The solutions are only sketched below for problems which present no difficulty.

30 (10 points) Dummit-Foote, 7.1 #25
All parts are straight-forward computations. Integral quaternions of norm 1 are the units:

\[I^\times = \{ a + bi + cj + dk \mid a^2 + b^2 + c^2 + d^2 = 1 \} = \{ \pm 1, \pm i, \pm j, \pm k \} \]

This group is the quaternion group of order 8, by definition.

31 (10 points) Dummit-Foote, 7.1 #26
a) \(R = \{ x \in K^\times \mid \nu(x) \geq 0 \} \cup \{ 0 \} \) is a subring of \(K \): \(\nu(ab) = \nu(a) + \nu(b) \) ensures \(R \) is closed wrt multiplication, and \(\nu(a + b) \geq \min\{\nu(a), \nu(b)\} \) ensures \(R \) is closed wrt addition.

b) If \(x \in K^\times \) then \(\nu(x) < 0 \Rightarrow \nu(x^{-1}) > 0 \).

c) We have: \(x, x^{-1} \in R \Leftrightarrow \nu(x), -\nu(x) \geq 0 \Leftrightarrow \nu(x) = 0 \)

32 (10 points) Dummit-Foote, 7.1 #27
Here \(R \) is the subring of rational numbers whose denominators are free of \(p \).
\(R^\times \) is the multiplicative group of rational numbers which are free of \(p \).

33 (10 points) Dummit-Foote, 7.2 #2
Follows from the computation mentioned in the problem statement in square brackets. If I find a more elegant proof then I will include it the next solution set.

34 (10 points) Dummit-Foote, 7.3 #33
First suppose \(R \) has no nilpotents. We will show that \(R[x]^\times = R^\times \) where we identify \(R^\times \) with its image under the embedding \(R \hookrightarrow R[x] \). We will also show that \(R[x] \) has no nilpotents except 0.
Let \(p(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x] \) be a unit. Wolog \(a_n \neq 0 \). Let \(q(x) = b_0 + b_1 x + \cdots + b_m x^m \) with \(b_m \neq 0 \) (wolog) be the inverse of \(p(x) \) and observe that \(a_0 \cdot b_0 = 1 \). Thus \(a_0 \in R^\times \).

If \(m = 0 \) then we have \(b_0 \cdot p(x) = 1 \) which when multiplied by \(a_0 \) yields \(p(x) = a_0 \), thus \(p(x) \in R^\times \).

If \(m > 0 \) and assume \(b_m \) is not nilpotent, then we derive a contradiction (saying \(b_m \) is nilpotent) thereby showing the impossibility of the case \(m > 0 \).

Suppose \(b_m \) is not nilpotent, then, we recursively multiply the coefficients of \(x^{n+m-i} \) in \(p(x) \cdot q(x) \) \((0 \leq i \leq n)\) by \(b_m^i \) to obtain the relations \(a_{n-i} \cdot b_m^{i+1} = 0 \). In particular \(a_0 \cdot b_m^{i+1} = 0 \) which (when multiplied by \(b_0 \)) yields that \(b_m \) is a nilpotent. Hence we have shown \(R[x]^\times = R^\times \).

Suppose now that \(p(x) \) is nilpotent and \(p(x) \neq 0 \). Then write \(p(x) = a_0 + a_1 x + \cdots + a_n x^n \) with \(a_n \neq 0 \). We have \(p(x)^N = 0 \) for some \(N > 0 \). We then have \(a_n^N = 0 \) whence \(a_n = 0 \) contradicting \(p(x) \neq 0 \). Thus the zero polynomial is the only nilpotent element of \(R[x] \).

Now, for a general commutative ring \(R \) let \(\mathfrak{n} \) be the nilradical of \(R \) and \(S = R/\mathfrak{n} \). By problems 7.3.29 – 30 of the text, we know that \(S \) has no nilpotents. Consider the surjection \(\Phi : R[x] \to S[x] \) with kernel denoted \(\mathfrak{n}[x] \). Let \(p(x) \in R[x]^\times \), then \(\Phi(p(x)) \in S[x]^\times \), because a ring homomorphism takes units to units. Therefore by our consideration of \(S[x]^\times \), we know \(\Phi(p(x) - a_0) = 0 \) whence \(p(x) \in R^\times + \mathfrak{n}[x] \). Together with the fact \(R^\times + \mathfrak{n} = R^\times \) which is problem 7.1.14d of the text we have established part a) of the present problem (that \(a_i \) must be nilpotent except \(a_0 \) which must be a unit).

If \(p(x) \) is a nilpotent element of \(R[x] \) then \(\Phi(p(x)) \) is nilpotent in \(S[x] \) (problem 7.3.32), and therefore by our consideration of the nilpotents in \(S[x] \) we know \(\Phi(p(x)) = 0 \) which is the same as \(p(x) \in \mathfrak{n}[x] \) as was to be shown for part b) of the problem.

35 (10 points) Dummit-Foote, 8.1 #3

Let \(R \) be a Euclidean domain, and \(a \in R \) be of minimum norm, then by the Euclidean algorithm, we have that \(a \) divides every \(b \in R \). In particular \(a \) divides 1 and hence is a unit. Since the norm is nonnegative, any element of norm zero has minimum norm and would be a unit.