Homework 1 - Math 603 — Fall 05
Solutions

1. Atiyah-Macdonald, Ex. 21, Chapter 1.
(i): For p € X,q € Y such that q° = p, we have f ¢ p < o(f) ¢ q. So
peXreqge Y¢(f). Thus (gb*)_le = Y¢(f).
(ii): Similarly,

aCpedla)Cq
< a® Cq.

Sop e V(a) < qe V(a®). Thus (¢*) "1V (a) = V(a®).
(iii): WLOG b = v/b. Then ¢*(V (b)) is the intersection of all closed sets
V(a) containing ¢*(V(b)). But
¢*V(b) C V(a) & V(b) C (¢")7'V(a) = V()

Ve cVo=b
=a“Cbh
=aCa“ Cb”
= V(b C V(a).

This shows that V(b°) C ¢*V(b). On the other hand, it is clear that

¢*V(b) C V(b°). So ¢*(V (b)) = V(b°).
(iv): (Using (vi) below.) Consider the diagram

| 4

A/kero

The map ¢ is a ring isomorphism, so by (i), it induces a homeomorphism
on spectra. This together with ¢* = 7* o (¢)* reduces us to considering 7
in place of ¢, where 7 is the canonical projection 7 : A — A/I, where I
is any ideal. Recall that prime ideals in A/I are precisely the images p of
prime ideals p containing I. From this it is clear that 7* is continuous and
bijective onto V(I) C Spec(A). Since 7* clearly sends the closed set V(@)
to V(a) (where a D I), we see 7* is also closed, hence is a homeomorphism
onto V(I).



(v): (Using (iii) above.) Note that ¢*(Y') = ¢*V(0g) = V(0%) = V (ker(¢)).
This is X = V(04) iff ker(¢) C /04 = M. Hence ¢*Y is dense in X iff
ker(¢) C M.

If ¢ is injective, note that ker(¢) C M.
(vi): This is trivial.
(vii): Note that Spec(B) has two points {0} x K and A/p x {0}. The map
¢* sends these to p and (0) respectively. Hence ¢* is bijective.

On the other hand (0) is dense in Spec(A) (A is a domain), but A/px {0}
is not dense in Spec(B) (this is the disjoint union of two points, each both
open and closed). Hence ¢* is not a homeomorphism.

2. Atiyah-Macdonald, Ex. 16, Chapter 3. The hints in Atiyah-Macdonald
should be sufficient, so I am not going to write out a solution.

3. Joining a point to an open subset with a curve.

Step 1: Assume B = k[X7, ..., X,], where n > 1. Then we can join any two
distinct points x and 2’ with a curve V(p) (in fact, with a “straight line”).
Indeed, by performing a translation we may assume z is the origin. By
performing a linear change of variables, we may assume 2z’ = (1,0,...,0).
In terms of ideals, m, = (X1, Xo,...,X,) and my = (X7 — 1, Xo,..., Xp).
Then let p = (X2,...,X,,). Then V(p) is a curve containing = and «’.

Step 2: Reduction step: Using Noether normalization, there is a finite inte-
gral extension A = k[X,...,X,] C B. By Step 1, we know we can find a
curve joining any closed point in Spec(A) to any non-empty open subset of
Spec(A).

In Spec(B), we have a closed point x and a non-empty open set U.
WLOG U = X(f) for some f € B—0. Let 7 : X := Spec(B) — Spec(A) =:
Y be the map on spectra induced by the inclusion A C B. Let y = n(z); in
terms of ideals, x corresponds to a maximal ideal m C B, and y corresponds
to the maximal ideal n := m® in Spec(A).

We need to produce a non-empty open subset in Spec(A) to which we
can apply Step 1. The map 7 is actually open (see Atiyah-Macdonald, Chap.
7, Ex. 24), so we can simply take w(X(f)). We don’t need to quote this
exercise. Instead, we proceed as follows. The element f € B is integral over
A, so we there is an equality

Nray afN 4 a0 =0,

for some a; € A. We choose such an equation where N is minimal. It’s easy
to see that

m(V(f)) € V(ao),



since f€q = ay€qNA=q°=n(q).

We want to apply Step 1 to the open subset X(ap) and the point y
in Spec(A). First we need to verify that X (ag) # 0. Indeed, if V(ag) =
Spec(A), then ag is nilpotent, and hence ag is zero, and since f # 0 and B
is a domain this leads to a contradiction of the minimality of V.

Now using Step 1 choose a curve V(p) in Spec(A) joining y to a point
in X (ap). We have p C n, and m lies over n. Since A is normal, the Going-
Down theorem applies to the extension A C B, and so there exists a prime
ideal q € Spec(B) lying over p, which is contained in m.

We claim V(q) is a curve: indeed, A/p — B/q is an integral extension,
so that dim(B/q) = dim(A/p) = 1. Also, we claim that V' (q) meets X (f): if
not then V(q) C V(f). By the Going-Up theorem, we have 7(V(q) = V(p),
so applying m we have

V(p) =m(V(a)) € =(V(f)) € V(ao).

But by construction the curve V' (p) meets the complement X (ag) of V' (ag),
giving us a contradiction.

4. Exercise 4.3.3. from the notes. Show that polynomials determine
continuous maps k™ — k, for the Zariski topologies.

Let ¢(X1,...,X,) € k[X1,...,X,] determine the map k" — k by eval-
uation. Then for any f € k[X], the composition fo ¢ € k[X1,...,X,]. We
have

¢~ H(Xy) = Xos
where X- denotes the Zariski open subset of points at which the polynomial ?
does not vanish. Since f was arbitrary, this shows ¢ : k™ — k is continuous.

5. Exercise 6.3.3. from the notes.
Lemma 6.3.1: Proof. If b® + a,_1b" ! + --- 4+ ag = 0, then also (g)" +
%(g)"_l 4+ -+ + % = 0. This shows that S~'C is integral over S™'A.
Conversely, if 2 € S~!B is integral over S~ A, then so is %, and multiplying
an equation of form

b\"  anp—1 b1 a
(_> 4 n1<_> +..._|__O:0
1 Sn—1 1 S0
through by (sp---sn,—1)" shows that there is a ¢ € S with ¢b integral over
A, hence belongs to C. But then g = % belongs to S~1C, and we are done.

Lemma 6.3.2: Proof. We have an inclusion A/p — B/q, an integral exten-
sion of domains. By Lemma 3.3.5, one is a field iff the other is.



6. Exercise 7.6.2 from the notes.

For each m > 2, we want to find a polynomial ¢, € k[ X1, ..., X,,] whose
only zero is at (0,...,0). It is enough to construct ¢, for then we get ¢,
recursively by setting

¢m(X17 e 7Xm) = ¢2(¢m71(X1a e 7Xm71) ) Xm)

To construct ¢, choose any element o € k — k. Let f(X) = X" +
ar—1 X" 71+ -+ ap € k[X] be the minimal polynomial for a over k (so
r > 2). Set

G2(X,Y) = X"+ a, 1 XY+ FagY”,

the homogeneous variant of f.

Suppose z,y € k and ¢o(x,y) = 0. If y = 0, then also z = 0. If y # 0,
then dividing by y" shows that f(x/y) = 0, which shows that the irreducible
non-linear polynomial f has a root in k, a contradiction. Thus (0,0) is the
only zero of ¢s.



