
Homework 1 - Math 603 – Fall 05

Solutions

1. Atiyah-Macdonald, Ex. 21, Chapter 1.
(i): For p ∈ X, q ∈ Y such that qc = p, we have f /∈ p ⇔ φ(f) /∈ q. So
p ∈ Xf ⇔ q ∈ Yφ(f). Thus (φ∗)−1Xf = Yφ(f).

(ii): Similarly,

a ⊂ p ⇔ φ(a) ⊂ q

⇔ ae ⊂ q.

So p ∈ V (a) ⇔ q ∈ V (ae). Thus (φ∗)−1V (a) = V (ae).

(iii): WLOG b =
√

b. Then φ∗(V (b)) is the intersection of all closed sets
V (a) containing φ∗(V (b)). But

φ∗V (b) ⊂ V (a) ⇔ V (b) ⊂ (φ∗)−1V (a) = V (ae)

⇔
√

ae ⊂
√

b = b

⇒ ae ⊂ b

⇒ a ⊂ aec ⊂ bc

⇒ V (bc) ⊂ V (a).

This shows that V (bc) ⊂ φ∗V (b). On the other hand, it is clear that
φ∗V (b) ⊂ V (bc). So φ∗(V (b)) = V (bc).

(iv): (Using (vi) below.) Consider the diagram
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The map φ is a ring isomorphism, so by (i), it induces a homeomorphism
on spectra. This together with φ∗ = π∗ ◦ (φ)∗ reduces us to considering π
in place of φ, where π is the canonical projection π : A → A/I, where I
is any ideal. Recall that prime ideals in A/I are precisely the images p of
prime ideals p containing I. From this it is clear that π∗ is continuous and
bijective onto V (I) ⊂ Spec(A). Since π∗ clearly sends the closed set V (a)
to V (a) (where a ⊃ I), we see π∗ is also closed, hence is a homeomorphism
onto V (I).



(v): (Using (iii) above.) Note that φ∗(Y ) = φ∗V (0B) = V (0c
B) = V (ker(φ)).

This is X = V (0A) iff ker(φ) ⊂ √
0A = N. Hence φ∗Y is dense in X iff

ker(φ) ⊂ N.
If φ is injective, note that ker(φ) ⊂ N.

(vi): This is trivial.

(vii): Note that Spec(B) has two points {0} × K and A/p × {0}. The map
φ∗ sends these to p and (0) respectively. Hence φ∗ is bijective.

On the other hand (0) is dense in Spec(A) (A is a domain), but A/p×{0}
is not dense in Spec(B) (this is the disjoint union of two points, each both
open and closed). Hence φ∗ is not a homeomorphism.

2. Atiyah-Macdonald, Ex. 16, Chapter 3. The hints in Atiyah-Macdonald
should be sufficient, so I am not going to write out a solution.

3. Joining a point to an open subset with a curve.

Step 1: Assume B = k[X1, . . . , Xn], where n ≥ 1. Then we can join any two
distinct points x and x′ with a curve V (p) (in fact, with a “straight line”).
Indeed, by performing a translation we may assume x is the origin. By
performing a linear change of variables, we may assume x′ = (1, 0, . . . , 0).
In terms of ideals, mx = (X1, X2, . . . , Xn) and mx′ = (X1 − 1, X2, . . . , Xn).
Then let p = (X2, . . . , Xn). Then V (p) is a curve containing x and x′.

Step 2: Reduction step: Using Noether normalization, there is a finite inte-
gral extension A = k[X1, . . . , Xn] ⊂ B. By Step 1, we know we can find a
curve joining any closed point in Spec(A) to any non-empty open subset of
Spec(A).

In Spec(B), we have a closed point x and a non-empty open set U .
WLOG U = X(f) for some f ∈ B− 0. Let π : X := Spec(B) → Spec(A) =:
Y be the map on spectra induced by the inclusion A ⊂ B. Let y = π(x); in
terms of ideals, x corresponds to a maximal ideal m ⊂ B, and y corresponds
to the maximal ideal n := mc in Spec(A).

We need to produce a non-empty open subset in Spec(A) to which we
can apply Step 1. The map π is actually open (see Atiyah-Macdonald, Chap.
7, Ex. 24), so we can simply take π(X(f)). We don’t need to quote this
exercise. Instead, we proceed as follows. The element f ∈ B is integral over
A, so we there is an equality

fN + aN−1f
N−1 + · · · + a0 = 0,

for some ai ∈ A. We choose such an equation where N is minimal. It’s easy
to see that

π(V (f)) ⊂ V (a0),



since f ∈ q =⇒ a0 ∈ q ∩ A = qc = π(q).
We want to apply Step 1 to the open subset X(a0) and the point y

in Spec(A). First we need to verify that X(a0) 6= ∅. Indeed, if V (a0) =
Spec(A), then a0 is nilpotent, and hence a0 is zero, and since f 6= 0 and B
is a domain this leads to a contradiction of the minimality of N .

Now using Step 1 choose a curve V (p) in Spec(A) joining y to a point
in X(a0). We have p ⊂ n, and m lies over n. Since A is normal, the Going-
Down theorem applies to the extension A ⊂ B, and so there exists a prime
ideal q ∈ Spec(B) lying over p, which is contained in m.

We claim V (q) is a curve: indeed, A/p →֒ B/q is an integral extension,
so that dim(B/q) = dim(A/p) = 1. Also, we claim that V (q) meets X(f): if
not then V (q) ⊂ V (f). By the Going-Up theorem, we have π(V (q) = V (p),
so applying π we have

V (p) = π(V (q)) ⊂ π(V (f)) ⊂ V (a0).

But by construction the curve V (p) meets the complement X(a0) of V (a0),
giving us a contradiction.

4. Exercise 4.3.3. from the notes. Show that polynomials determine

continuous maps kn → k, for the Zariski topologies.

Let φ(X1, . . . , Xn) ∈ k[X1, . . . , Xn] determine the map kn → k by eval-
uation. Then for any f ∈ k[X], the composition f ◦ φ ∈ k[X1, . . . , Xn]. We
have

φ−1(Xf ) = Xf◦φ

where X? denotes the Zariski open subset of points at which the polynomial ?
does not vanish. Since f was arbitrary, this shows φ : kn → k is continuous.

5. Exercise 6.3.3. from the notes.

Lemma 6.3.1: Proof. If bn + an−1b
n−1 + · · · + a0 = 0, then also ( b

s
)n +

an−1

s
( b

s
)n−1 + · · · + a0

sn
= 0. This shows that S−1C is integral over S−1A.

Conversely, if b
s
∈ S−1B is integral over S−1A, then so is b

1 , and multiplying
an equation of form

( b

1

)n

+
an−1

sn−1

( b

1

)n−1
+ · · · + a0

s0
= 0

through by (s0 · · · sn−1)
n shows that there is a t ∈ S with tb integral over

A, hence belongs to C. But then b
s

= bt
st

belongs to S−1C, and we are done.

Lemma 6.3.2: Proof. We have an inclusion A/p →֒ B/q, an integral exten-
sion of domains. By Lemma 3.3.5, one is a field iff the other is.



6. Exercise 7.6.2 from the notes.
For each m ≥ 2, we want to find a polynomial φm ∈ k[X1, . . . , Xm] whose

only zero is at (0, . . . , 0). It is enough to construct φ2, for then we get φm

recursively by setting

φm(X1, . . . , Xm) = φ2(φm−1(X1, . . . , Xm−1) , Xm).

To construct φ2, choose any element α ∈ k − k. Let f(X) = Xr +
ar−1X

r−1 + · · · + a0 ∈ k[X] be the minimal polynomial for α over k (so
r ≥ 2). Set

φ2(X, Y ) = Xr + ar−1X
r−1Y + · · · + a0Y

r,

the homogeneous variant of f .
Suppose x, y ∈ k and φ2(x, y) = 0. If y = 0, then also x = 0. If y 6= 0,

then dividing by yr shows that f(x/y) = 0, which shows that the irreducible
non-linear polynomial f has a root in k, a contradiction. Thus (0, 0) is the
only zero of φ2.


