Solutions to Homework 9 Math 600, Fall 2007

42 (10 points) Dummit-Foote, 9.1 #9: $R[x_1, x_2, \cdots]$ has ideals which are not finitely generated.

Consider the ideal I of polynomials with constant term being zero. Suppose $I = (p_1, p_2, \dots, p_m)$ is finitely generated. By renumbering the indeterminates, we know that the p_i are polynomials in $R[x_1, x_2, \dots, x_n]$ for some positive integer n. Clearly, the monomials x_i for i > n are in I but not in $(p_1, p_2, \dots, p_m) \subset R[x_1, x_2, \dots]$. This contradiction shows that I cannot be finitely generated.

43 (10 points) Dummit-Foote, 9.1 #13: Prove that $F[x, y]/(y^2 - x)$ and $F[x, y]/(y^2 - x^2)$ are not isomorphic rings for any field F.

The ring $F[x, y]/(y^2 - x)$ is isomorphic to F[y] by the map sending $x \mapsto y^2$, $y \mapsto y$, and hence is an integral domain. But the ring $F[x, y]/(y^2 - x^2)$ is not a domain because $(y - x) \cdot (y + x) = 0$ with the factors non-zero.

44 (10 points) Dummit-Foote, 9.1 #17 (homogeneous ideal problem) Instruction given with the problem is straight-forward to carry out.

45 (10 points): For all primes p, give the factorization of $X^4 + 1$ in $\mathbb{F}_p[X]$.

$$\begin{aligned} x^4 + 1 &= (x+1)^4 \text{ if } p &= 2\\ x^4 + 1 &= (x-\xi)(x-\xi^3)(x-\xi^5)(x-\xi^7) \text{ if } p &\equiv 1 \pmod{8} \text{ and } \xi \text{ is a primitive 8}^{\text{th } \text{root of unity}}\\ x^4 + 1 &= (x^2-i)(x^2+i) \text{ if } p &\equiv 5 \pmod{8} \text{ and } \iota \text{ is a primitive 4}^{\text{th } \text{root of unity}}\\ x^4 + 1 &= (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1) \text{ if } p &\equiv 7 \pmod{8} \text{ and } \sqrt{2} \text{ is a square root of } 2\\ x^4 + 1 &= (x^2 + \sqrt{-2}x - 1)(x^2 - \sqrt{-2}x - 1) \text{ if } p &\equiv 3 \pmod{8} \text{ and } \sqrt{-2} \text{ is a square root of } -2 \end{aligned}$$

The factorization for the case of the even prime is clear. The existence of a linear factor of $x^4 + 1$ is equivalent to the existence of a primitive 8th root of unity in the field. If ξ is such a root, then ξ^3, ξ^5, ξ^7 are also roots. In view of the fact that \mathbb{F}_p^{\times} is cyclic, the existence of such a ξ is equivalent to 8 | p - 1. On the other hand if $p \equiv 5 \pmod{8}$ then a primitive 4th root of unity is available

and the factorization given above follows. However if $p \equiv 3,7 \pmod{8}$ then we have to explicitly check for a factorization $x^4 + 1 = (x^2 + ax + b)(x^2 + cx + d)$. We obtain b = d = 1 if $a = \sqrt{2}$ exists and b = d = -1 if $a = \sqrt{-2}$ exists. Since -1 is a non-square for such p, one of these two possibilities always occurs (Again by cyclicity of \mathbb{F}_p^{\times} , the product of two non-squares is a square). Noting the fact from number theory that 2 is a square in \mathbb{F}_p iff $p \equiv \pm 1 \pmod{8}$ we obtain the last two equations.

46 (5 points): Show that \mathbb{Q} is not a free \mathbb{Z} -module.

Suppose, \mathbb{Q} is a free \mathbb{Z} -module. Let v, w be two distinct basis elements. Then there should exist no nontrivial relation of the form av + bw = 0 with $a, b \in \mathbb{Z}$. However such a relation can always be found for $v, w \in \mathbb{Q}$. This contradiction shows that \mathbb{Q} is not a free \mathbb{Z} -module.

47 (10 points): We say a domain R (with fraction field F) is integrally closed provided that if $r \in F$ satisfies a monic polynomial in R[X], then $r \in R$. Show that any UFD is integrally closed.

We have $r^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0$ where the $a_i \in R$. Write r = s/t with s and t being relatively prime. We rewrite the equation above as $s^n + a_{n-1}s^{n-1}t + \cdots + a_1st^{n-1} + a_0t^n = 0$, which implies $t \mid s$. However t, s are relatively prime and hence t has to be a unit. Thus $r \in R$.

48 (10 points) Dummit-Foote, 10.3 #2: Show that $R^m \simeq R^n$ iff n = m

Let \mathfrak{m} be a max'l ideal of R. The R/\mathfrak{m} -module $R^m/\mathfrak{m}R^m$ is isomorphic to $(R/\mathfrak{m})^m$. The isomorphism between R^m and R^n induces a vector space map from $(R/\mathfrak{m})^m$ to $(R/\mathfrak{m})^n$ which is easily shown to be bijective. Since R/\mathfrak{m} is a field, we can use the theorem from linear algebra that isomorphic finite dimensional vector spaces have the same dimension to conclude m = n.