Solutions to Homework 9

Math 600, Fall 2007

42 (10 points) Dummit-Foote, $9.1 \# 9: R\left[x_{1}, x_{2}, \cdots\right]$ has ideals which are not finitely generated.
Consider the ideal I of polynomials with constant term being zero. Suppose $I=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ is finitely generated. By renumbering the indeterminates, we know that the p_{i} are polynomials in $R\left[x_{1}, x_{2}, \cdots x_{n}\right]$ for some positive integer n. Clearly, the monomials x_{i} for $i>n$ are in I but not in $\left(p_{1}, p_{2}, \cdots, p_{m}\right) \subset R\left[x_{1}, x_{2}, \cdots\right]$. This contradiction shows that I cannot be finitely generated.

43 (10 points) Dummit-Foote, 9.1 \#13: Prove that $F[x, y] /\left(y^{2}-x\right)$ and $F[x, y] /\left(y^{2}-x^{2}\right)$ are not isomorphic rings for any field F.

The ring $F[x, y] /\left(y^{2}-x\right)$ is isomorphic to $F[y]$ by the map sending $x \mapsto y^{2}, y \mapsto y$, and hence is an integral domain. But the ring $F[x, y] /\left(y^{2}-x^{2}\right)$ is not a domain because $(y-x) \cdot(y+x)=0$ with the factors non-zero.

44 (10 points) Dummit-Foote, 9.1 \#17 (homogeneous ideal problem) Instruction given with the problem is straight-forward to carry out.

45 (10 points): For all primes p, give the factorization of $X^{4}+1$ in $\mathbb{F}_{p}[X]$.

$$
\begin{aligned}
x^{4}+1=(x+1)^{4} \text { if } p & =2 \\
x^{4}+1=(x-\xi)\left(x-\xi^{3}\right)\left(x-\xi^{5}\right)\left(x-\xi^{7}\right) \text { if } p & \equiv 1(\bmod 8) \text { and } \xi \text { is a primitive } 8^{\text {th }} \text { root of unity } \\
x^{4}+1=\left(x^{2}-i\right)\left(x^{2}+i\right) \text { if } p & \equiv 5(\bmod 8) \text { and } \iota \text { is a primitive } 4^{\text {th }} \text { root of unity } \\
x^{4}+1=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right) \text { if } p & \equiv 7(\bmod 8) \text { and } \sqrt{2} \text { is a square root of } 2 \\
x^{4}+1=\left(x^{2}+\sqrt{-2} x-1\right)\left(x^{2}-\sqrt{-2} x-1\right) \text { if } p & \equiv 3(\bmod 8) \text { and } \sqrt{-2} \text { is a square root of }-2
\end{aligned}
$$

The factorization for the case of the even prime is clear. The existence of a linear factor of $x^{4}+1$ is equivalent to the existence of a primitive $8^{\text {th }}$ root of unity in the field. If ξ is such a root, then $\xi^{3}, \xi^{5}, \xi^{7}$ are also roots. In view of the fact that \mathbb{F}_{p}^{\times}is cyclic, the existence of such a ξ is equivalent to $8 \mid p-1$. On the other hand if $p \equiv 5(\bmod 8)$ then a primitive $4^{\text {th }}$ root of unity is available
and the factorization given above follows. However if $p \equiv 3,7(\bmod 8)$ then we have to explicitly check for a factorization $x^{4}+1=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$. We obtain $b=d=1$ if $a=\sqrt{2}$ exists and $b=d=-1$ if $a=\sqrt{-2}$ exists. Since -1 is a non-square for such p, one of these two possibilities always occurs (Again by cyclicity of \mathbb{F}_{p}^{\times}, the product of two non-squares is a square). Noting the fact from number theory that 2 is a square in \mathbb{F}_{p} iff $p \equiv \pm 1(\bmod 8)$ we obtain the last two equations.

46 (5 points): Show that \mathbb{Q} is not a free \mathbb{Z}-module.

Suppose, \mathbb{Q} is a free \mathbb{Z}-module. Let v, w be two distinct basis elements. Then there should exist no nontrivial relation of the form $a v+b w=0$ with $a, b \in \mathbb{Z}$. However such a relation can always be found for $v, w \in \mathbb{Q}$. This contradiction shows that \mathbb{Q} is not a free \mathbb{Z}-module.

47 (10 points): We say a domain R (with fraction field F) is integrally closed provided that if $r \in F$ satisfies a monic polynomial in $R[X]$, then $r \in R$. Show that any UFD is integrally closed.

We have $r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0$ where the $a_{i} \in R$. Write $r=s / t$ with s and t being relatively prime. We rewrite the equation above as $s^{n}+a_{n-1} s^{n-1} t+\cdots+a_{1} s t^{n-1}+a_{0} t^{n}=0$, which implies $t \mid s$. However t, s are relatively prime and hence t has to be a unit. Thus $r \in R$.

48 (10 points) Dummit-Foote, 10.3 \#2: Show that $R^{m} \simeq R^{n}$ iff $n=m$
Let \mathfrak{m} be a max'l ideal of R. The R / \mathfrak{m}-module $R^{m} / \mathfrak{m} R^{m}$ is isomorphic to $(R / \mathfrak{m})^{m}$. The isomorphism between R^{m} and R^{n} induces a vector space map from $(R / \mathfrak{m})^{m}$ to $(R / \mathfrak{m})^{n}$ which is easily shown to be bijective. Since R / \mathfrak{m} is a field, we can use the theorem from linear algebra that isomorphic finite dimensional vector spaces have the same dimension to conclude $m=n$.

