated for modek > M ~ 5/N, with

Oy = e =N/ G=M? g o pp a7
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In order to see the difference between the convolution operator on the right-hand EBiglg irb)and
the usual viscosity regularization, following Tadnj@6], we expand as:

9 9 92 9 B
ea—[QN* uNi|:e o2 |:RN(x,t)>k$i|, (18)
X

ox ox2 ox X

where

N
Ry(x, 1) = Z Re(He®; R =

k=—N

{ 1—Qu), lkl=M (19)

1, k| <M

The extra term appearing in addition to the first standard viscosity term makes this method different. It
measures the distance between the spectral (vanishing) viscosity and the standard viscosity. This term is
bounded in thd., norm similarly to the spectral projection error. In this paper we refer to the viscosity

as vanishing as the theory requires that

1
erx ————, 0<1,
Nflog N

and thus — 0 for high wavenumbers.

The basis we use is written in terms of Jacobi polynomials and is decomposeedrieikanodesedge
modes andnterior modes. This is a semi-orthogonal basis (de@ for details) but the SVV procedure
should be applied to orthogonal modes. To this end, we will transform the semi-orthogonal basis to the
orthogonal one as outlined below.

If we examine the weak form of the SVV terd/dx) (Q.(du/dx)) only, ignoring boundary terms and
the leading coefficient, we have the following basic form of the SVV operator:

v du
(8x’ Q E)x) (20)
wherev is a test function taken from the Jacobi polynomigig} andu = ), ix¢y. In the derivation
below we willassume that all discrete summations are from.1 N. In the notation above and henceforth
(-, -) denotes thd., inner product and it is assumed that the continuous and discrete inner products are
interchangeable given sufficient quadrature order.

Now, let B be a matrix that transforms the modal coefficighter the basis function§e; } to & in the
{y1} space, wherég;, } is our C° basis used for the Galerkin formulation afw } is anorthonormal
basis that spans the same spacé¢a$. Let F be a diagonal matrix that acts as a filtering function (the
entries of which are given bigq. (17). In the notation above we havie= Biu. Our goal is to filter the
coefficients: instead of filtering the coefficienis Hence, we would like to transform (via the matBy
to the orthogonal space, filter, and then transform back. This can be accomplished by the operation:

i = B"1FBi. (21)
We can now write expressid0)in the discrete form using matrix notation as follows:

S'TBFBMSi, (22)
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whereS;; = (¢;, dp;/dx) andMj = (¢;, ¢,). It can be shown tha® ' = M~'BT, and hence the discrete
form of the SVV operator for the Galerkin method is given by:

STMBTFBMSa. (23)

Note that the above discrete operator is symmetric, semi-positive definite.

The above formulation was first introduced by Kirf87] for LES. It has been suggested that the
artificial viscosity added usually in the stress equation in physical space is analogous to subgrid viscosity
in large-eddy simulations. That is, instabilities typically arise when the small scales are under-resolved
and correspondingly solution monotonicity is lost. To this end, it is instructive to compare the spectral
vanishing viscosity to the spectral eddy-viscosity introduced by Kraicf2#jras modified by Lesieur
and Metaig29] and Cholle{30]. The latter has the non-dimensional fof80]:

v(k/N) = K;¥?[0.441+ 152 exp—3.03N/k)], Ko =21 (24)

Comparing the Fourier analog of this eddy-viscosity employed in [ to the viscosity kernel
Qi (k, M, N) introduced in the SVV methodsig. 1 shows both viscosity kernels normalized by their
maximum value ak = N. For SVV two different values of the cut-off wavenumber are considered,
ie.

M =C+v/N forC =0and5 (25)

and are shown in the plot &fig. 1 In particular, the solid line can be thought of astability barrier
above which monotonicity and thus stability is not guaranteed. On the other hand, the dash line can be

1 T T T T T
——  M==5SQRT(N)
09 - M=
--— - LES model
0.8
07
0.6
05
0.4 [ESSEE e
Lol s ,
/
0.3F /
/
/
0.2f /
/
/
/
01t ;
7/
Ve
0 | | 1= I |
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

k/IN

Fig. 1. Normalized viscosity kernels for the spectral vanishing viscosity (dastCliae 0 and solid lineC = 5) and the
Kraichnan/Chollet—Lesieur viscosity (dash—dot line).
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thought of as amccuracy barrier below which the convergence of the method is affected. This range
has been used in most of the numerical experiments so far (see for efagf 25) and is consistent
with the theoretical resulfd5]. In the plot it is shown that, in general, the two forms of viscosity have
similar distributions but the SVV form does not affect the first one-third or one-half of the spectrum
(viscosity-free portion) and it increases faster than the Kraichnan/Chollet—Lesieur eddy-viscosity in the
higher wavenumbers range, e.g. in the second-half of the spectrum.

In the following, we will address the effect of SVV on the convergence rate and the stability of
spectralip element discretization.

3. Convergence and SVV parameters

The convergence tests used to show the effect of SVV are based on an analytic solution derived
for the conformation tensor in a channel flow. By lettiRg= /2 for a two-dimensional flow and
R = /3 for a three-dimensional flow ifq. (3) we can simplify the analytic solution for velocity
fields of the formu = (U(y), 0, 0). Thus, we can examine the effect of the two different parameters
appearing on the SVV formulation (the cut-off mode and the value ot) and theL, error of the
numerical results when compared to the analytic solution. As statfiD]nthe exact solution of the
conformation tensor for a three-dimensional problem can be identified as the following (symmetric)

matrix:
L[ 2 () ve ey
F(y) F2(y) \ dy F2(y) \ dy
¢= 1 o |- (26)
F(y)
1
F(y)
where the following definitions apply:
V2We dU
20y = L 4y (27)
Y3y
F(y) = 2sint(6/3)° (28)
¢ = sinht (@) . (29)

For the two-dimensional case we reduce the valug fsbm +/3 to +/2 and consequently only the upper
left 2 x 2 block appears for the exact expression.

Based on the above analytic expression, we conclude that the exact relation for the conformation tensor
subject to the above restrictions is dependent only on the velocity gradientyrdinection. Fabricating
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Fig. 2. The 16-element mesh employed for the convergence tests in two dimensions. A sikilar 4 mesh was used for the
three-dimensional convergence tests. The channel has a length of 2 in all directions.

a non-trivial solution for the flow field foy € [—1, 1] other than the parabol#(y) = 1 — y? requires the
introduction of a more complicated expression for the driving fdrde Eq. (1) It can be shown that if

\/;m[ﬁ cosh3y) + (1 — B)cosh(y)] (30)
the corresponding expression for the velocity has the simple but non-trivial form:
U@y = V2 L ——[cosh3) — cosh3y)]; ye[-1 1] (31)
9/3Ve ’

Both a two- and three-dimensional test case {tagis is normal to the paper Fig. 2) have been inves-
tigated to evaluate the convergence rate of the method. For brevity, we only present the three-dimensiona
results below.

The mesh we employ for the three-dimensional tests consists<od 4« 4 elements and the domain
is similar to the one shown iRig. 2 with all three sides of length 2. We have &&= 8 andWe = 25
and considered two values of the coupling paramgtdn Fig. 3 we plot theL, error in the velocity
and the conformation tensor (all components); we see that the solution error converges exponentially to
zero for both fields. Solutions are obtained fér= 5, 7 and 11 with corresponding SVV parameters
(e, M) = (0.05, 2); (0.02, 4); (0.01, 6). We see that despite the use of artificial viscosity the formal
(exponential) accuracy of the discretization is maintained. This is true irrespective of the size of the
coupling parametes although, as expected, the greater the valud ef 8) the larger the error value is.

Next we examine how sensitive the numerical solution is with respect to the choice of the SVV
parameters; we fix the spectral ordeo= 7. In Fig. 4we plot theL, error of the conformation tensor
(all components) versus the SVV amplitudg@eft) and cut-off wavenumbev!. With respect to the latter,
we see indeed that for larger values we run into a stability barrier whereas for low values the accuracy
degrades; such trends are valid for different values of the SVV amplitude as sh&wgn #(right). The
stability and accuracy trends with respect to viscosity amplitudee also in agreement with Tadmor’s
theory although here thaptimum value ofe cannot be predicted precisely by the theory.
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5 Error convergence of Velocity (Re =8 We =25) Error convergence of conformation tensor (Re =8,We =25)
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Fig. 3. Three-dimensional case: convergence rate in velocity (left) and conformation tensor (right).
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Fig. 4. Three-dimensional case: effects of SVV amplitude (left) and cut-off wavenumber (right).

As a final remark on the selection of the two different boundary conditierign"+1|, = 0 and
¢ = é|r, we show inFig. 5that accuracy is not significantly affected by favoring one or the other.

The plot shows thdifferencein the L, error between the two, normalized by thgerror of the Dirichlet

boundary condition.

4. Benchmark problems—Stokes flow
To demonstrate the stability and accuracy of the method, we will compare with some of the most

commonly published results on specific benchmark problems, for both two- and three-dimensional

simulations.
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Effect of the two boundary conditions on the conformation tensor
10 ¢ T T T T T T T T T

+ €£=0.0001]
+ £=0.001
£€=0.01
€=0.1
£=1.0

- £=10.0

Normalized difference in L2 error

o#+oo*

10 ! L L | | | | ! 1
15 2 25 3 35 4 4.5 5 55 6 6.5

M (filter mode cutoff)

Fig. 5. Effect of the two different boundary conditiobs/an" |- = 0 andc¢"*!| = ¢| on theL, error. Results shown are
from the two-dimensional (analytical) case.

4.1. Cylinder in a channel

Therobustness ofthe scheme will first be demonstrated in the well-examined flow past a two-dimensiona
cylinder in a symmetric channel. Here, we do not make use of the symmetry, and thus we include the
entire domain, unlike past studies. The computational mesh employs 176 quadrilateral elements as show
in Fig. 6.

The setup of the problem is as follows. The length of the channel is 40 non-dimensional units long
(x € [—20, 20]), the channel half-widtl# is 2 units long ¢ € [—2, 2]), the radius of the cylindeR is 1

Fig. 6. The two-dimensional mesh used for the benchmark problem. The curved sides are represented isoparametrically with
high-order expansion. Here, faces are plotted as straight lines.
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Table 2

Time stepAt with SVV parameter = 0.001 andM = 2 for each successful case

We N=5 N=6 N=7 N=38 N=9
0.505 1E-4 1E-4 1E-4 3E-5 1E-5
0.608 1E-4 1E-4 1E-4 3E-5 1E-5
0.712 1E-4 1E-4 5E-5 3E-5 1E-5
0.818 1E-4 5E-5 1E-5 1E-5 1E-5

N denotes the spectral order per direction.

unit long (R = 1) and consequently the aspect ratic= R/H = 1/2. Parabolic inflow of the form

v =30 (1-(3)).
uy, =0,

is imposed along € [—2, 2] atx = —20, thus the mean valué = 1. The outflow boundary condition
at x = 20 is treated with Neumann boundary condition set to zero. The boundary conditions for the
conformation tensor in the entrance of the channel are Dirichlet and are set to be the analytic values
corresponding t@g = 1 as dictated b¥q. (26) We also define the Weissenberg number for this flow
to beWe = U)/R. Choosing the SVV parameters (/) = (0.001, 2) throughout, the time stepr is
adjusted as shown ifable 2 The evolutiorEq. (4)for the conformation tensor is solved in physical space
explicitly, using the second-order Adams—Bashforth scheme. The additional SVV part of the equation is
solved implicitly in modal space.

The computations are considered steady-state once the stopping criterion

I — u" |
At

<1073

is met. The simulation parametéchosen for this benchmark problem #e- 0.59, L = +/20.

Letting r = (1 — B)s, we will focus on theaxial normal stress Ty, = 1.1 profiles on the rim of the
cylinder, the wake, and the stagnation points. Comparisons of these values were done with Chauviére's
[13,31] parameters, namely Weissenberg numbers equal to 0.505, 0.608, 0.712 andig.818hows
the profiles of the axial normal stred%, for a given polynomial order along thedirection as the
Weissenberg number variese [—1, 1] is the region between the two stagnation points. Observing the
axial normal stress at the wake andvat: 0, we see thafy, has higher values in the wake region as
Weissenberg numbers get higher, but inversely for the highest point on the cyirdér

Fig. 8demonstrates the resolution studies made from the aspegctfihement for a given Weissenberg
number. The agreement among the five different polynomial orders is clear. Of significance is also the
drag coefficientt™* on the cylinder normalized as:

F

F*= 32
AnU (32)

1 Consistency with[13,31] requires in the two-dimensional case a small normalization factor for the stress temsor
a(L)((f(r)e — 1)/We), wherea(L) = ((L? +2)/L?) = 1.1.
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Txx stress tensor, polynomial order: 9

We=0.505
+  We=0.608
—- We=0.712
- We=0.818

200
9922000
115182999

Fig. 7. Ty stress tensor, polynomial ord&r= 9.

Txx stress tensor, We = 0.818

> polynomial order:

polynomial order:
+ polynomial order:
— - polynomial order:
o polynomial order:

o~

Fig. 8. Effects ofp-refinementTy stress tensor, Weissenberg num¥er= 0.818.
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Table 3

Drag coefficientF* for macroscopic simulations with SVV (upper middle) and drag coeffici&nby Chauvere[13] (lower
middle)

We N=5 N=6 N=7 N=28 N=9
No SvV
0.505 8.992 8.998 8.999 9.002 9.006
A%
0.505 8.998 9.001 9.002 9.003 9.007
0.608 8.844 8.848 8.850 8.852 8.856
0.712 8.728 8.733 8.738 8.739 8.740
0.818 8.639 8.635 8.652 8.653 8.652
Chauvere[13]
0.505 9.090 9.093 9.081 9.077 9.076
0.608 8.967 8.979 8.964 8.958 8.957
0.712 8.886 8.906 8.891 - -
0.818 8.838 - - - -
% difference
0.505 1.0138 1.0136 0.8655 0.8122 0.7553
0.608 1.3711 1.4579 1.2739 1.1813 1.1303
0.712 1.7782 1.9405 1.7197 - -
0.818 2.2529 - - - -

Empty boxes correspond to divergent runs. It has to be noted here that the corresponding mesoscopic simulatiofi8fione in
did converge. We also present the drag coefficien¥er= 0.505 without applying any SVV filtering (upper). The percentage
of difference between Chawre’s values and the SVV values is shown here too (lower).

wheren = ns+ 1, is the total viscosity, and as stated earlie= 1. Table 3demonstrates the robustness
of the SVV filtering, as none of the values are diverging to infinity, compared to other methods for
macroscopic simulations.

Table 3also shows the percentage of disagreement between Chajdhdgd&]and the SVV-calculated
values. Naturally, increasing the Weissenberg number increases the disagreement. It has to be noted tha
in this disagreement the effect of the SVV is secondary. To this end, we performed a series of simulations
for We = 0.505 (the drag coefficients shownTable 3 without applying any SVV filtering. The results
support the above conclusion. Comparison was also made on the effect of SVV Bg tinefiles. To
this end, results from the standard and modified SUPG mefh8¢B(], private communications) and the
SVV were compared to verify the accuracy and stability of the methimd.9 shows a good agreement
for We = 0.608.

In Fig. 10 we plot theTy contours for the Weissenberg number of 0.712 ahe= 8 close to the
cylinder. Good agreement is established between the two results.

Fig. 11shows theT, profiles for higher Weissenberg numbers, ranging fiden= 0.88 up to 200.

Our simulations appear to be highly stable in this range. No attempt was made to reach higher Weis-
senberg numbers thane = 2.00. The qualitative trends agree in these cases as well, i.e. the axial
normal stress is higher at the wake of the cylinder for higher Weissenberg numbers but inversely for
x = 0. Fig. 12 also shows the drag coefficient variation fgr = 6 with respect to the Weissenberg
number.
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251

O sw
—— Chauviere

Fig. 9. Comparison ofy profiles atWe = 0.608 and polynomial ordes = 8.

2

= ———
1.75 -\¥/_’—/

Fig. 10. Ty contours fole = 0.712 and polynomial ordeN = 8. We compare the SVV method (upper) and Chare/s
results[13] (lower).
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TXX stress tensor, N=6

Fig. 11. T profiles for Weissenberg numbers up to 2.0.

Finally, comparing again the effect of the two different boundary conditianign"**| = 0 and
" = ¢|r, Fig. 13shows no appreciable differences in the axial normal stress profilaa&es
0.505, verifying the convergence remarksS#ction 3

4.2. Falling spherein a tube

Next we consider Stokes flow past a sphere in a long tube, a standard benchmark test (adopted in the
Fifth Workshop on Numerical Methods of Non-Newtonian Flows). The ratio of the tube to the sphere
radius isR;/Rs = 2, and we vary the Weissenberg number which is defined here as:

where Vs is the speed of the sphere. The value of maximum extensibility of the polymer chain here is
settoL = 6, the time step is set th+ = 5E—3 and the SVV parameters are= 0.001 andM = 2.
Dirichlet boundary conditions for the conformation tensor (the diagonal entries of the matrix in this case)
are imposed at the front end of the tube, as dictateHdpy(26)

This problem is a severe test for numerical methods due to the steep stress boundary layers formed
around the sphere and the stress wake developed. Several solutions have appeared in the literature fo
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9.1

cylinder in a channel polynomial order N=6

8.9

8.8

8.7

8.6

85

0.5

15 2

Weissenberg number

Fig. 12. Drag coefficient for Weissenberg numbers ranging from 0.505 to 2.0.

Fig. 13.T, profiles for\we = 0.505 and polynomial orde¥n

the conformation tensor.

22

TXX stress tensor, polynomial order 6, We = 0.505

— Neumann BC
O Dirichlet BC

6. Here we compare the two different boundary conditions for
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Fig. 14. Three-dimensional mesh for simulating the falling sphere problem. The sphere ratljus is

We < 2.5 using, e.g.p-adaptive finite element discretizatiof2], discontinuous Galerkin methods
[33,34] hp Galerkin least-square finite element methffsisand Lagrangian methodi3].

However, unlike previous works where an axi-symmetric formulation is used, here we employ a Carte-
sianfull three-dimensional formulation in order to test the new SVV-based formulation. The overall mesh
and its details are shown Figs. 14 and 15t consists of 608 hexahedra elements. In the simulations we
will vary the spectral ordeN to test convergence.

The first quantity that we compute is the drag correction faktaefined by:

_ F
"~ 6mnsVsRs'

Fig. 15. Detail of the mesh around the sphere for Stokes flow.
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Drag factor K(=F/6mtnaV) of falling sphere in a tube with a/R=0.5
T T T T

5.8

5.6

54F _ _ _ N\ — L L L L . B

5.2

FENEP, = 0.9 (order 6)
FENEP, = 0.9 (order4) 4
FENEP,3=0.9 (order 8)
FENEP,3=0.9 (order 10)
FENEP,3=0.2 (order 6) ]
—— UCM Fanetal

— - Newtonian, lower viscosity

»a>0Oo o

Drag Factor K

4.8

4.6

4.2

I I I I
0 0.5 1 15 2 25

Weissenberg number

Fig. 16. Drag factor vs. Weissenberg number for sphere in Stokes flow.

where the denominator represents the Stokes drag for a Newtonian fluid in an infinite medtign 16
we plot the drag correction factor versus the Weissenberg number and compare with the results of Far
et al.[5]. In that reference an upper-convected Maxwell (UCM) fluid model was used whereas in the
current work a FENE-P model is used. In order to investigate the differences between the two results
we vary the coupling parametgrin the FENE-P model; we see ggyets smaller the FENE-P solution
approaches the UCM solution of Fan et[al.

In order to get a first order estimate of the shear-thinning effect, we also performed a simulation by
setting(1—pB) Vs to zero inEq. (1) which is equivalent to a Newtonian simulation with lower viscosity. In
Fig. 16 as the Weissenberg number exceeds the value of 0.3, the contributions from the elastic properties
of the polymer become apparent in the amount of drag reduction. Of course, more detailed models, as
done in[35], have to be employed here to account for the actual effect of shear-thinning.

We have also investigated the effect of resolution by varying the spectral 8rder4, 6, 8 and 10;
aboveN = 6 the solution does not change very much.

We note here that very large values in Weissenberg number have been achieved using, e.g. Lagrangia
methods and specially-designed two-dimensional (axi-symmetric) grids, e @] sklere, we achieved
these solutions on a non-optimal three-dimensional mesh using SVV parameters suggested by the theor
Because of the computational expense associated with our three-dimensional simulations no specific
attempt was made to reach a higher value of Weissenberg number, as for exajgple in

In addition to the drag correction factor we also computed the stress profiles along the front and
rear centerlines and on the sphere surface, following the recommendati&n34h These profiles are
representative of how well the stress wake is resolvedidn 17 we plot the axial normal stress along
the axis of symmetry and the sphere surface and we compare with the results of F#i eThk value
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Normal stress L (or T, for cylindrical system),We=2.2

T
200+ - FENE P
- UCM  Fanetal

[ 1, 0) for head x axis; [0,1] for sphere surface; (15.2] for tail x axis

Fig. 17. Profiles of the axial normal stress along the axis of symmetry and the surface of the sphere. Here 0 in the horizontal axis
corresponds to the front stagnation point anithe rear stagnation pointye = 2.2.

of Weissenberg number e = 2.2 in this case which is the maximum value reached in the work of Fan

et al. As it is pointed out in their work, their stress profile seems to be inaccurate despite the fact that the
drag correction factor & = 2.2 agrees with the values in the literature. The FENE-P predictions seem
accurate; at lower values @ our results are in good agreement with the results of Fan et al.

5. Flow past a 3D ellipsoid at high Reynolds number

Next we consider external flow past a three-dimensional ellipsoid, i.e. a non-axi-symmetric body as
shown in the mesh plotikigs. 18 and 19n particular, uniform inflow is considered past an ellipsoid with
axes dimensions 4 2 x 6 length units. Both steady and unsteady cases were simulated. In the steady
case the domain extends from12, 12] in the x-direction (flow direction), {4, 4] in the z-direction
(vertical direction), and-6, 6] in the spanwise-direction. For the unsteady case, the domain extends
to [—16, 32] units in the flow direction. The number of elements is 640 in the steady case and 624 in the
unsteady case; the spectral order was- 6 for all cases. The distribution of the elements size is very
different in the two cases; in the unsteady case this distribution has been optimized based on the lessons
learned from the steady case, for which the resolution was excessive. The boundary conditions imposed
for the conformation tensor upon inflow are as describeSidation 4for the sphere problem.

We have simulated four different cases at Reynolds nuRbet 93.4, 565 (steady), anRe = 848,
and 1075 (unsteady). The Reynolds number definition is based gadimetric mean of the two ellipsoid
axes in the crossflow plane. We have also simulsiteg= 0.1 and 02. The parametet throughout this
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Fig. 18. Three-dimensional domain for simulating flow around a 3D ellipsoid.

section is set to the value of 10, the time step= 5E—4 and the SVV parameters are= 0.0001 and
M=2.

We first report results for the steady casd&kat= 93.4. In Table 4we present the values of the drag
coefficient normalized as follows

F

Cog=— >
4~ 05pU2D,D.

whereD, and D, are the axes in the crossflonandz directions. We see that there is a substantial drag
reduction even in steady state in the case of the FENE-P{fuid 1) compared to the Newtonian fluid
(B = 1) at similar conditions. As a rough estimate of the shear-thinning effetabie 4we also present
the Newtonian results of the corresponding lower viscosity parameter.

-4~ T_g

Fig. 19. Detail of the mesh around the 3D ellipsoid.
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-I;erlglgectefﬁcient for steady laminar flow past a 3D ellipsdtd;= 93.4 (upper) € = 10)

Case

=1 p=0.8 p=05 p=0.8
Cq 0.597 0.469(21.4)We=11 0.368 (-38.4)We =11 0.441 26.2), We =25
Cq 0.523 12.4),We=0.0 0.418 (-30.0),We = 0.0

The numbers in parentheses denote percentage difference with respect to the Newtonian case correspoeadingléoe we
also include the Newtonian results with lower viscosity (lower).

In Fig. 20we plot the quantitative differences of the surface stress along two different directions and
show explicitly the contribution due to polymer. The model parameterg are0.8 and Weissenberg
numberWwe = 1.1. In Fig. 21 we plot the streamwise velocity for the two fluids. The plot in the wake
region on the right shows that the separation bubble is larger for the Newtonian fluid.

In Fig. 22we plot the time-history of the streamwise velocity component at one point in the near-wake
at Re = 848. Specifically, the point is located at= 6.2, y = 0, z = 0. We compare both FENE-P
and Newtonian flows. We first observe that a steady periodic state is achieved, i.e. a three-dimensional
limit cycle for both cases. However, the frequency content is higher for the FENE-P fluid with pro-
nounced super-harmonics. Also, the main Strouhal frequency is somewhat higher for the FENE-P com-
pared to the Newtonian case. lig. 23we plot the time-history of a near-wake pointRd¢ = 1075.
Specifically, the point is located at = 4.59730021,y = —1.65243340,; = 0.0. From the corre-
sponding frequency spectrum we see that the flow at this Reynolds number is in the early turbulent
regime.

In Fig. 24we plot the quantitative differences of the surface stress for the three larger values of Reynolds
number, and ifrig. 25we show differences in profiles of the corresponding surface pressure. The former
is substantial whereas the latter is relatively small.

T T T T T T
2 —o— Newtonian flow —o— Newtonian flow
-0 Viscoelastic flow —0- Viscoelastic flow
35k 9 —— Polymer contribution $=0.8 —— Polymer contribution p=0.8
Q

flow direction @

051

section of X=0

I
0 0.5 1 15 2 25 3 35 4 4.5

Arc length along X direction Arc length along Y direction

Fig. 20. Comparisons of the surface stress (axial normal) at two different pR@mes93.4 ands = 0.8.
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0.0:

—8— Newtonian flow
—0- Viscoelastic flow

—@— Newtonian flow
—O- Viscoelastic flow

10 5 0 5 10
X X

Fig. 21. Comparison of streamwise velocity profiles along the flow centerline, zoom in the wake Regatp3.4 andg = 0.8.

In Fig. 26we plot the quantitative differences of the surface stress for different Weissenberg number,
and inFig. 27we show differences in the profiles of the corresponding surface pressure. The Reynolds
number is maintained constantRe = 848 and the coupling parameterds= 0.9. Here both surface
stress and surface pressure are substantially influenced by the value of the Weissenberg number. Not
that the separation points move downstream as the Weissenberg number indriga gk (

Velocity history and spectrum in the wake (Re=848, N= 6)
0.15 T T T T T T

—— Newtonian flow

0.1

T

900 905 910 915 920 925 930 935 940
convection time based on streamwise axis of ellipsoid
0.15 T T T T

U’!

[ — FENEP: We=0.1,p=0.9 |

01 B

=]
0.05
0

1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060
convection time based on streamwise axis of ellipsoid
T T T

T T T T
104k -~ Newtonian with peak frequency: 0.27536 ’,

—O- FENEP with peak frequency: 0.28319

VAN

{
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency spectrum

energy

Fig. 22. Time-history and corresponding frequency spectra of streamwise velocity component for a near-wake point: up-
per—Newtonian, lower—FENE-Re = 848.
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Velocity history and spectrum in the wake (Re=1075, N=8)

0.7 T T T T T
0.65 B
S 06 ‘ -
0.55 B
0.5 1 1 1 1 1
770 780 790 800 810 820 830 840 850
convection time based on streamwise axis of ellipsoid
0.7 T T T T
0.65 [/ B
S 06 4
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0.5 1 1 1 1
760 780 800 820 840 860 880 900
convection time based on streamwise axis of ellipsoid
T
-+ Newtonian with peak frequency: 0.32532

Fig. 23. Time-history and corresponding frequency spectra of streamwise velocity component for a near-wake point: up-

per—Newtonian, lower—FENE-Re = 1075.

frequency spectrum

X component of surface stress ('[nx) on y=0, the half of z>0(We=0.1,3=0.9)
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Fig. 24. Effect of Reynolds number on the surface stre¥&at 0.1 andg = 0.9.
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Pressure distribution on surface of y=0, the half of z>0(We=0.1,3=0.9)
T T T T T T
—a— Re=565
—%- Re=848
—o— Re=1075

0. 21

0. SQction of Y=0

0 1 2 3 4 5 6
Arc length along X direction

Fig. 25. Effect of Reynolds number on the surface pressiéat 0.1 andg = 0.9.

X component of surface stress (Tnx) on y=0, the half of z>0(Re=848)
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Fig. 26. Effect of Weissenberg number on the surface stréRsat848. Note the separation points on the ellipsoid surface.
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Pressure distribution on surface of y=0, the half of z>0(Re=848)
T T

T T
—=— Newtonian flow

—#— Viscoelastic flow (We=0.1, f=0.9)
—o— Viscoelastic flow (We=0.2, f=0.9)

0.3 section of Y=0

0 1 2 3 4 5 6
Arc length along X direction

Fig. 27. Effect of Weissenberg number on the surface pressiRe-at848.

Pressure distribution on surface of y=0, the half of z>0(Re=1075, We=0.1,3=0.9)
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0.3 section of Y=0 >

0 1 2 3 4 5 6
Arc length along X direction

Fig. 28. Pressure profiles &t = 6 and 8 forRe = 1075 and\e = 0.1. Note the sudden change in pressure at the separation
point S in the low resolution case. See ai8g. 24
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X component of surface stress ('[nx) on y=0, the half of z>0(Re=848, We=0.2, 3=0.9)
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Fig. 29. Stress profiles and separation point§ at 6 and 9 forRe = 848 andWe = 0.2.

Finally, we have performed systemagerefinement studies to assess the accuracy of the results pre-
sented here for flow around the three-dimensional ellipsoid. We report here only representative results
for the two higher Reynolds numbBe = 1075 withWe = 0.1 andRe = 875 withWe = 0.2.

For Re = 1075 the root mean square (rms) fluctuations of the velocity histories shoiig.i@3are
0.03143 forN = 6 and 0.03143 foV = 8 for the non-Newtonian flow. The corresponding values for
the Newtonian flow are 0.04361 and 0.04360 for the two resolutions. This shows that the flow seems to
be well-resolved at the highest Reynolds number we considered in this work and also that the polymer
reduces somewhat the streamwise fluctuations. Examination of other quantities show similar results. In
Fig. 28we show the pressure distribution for the two resolutions. We see some small deviation, especially
in the wake; this was the largest deviation that we could detect in comparing the two Nirs &tand 8.

Next we present a representative comparison forRae= 848 with We = 0.2 case inFig. 29
We performed runs with resolutioN = 6 and 9. We see that there is no visible difference in the
stress distribution although we observed the separation point moving slightly downstream in the higher
resolution case.

6. Summary

We have presented a new numerical method suitable for simulating high Reynolds number viscoelastic
flows. Our particular interest is on turbulent drag reduction for flows around hydrodynamic surfaces (e.g.
ship hulls, torpedos, etc.) using polymers, and some of the developments in this paper were motivated by
this application. To this end, the modified splitting scheme propog@&jin combination with the modal
type representation of spectral elements has been found to be both robust and accurate. We have been ft
lowing this procedure for Newtonian turbulent flows with success as well, e.§38é the benchmark
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problems, we intentionally targeted three-dimensional configurations in order to demonstrate that spectral
element simulations are practical and that the new stabilization technique is quite effective. Moreover,
the Weissenberg numbék = 2.0 reached in the two-dimensional flow past a cylinder, together with the
smoothness of th& profiles for these Weissenberg numbers, demonstrate the stability of the method.

The use of numerical diffusion to stabilize simulations of hyperbolic nature goes back to von Neumann
and Richtmyer, and it has been practiced routinely in aerodynamic flows, and also in subgrid scale models
in large-eddy simulations. However, in more recent work it has been formulated as an adaptive feature,
i.e. to be used non-uniformly in space and/or in time as needed. In addition, high-order superviscosity
kernels have been the preferred choice. In viscoelastic flows, explicit treatment with artificial viscosity has
been done typically without a particularly close connection to resolution or the spatial non-uniformities
in the stress field. Of course, formulations such as SUPG address this issue implicitly, but here we refer
to explicit artificial viscosity approaches. The current formulation addresses that by targeting modal rep-
resentations of the numerical solution. We have introduced the spectral vanishing viscosity method that
imposes monotonicity of the solution without affecting the lower most energetic modes. Only the upper
one-third of the modes is affected in a special way so that the high-order accuracy (exponential in our
case here) is maintained.

The appeal of the new approach is that it derives its origin in non-linear hyperbolic laws—a theoretical
proof presented first by Tadm{i5]. Another useful feature from the implementation standpoint is that
the convolution kernel that represents SVV is second-order and thus it can be easily implemented in
existing finite element codes. To this end, an extension of the method in the physical (instead of modal)
domain is required but some initial work has already been dof®5in

This is the first paper using SVV for viscoelastic flows and many issues need to be resolved. First, the
two parameters that characterize the SVV kernel, namely the amplitude and cut-off wavenumber need to
be studied more systematically. In the presented examples we have seen that the values of the viscosity
amplitudes depend on the flow parameters. Our criterion in choosihgs been to employ the smallest
value that ensures stability since this will not decrease the accuracy.

A dynamic model that relates the amplitude of SVV and the local strain needs to be explored and imple-
mented appropriately. In addition, the smooth kegpéelt, N) can be modified so that a space-dependent
(i.e. variable) cut-off wavenumber be introduced. Finally, more tests are required in the context of other
viscoelastic models in addition to the FENE-P considered here.
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