Homework 1 - Math 603 - Fall 05
 Solutions

1. Atiyah-Macdonald, Ex. 21, Chapter 1.

(i): For $\mathfrak{p} \in X, \mathfrak{q} \in Y$ such that $\mathfrak{q}^{c}=\mathfrak{p}$, we have $f \notin \mathfrak{p} \Leftrightarrow \phi(f) \notin \mathfrak{q}$. So $\mathfrak{p} \in X_{f} \Leftrightarrow \mathfrak{q} \in Y_{\phi(f)}$. Thus $\left(\phi^{*}\right)^{-1} X_{f}=Y_{\phi(f)}$.
(ii): Similarly,

$$
\begin{aligned}
\mathfrak{a} \subset \mathfrak{p} & \Leftrightarrow \phi(\mathfrak{a}) \subset \mathfrak{q} \\
& \Leftrightarrow \mathfrak{a}^{e} \subset \mathfrak{q} .
\end{aligned}
$$

So $\mathfrak{p} \in V(\mathfrak{a}) \Leftrightarrow \mathfrak{q} \in V\left(\mathfrak{a}^{e}\right)$. Thus $\left(\phi^{*}\right)^{-1} V(\mathfrak{a})=V\left(\mathfrak{a}^{e}\right)$.
(iii): WLOG $\mathfrak{b}=\sqrt{\mathfrak{b}}$. Then $\overline{\phi^{*}(V(\mathfrak{b}))}$ is the intersection of all closed sets $V(\mathfrak{a})$ containing $\phi^{*}(V(\mathfrak{b}))$. But

$$
\begin{aligned}
\phi^{*} V(\mathfrak{b}) \subset V(\mathfrak{a}) & \Leftrightarrow V(\mathfrak{b}) \subset\left(\phi^{*}\right)^{-1} V(\mathfrak{a})=V\left(\mathfrak{a}^{e}\right) \\
& \Leftrightarrow \sqrt{\mathfrak{a}^{e}} \subset \sqrt{\mathfrak{b}}=\mathfrak{b} \\
& \Rightarrow \mathfrak{a}^{e} \subset \mathfrak{b} \\
& \Rightarrow \mathfrak{a} \subset \mathfrak{a}^{e c} \subset \mathfrak{b}^{c} \\
& \Rightarrow V\left(\mathfrak{b}^{c}\right) \subset V(\mathfrak{a}) .
\end{aligned}
$$

This shows that $V\left(\underline{\left.\mathfrak{b}^{c}\right) \subset \overline{\phi^{*} V(\mathfrak{b})}}\right.$. On the other hand, it is clear that $\phi^{*} V(\mathfrak{b}) \subset V\left(\mathfrak{b}^{c}\right)$. So $\phi^{*}(V(\mathfrak{b}))=V\left(\mathfrak{b}^{c}\right)$.
(iv): (Using (vi) below.) Consider the diagram

The map $\bar{\phi}$ is a ring isomorphism, so by (i), it induces a homeomorphism on spectra. This together with $\phi^{*}=\pi^{*} \circ(\bar{\phi})^{*}$ reduces us to considering π in place of ϕ, where π is the canonical projection $\pi: A \rightarrow A / I$, where I is any ideal. Recall that prime ideals in A / I are precisely the images $\overline{\mathfrak{p}}$ of prime ideals \mathfrak{p} containing I. From this it is clear that π^{*} is continuous and bijective onto $V(I) \subset \operatorname{Spec}(A)$. Since π^{*} clearly sends the closed set $V(\overline{\mathfrak{a}})$ to $V(\mathfrak{a})$ (where $\mathfrak{a} \supset I)$, we see π^{*} is also closed, hence is a homeomorphism onto $V(I)$.
(v): (Using (iii) above.) Note that $\overline{\phi^{*}(Y)}=\overline{\phi^{*} V\left(0_{B}\right)}=V\left(0_{B}^{c}\right)=V(\operatorname{ker}(\phi))$. This is $X=V\left(0_{A}\right)$ iff $\operatorname{ker}(\phi) \subset \sqrt{0_{A}}=\mathfrak{N}$. Hence $\phi^{*} Y$ is dense in X iff $\operatorname{ker}(\phi) \subset \mathfrak{N}$.

If ϕ is injective, note that $\operatorname{ker}(\phi) \subset \mathfrak{N}$.
(vi): This is trivial.
(vii): Note that $\operatorname{Spec}(B)$ has two points $\{0\} \times K$ and $A / \mathfrak{p} \times\{0\}$. The map ϕ^{*} sends these to \mathfrak{p} and (0) respectively. Hence ϕ^{*} is bijective.

On the other hand (0) is dense in $\operatorname{Spec}(A)$ (A is a domain), but $A / \mathfrak{p} \times\{0\}$ is not dense in $\operatorname{Spec}(B)$ (this is the disjoint union of two points, each both open and closed). Hence ϕ^{*} is not a homeomorphism.
2. Atiyah-Macdonald, Ex. 16, Chapter 3. The hints in Atiyah-Macdonald should be sufficient, so I am not going to write out a solution.
3. Joining a point to an open subset with a curve.

Step 1: Assume $B=k\left[X_{1}, \ldots, X_{n}\right]$, where $n \geq 1$. Then we can join any two distinct points x and x^{\prime} with a curve $V(\mathfrak{p})$ (in fact, with a "straight line"). Indeed, by performing a translation we may assume x is the origin. By performing a linear change of variables, we may assume $x^{\prime}=(1,0, \ldots, 0)$. In terms of ideals, $\mathfrak{m}_{x}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\mathfrak{m}_{x^{\prime}}=\left(X_{1}-1, X_{2}, \ldots, X_{n}\right)$. Then let $\mathfrak{p}=\left(X_{2}, \ldots, X_{n}\right)$. Then $V(\mathfrak{p})$ is a curve containing x and x^{\prime}.
Step 2: Reduction step: Using Noether normalization, there is a finite integral extension $A=k\left[X_{1}, \ldots, X_{n}\right] \subset B$. By Step 1, we know we can find a curve joining any closed point in $\operatorname{Spec}(A)$ to any non-empty open subset of $\operatorname{Spec}(A)$.

In $\operatorname{Spec}(B)$, we have a closed point x and a non-empty open set U. WLOG $U=X(f)$ for some $f \in B-0$. Let $\pi: X:=\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)=$: Y be the map on spectra induced by the inclusion $A \subset B$. Let $y=\pi(x)$; in terms of ideals, x corresponds to a maximal ideal $\mathfrak{m} \subset B$, and y corresponds to the maximal ideal $\mathfrak{n}:=\mathfrak{m}^{c}$ in $\operatorname{Spec}(A)$.

We need to produce a non-empty open subset in $\operatorname{Spec}(A)$ to which we can apply Step 1. The map π is actually open (see Atiyah-Macdonald, Chap. 7, Ex. 24), so we can simply take $\pi(X(f))$. We don't need to quote this exercise. Instead, we proceed as follows. The element $f \in B$ is integral over A, so we there is an equality

$$
f^{N}+a_{N-1} f^{N-1}+\cdots+a_{0}=0,
$$

for some $a_{i} \in A$. We choose such an equation where N is minimal. It's easy to see that

$$
\pi(V(f)) \subset V\left(a_{0}\right)
$$

since $f \in \mathfrak{q} \Longrightarrow a_{0} \in \mathfrak{q} \cap A=\mathfrak{q}^{c}=\pi(\mathfrak{q})$.
We want to apply Step 1 to the open subset $X\left(a_{0}\right)$ and the point y in $\operatorname{Spec}(A)$. First we need to verify that $X\left(a_{0}\right) \neq \emptyset$. Indeed, if $V\left(a_{0}\right)=$ $\operatorname{Spec}(A)$, then a_{0} is nilpotent, and hence a_{0} is zero, and since $f \neq 0$ and B is a domain this leads to a contradiction of the minimality of N.

Now using Step 1 choose a curve $V(\mathfrak{p})$ in $\operatorname{Spec}(A)$ joining y to a point in $X\left(a_{0}\right)$. We have $\mathfrak{p} \subset \mathfrak{n}$, and \mathfrak{m} lies over \mathfrak{n}. Since A is normal, the GoingDown theorem applies to the extension $A \subset B$, and so there exists a prime ideal $\mathfrak{q} \in \operatorname{Spec}(B)$ lying over \mathfrak{p}, which is contained in \mathfrak{m}.

We claim $V(\mathfrak{q})$ is a curve: indeed, $A / \mathfrak{p} \hookrightarrow B / \mathfrak{q}$ is an integral extension, so that $\operatorname{dim}(B / \mathfrak{q})=\operatorname{dim}(A / \mathfrak{p})=1$. Also, we claim that $V(\mathfrak{q})$ meets $X(f)$: if not then $V(\mathfrak{q}) \subset V(f)$. By the Going-Up theorem, we have $\pi(V(\mathfrak{q})=V(\mathfrak{p})$, so applying π we have

$$
V(\mathfrak{p})=\pi(V(\mathfrak{q})) \subset \pi(V(f)) \subset V\left(a_{0}\right) .
$$

But by construction the curve $V(\mathfrak{p})$ meets the complement $X\left(a_{0}\right)$ of $V\left(a_{0}\right)$, giving us a contradiction.
4. Exercise 4.3.3. from the notes. Show that polynomials determine continuous maps $k^{n} \rightarrow k$, for the Zariski topologies.

Let $\phi\left(X_{1}, \ldots, X_{n}\right) \in k\left[X_{1}, \ldots, X_{n}\right]$ determine the map $k^{n} \rightarrow k$ by evaluation. Then for any $f \in k[X]$, the composition $f \circ \phi \in k\left[X_{1}, \ldots, X_{n}\right]$. We have

$$
\phi^{-1}\left(X_{f}\right)=X_{f \circ \phi}
$$

where $X_{\text {? }}$ denotes the Zariski open subset of points at which the polynomial ? does not vanish. Since f was arbitrary, this shows $\phi: k^{n} \rightarrow k$ is continuous.
5. Exercise 6.3.3. from the notes.

Lemma 6.3.1: Proof. If $b^{n}+a_{n-1} b^{n-1}+\cdots+a_{0}=0$, then also $\left(\frac{b}{s}\right)^{n}+$ $\frac{a_{n-1}}{s}\left(\frac{b}{s}\right)^{n-1}+\cdots+\frac{a_{0}}{s^{n}}=0$. This shows that $S^{-1} C$ is integral over $S^{-1} A$. Conversely, if $\frac{b}{s} \in S^{-1} B$ is integral over $S^{-1} A$, then so is $\frac{b}{1}$, and multiplying an equation of form

$$
\left(\frac{b}{1}\right)^{n}+\frac{a_{n-1}}{s_{n-1}}\left(\frac{b}{1}\right)^{n-1}+\cdots+\frac{a_{0}}{s_{0}}=0
$$

through by $\left(s_{0} \cdots s_{n-1}\right)^{n}$ shows that there is a $t \in S$ with $t b$ integral over A, hence belongs to C. But then $\frac{b}{s}=\frac{b t}{s t}$ belongs to $S^{-1} C$, and we are done. Lemma 6.3.2: Proof. We have an inclusion $A / \mathfrak{p} \hookrightarrow B / \mathfrak{q}$, an integral extension of domains. By Lemma 3.3.5, one is a field iff the other is.
6. Exercise 7.6.2 from the notes.

For each $m \geq 2$, we want to find a polynomial $\phi_{m} \in k\left[X_{1}, \ldots, X_{m}\right]$ whose only zero is at $(0, \ldots, 0)$. It is enough to construct ϕ_{2}, for then we get ϕ_{m} recursively by setting

$$
\phi_{m}\left(X_{1}, \ldots, X_{m}\right)=\phi_{2}\left(\phi_{m-1}\left(X_{1}, \ldots, X_{m-1}\right), X_{m}\right)
$$

To construct ϕ_{2}, choose any element $\alpha \in \bar{k}-k$. Let $f(X)=X^{r}+$ $a_{r-1} X^{r-1}+\cdots+a_{0} \in k[X]$ be the minimal polynomial for α over k (so $r \geq 2$). Set

$$
\phi_{2}(X, Y)=X^{r}+a_{r-1} X^{r-1} Y+\cdots+a_{0} Y^{r}
$$

the homogeneous variant of f.
Suppose $x, y \in k$ and $\phi_{2}(x, y)=0$. If $y=0$, then also $x=0$. If $y \neq 0$, then dividing by y^{r} shows that $f(x / y)=0$, which shows that the irreducible non-linear polynomial f has a root in k, a contradiction. Thus $(0,0)$ is the only zero of ϕ_{2}.

