Homework 2 - Math 603 - Fall 05
Solutions

1. (a): In the notation of Atiyah-Macdonald, Prop. 5.17, we have $B \subset \sum_{j=1}^{n} A v_{j}$. Since A is Noetherian, this implies that B is f.g. as an A-module.
(b): By Noether normalization we find a finite integral extension $A \subset B$, where $A=k\left[X_{1}, \ldots, X_{n}\right]$. Set $K=\operatorname{Frac}(A)$. We claim that L / K is a finite separable extension. Indeed, $K \otimes_{A} B$ is a localization of the domain B, hence is a domain, and $L \supset K \otimes_{A} B$. Since moreover $K \otimes_{A} B$ is f.g. hence integral over K (since B is f.g. over A), we see by Lemma 3.3.5 that $K \otimes_{A} B$ is a field. Since L is the smallest field containing B, we have $L=K \otimes_{A} B$, hence L / K is a finite extension. It is obviously separable since $\operatorname{char}(K)=0$ by hypothesis.

Note that \widetilde{B} is the integral closure of A in L. Thus, we can apply part (a) to see that \widetilde{B} is f.g. as an A-module. But then it is obviously f.g. as a B-module. It follows from this that \widetilde{B} is f.g. as a k-algebra, since B is.
(c): Let \widetilde{A} denote the integral closure of A in K; so \widetilde{A} is a normal domain. Note that B is the integral closure of \widetilde{A} in L So by (a), B is a f.g. \widetilde{A}-module. By (b), \widetilde{A} is a f.g. A-module. It follows that B is a f.g. A-module. It is then automatically f.g. as a k-algebra, since A is.
2. First, we prove $\Omega_{A^{\prime} / k^{\prime}}=\Omega_{A / k} \otimes_{A} A^{\prime}$ (the latter is clearly also $\Omega_{A / k} \otimes_{k} k^{\prime}$). If $M^{\prime} \in A^{\prime}$-mod, then we can regard it as an A-module via the canonical map $A \rightarrow A^{\prime}$. We claim that there is an isomorphism

$$
\operatorname{Der}_{k}\left(A, M^{\prime}\right)=\operatorname{Der}_{k^{\prime}}\left(A^{\prime}, M^{\prime}\right)
$$

Indeed, this is given by the map $D \mapsto D^{\prime}$, where by definition $D^{\prime}\left(a \otimes \alpha^{\prime}\right):=\alpha^{\prime} D(a)$. This shows that there are canonical isomorphisms, functorial in M^{\prime},

$$
\begin{aligned}
\operatorname{Hom}_{A^{\prime}}\left(\Omega_{A / k} \otimes_{A} A^{\prime}, M^{\prime}\right) & =\operatorname{Hom}_{A}\left(\Omega_{A / k}, M^{\prime}\right) \\
& =\operatorname{Der}_{k}\left(A, M^{\prime}\right) \\
& =\operatorname{Der}_{k^{\prime}}\left(A^{\prime}, M^{\prime}\right) \\
& =\operatorname{Hom}_{A^{\prime}}\left(\Omega_{A^{\prime} / k^{\prime}}, M^{\prime}\right)
\end{aligned}
$$

It follows (using e.g. Yoneda's lemma), that there is a natural isomorphism of the representing objects, $\Omega_{A / k} \otimes_{A} A^{\prime}=\Omega_{A^{\prime} / k^{\prime}}$.

Next, we prove $\Omega_{A_{S} / k}=\Omega_{A / k} \otimes_{A} A_{S}$. We proved in class that A_{S} / A is 0-étale, and that hence $\Omega_{A_{S} / A}=0$ (since in particular A_{S} / A is 0 -unramified). Thus the first fundamental exact sequence for $k \rightarrow A \rightarrow A_{S}$ is split exact and has $\Omega_{A_{S} / A}=0$, and this yields

$$
\Omega_{A / k} \otimes_{A} A_{S}=\Omega_{A_{S} / k}
$$

as desired.
3. (NOTE: the problem is supposed to ask for a NON-ZERO prime ideal.) In a suitable coordinate system, we can suppose the \mathfrak{m}_{i} 's correspond to points in the plane $\left(x_{i}, y_{i}\right) \in k^{2}$, with all the x_{i} 's distinct. Then by Lagrange interpolation (hint given in class), there is a polynomial $f \in k[X]$ such that $f\left(x_{i}\right)=y_{i}$ for all i. Now consider $g(X, Y)=Y-f(X) \in k[X, Y]$. Note that g is non-zero, and is
irreducible (if g factors, then considerations of Y-degrees show it must factor as $g=(a(X) Y+b(X)) \cdot c(X)$, and then we would have $a(X) c(X)=1$, i.e. $c(X)$ is a unit). Thus $\mathfrak{p}:=(g)$ is a non-zero prime ideal contained in each \mathfrak{m}_{i}. Indeed, $g\left(x_{i}, y_{i}\right)=0$ for all i by construction.
4. Atiyah-Macdonald, Chapter 11, $\# 2$. Suppose $\operatorname{dim}(A)=d$, and let x_{1}, \ldots, x_{d} denote the system of parameters we're given. By definition, $\left(x_{1}, \ldots, x_{d}\right)=I$, for some \mathfrak{m}-primary ideal I.

We are assuming A is complete. What does this mean, i.e. for which topology, I-adic or \mathfrak{m}-adic? Answer: there is actually no difference between these two topologies, since there exists $n>0$ with

$$
\mathfrak{m}^{n} \subset I \subset \mathfrak{m}
$$

(and hence $\mathfrak{m}^{r n} \subset I^{r} \subset \mathfrak{m}^{r}$, for all $r \geq 0$). See [AM], Cor. 7.16. However, it is convenient here to think of A as being identical to $\widehat{A}=\lim A / I^{n}$.

Now by [AM] (11.21), the x_{i} are algebraically independent, and hence $t_{i} \mapsto x_{i}$ gives an injective map $k\left[t_{1}, \ldots, t_{d}\right] \rightarrow A$. Since A is complete for the I-adic topology, this extends to give

$$
\psi: k\left[\left[t_{1}, \ldots, t_{d}\right]\right] \rightarrow A
$$

which remains injective (by e.g. [AM] Prop. 10.2).
We want to use [AM] Prop. 10.24 to show that ψ makes A a f.g. module over $k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$. Note that in 10.24 , the base ring A is $k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ and the module M is the ring A. Note also that the only hypothesis that is not obvious is " $G(A)$ is f.g. over $G\left(k\left[\left[t_{1}, \ldots, t_{d}\right]\right]\right)$ ". Now, the latter graded ring is just the polynomial algebra $k\left[t_{1}, \ldots, t_{d}\right]$ itself. Also, $G(A)=\oplus_{n=0}^{\infty} I^{n} / I^{n+1}$ is clearly f.g. over the graded ring $A / I\left[x_{1}, \ldots, x_{d}\right]$, so it is enough to show that A / I is f.g. as a k-module. But since $\mathfrak{m}^{n} \subset I \subset \mathfrak{m}$, it is enough to show that A / \mathfrak{m}^{n} is f.g. as a k-module. But this is clear since A / \mathfrak{m}^{n} is finite-dimensional as a k-vector space: A / \mathfrak{m}^{n} is filtered by finitely many subquotients $\mathfrak{m}^{k} / \mathfrak{m}^{k+1}$, and each of these has finite k-dimension, since \mathfrak{m}^{k} is f.g as A-module.
5. Atiyah-Macdonald, Chapter 11, $\# 3$. We are being asked to prove the equality $\operatorname{dim}\left(A_{\mathfrak{m}}\right)=\operatorname{tr} \cdot \operatorname{deg}_{k} A$, where \mathfrak{m} is a maximal ideal of A, a f.g domain over a field k (not necessarily algebraically closed). Note that we already did this in the notes: it's Theorem 7.3.1! There, we needed no hypothesis on k whatsoever.
6. Atiyah-Macdonald, Chapter 11, \#4. Notation: let $A=k\left[X_{1}, X_{2}, \ldots,\right]$ and $A_{k}=k\left[X_{1}, \ldots, X_{m_{k}}\right]$, for $k \geq 1$. It is clear that each \mathfrak{p}_{i} is prime and that the set $S=A-\left(\cup_{i} \mathfrak{p}_{i}\right)$ is a multiplicative set. Note that prime ideals of $S^{-1} A$ are precisely those of the form $S^{-1} \mathfrak{p}$, where $\mathfrak{p} \subset A$ is a prime ideal contained in $\cup_{i} \mathfrak{p}_{i}$.

We need to verify the various other claims, made in the hint by Atiyah-Macdonald.
The two hypotheses of Atiyah-Macdonald, Chap. 7, Ex. 9 are satisfied here. The key point is the following lemma.

Lemma 0.0.1. If $S^{-1} \mathfrak{p}$ is a non-zero prime ideal in $S^{-1} A$ and $\mathfrak{p} \cap A_{k} \neq 0$, then $\mathfrak{p} \subset \mathfrak{p}_{j}$, for some $j \leq k$.
Proof. Choose $0 \neq x \in \mathfrak{p} \cap A_{k}$. Note that $\mathfrak{p} \cap A_{k}$ is contained the finite union of prime ideals $\cup_{i \leq k} \mathfrak{p}_{i} \cap A_{k}$ (since if $i>k$, then $\mathfrak{p}_{i} \cap A_{k}=0$). Thus by Atiyah-Macdonald, Prop. 1.11, $\mathfrak{p} \cap A_{k} \subset \mathfrak{p}_{j} \cap A_{k}$, for some $j \leq k$.

Now for every $k^{\prime} \geq k$, we have $0 \neq x \in \mathfrak{p} \cap A_{k^{\prime}}$, which by the same argument is contained in some $\mathfrak{p}_{j^{\prime}} \cap A_{k^{\prime}}$. In fact $j^{\prime} \leq k$, since $0 \neq x \in \mathfrak{p}_{j^{\prime}} \cap A_{k}$. Thus, letting k^{\prime} go to infinity, we see that $\mathfrak{p} \subset \cup_{j \leq k} \mathfrak{p}_{j}$. Now again by Atiyah-Macdonald, Prop. 1.11, $\mathfrak{p} \subset \mathfrak{p}_{j}$, for some $j \leq k$.

It follows that if $S^{-1} \mathfrak{p}$ is maximal, then $\mathfrak{p}=\mathfrak{p}_{j}$ for some j. Further, each $S^{-1} \mathfrak{p}_{j}$ is maximal. Thus,

Corollary 0.0.2. The maximal ideals of $S^{-1} A$ are precisely the $S^{-1} \mathfrak{p}_{j}$.
Now we can verify the hypotheses of Atiyah-Macdonald, Ex. 9 of Chap. 7. The ring $S^{-1} A_{S^{-1} \mathfrak{p}_{i}}$ is a localization of the ring

$$
k\left(X_{j}\right)_{j \notin\left[m_{i}+1, \ldots, m_{i+1}\right]}\left[X_{m_{i}+1}, \ldots, X_{m_{i+1}}\right],
$$

hence is Noetherian. (In fact, one can prove that the above ring is isomorphic to $S^{-1} A_{S^{-1} \mathfrak{p}_{i}}$, which is also $A_{\mathfrak{p}_{i}}$. This also shows, shortening the argument given below, that $\operatorname{ht}\left(S^{-1} \mathfrak{p}_{i}\right)=m_{i+1}-m_{i}$.

Secondly, suppose $0 \neq x / s$, and let $S^{-1} \mathfrak{p}_{i}$ be a maximal ideal containing x / s. This is the same as saying $0 \neq x \in \mathfrak{p}_{i}$. But x involves only finitely many variables, and remains the same if all sufficiently high variables are specialized to zero. Hence a non-zero x can only be contained in finitely many ideals \mathfrak{p}_{i} Thus, x / s is contained in only finitely many maximal ideals of $S^{-1} A$.

We conclude that $S^{-1} A$ is Noetherian, by the quoted exercise in Atiyah-Macdonald.
Next, verify that $\operatorname{ht}\left(S^{-1} \mathfrak{p}_{i}\right)=m_{i+1}-m_{i}$. This will show that $\operatorname{dim}\left(S^{-1} A\right)=\infty$.
There is something to show here, because A is not a polynomial algebra in finitely many variables. It is clear that $\operatorname{ht}\left(S^{-1} \mathfrak{p}_{i}\right)=\operatorname{ht}\left(\mathfrak{p}_{i}\right)$, since every prime ideal contained in \mathfrak{p}_{i} is contained in $\cup_{i} \mathfrak{p}_{i}$. It is also clear that $\operatorname{ht}\left(\mathfrak{p}_{i}\right) \geq m_{i+1}-m_{i}$ and further that $\operatorname{ht}\left(\mathfrak{p}_{i} \cap A_{k}\right)=m_{i+1}-m_{i}$ for all large k (since A_{k} is just a polynomial algebra in finitely many variables). Suppose $\mathfrak{q}_{0} \subsetneq \cdots \subsetneq \mathfrak{q}_{d}=\mathfrak{p}_{i}$ is a chain of prime ideals in A. Then intersecting it with A_{k} for large k (and noting that the inclusions remain strict) shows that the chain has length $\leq \operatorname{ht}\left(\mathfrak{p}_{i} \cap A_{k}\right)$, which is $m_{i+1}-m_{i}$. We are now done.
7. Atiyah-Macdonald, Chapter 10, $\# 11$. Show that there is a non-Noetherian local ring (A, \mathfrak{m}), and an ideal $\mathfrak{a} \subset A$ such that the \mathfrak{a}-adic completion \widehat{A} is Noetherian. Show we can even arrange things such that \widehat{A} is f.g. as an A-module.
Solution: Let A be the ring of germs of C^{∞} functions at $x=0$, and let \mathfrak{a} denote the ideal generated by the germ of the function x. Let \widehat{A} denote the \mathfrak{a}-adic completion of A.
Claim 1: \widehat{A} can be identified with the ring of formal power series $\mathbb{R}[[x]]$, hence is Noetherian.
Consider the map $\phi: A \rightarrow \mathbb{R}[[x]]$ given by sending a germ f to its Taylor expansion $\widehat{f}:=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$. Leibniz' rule

$$
\begin{equation*}
(f g)^{(n)}(0)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(0) g^{(n-k)}(0) \tag{1}
\end{equation*}
$$

easily implies that $\widehat{f g}=\widehat{f} \widehat{g}$, and so the $\operatorname{map} f \mapsto \widehat{f}$ is an \mathbb{R}-algebra homomorphism. The theorem of Borel quoted in the hint given by Atiyah-Macdonald shows that $\phi: f \mapsto \widehat{f}$ is surjective.

Let $I=\operatorname{ker}(\phi)$. Clearly I consists of the germs f such that $f^{(n)}(0)=0$ for all $n \geq 0$. We claim that

$$
\begin{equation*}
I=\cap_{k=0}^{\infty} x^{k} A \tag{2}
\end{equation*}
$$

Indeed, by (1) it is clear that $f \in x^{k} A$ implies that $f^{(n)}(0)=0$ for all $n<k$. Hence $I \supset \cap_{k} x^{k} A$. Conversely, if $f \in I$, it is not too hard using Taylor's remainder theorem to show that the germ f_{k} defined by

$$
f_{k}(x)=\left\{\begin{array}{l}
f(x) x^{-k}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.
$$

is C^{∞}. But then $f=x^{k} f_{k}$. Since this holds for all k, we have $I \subset \cap_{k} x^{k} A$. Note that I is therefore also the kernel of the natural map $A \rightarrow \widehat{A}$.

Next we want to show that the homomorphism $\phi: A \rightarrow \mathbb{R}[[x]]$ factors through the canonical map $A \rightarrow \widehat{A}$, giving us a surjective map $\bar{\phi}: \widehat{A} \rightarrow \mathbb{R}[[x]]$. It is enough to show that $f \mapsto \widehat{f}$ induces a compatible family of homomorphisms

$$
\begin{equation*}
\phi_{k}: A /\left(x^{k}\right) \rightarrow \mathbb{R}[[x]] /\left(x^{k}\right) \tag{3}
\end{equation*}
$$

We need to show that $\widehat{x^{k} f} \in x^{k} \mathbb{R}[[x]]$. This follows easily from (1).
We claim that every ϕ_{k} is an isomorphism. Borel's theorem implies that every ϕ_{k} is surjective. To prove injectivity, suppose $f \in A$ maps into $x^{k} \mathbb{R}[[x]]$. Then by Borel's theorem there is a $g \in A$ such that $\widehat{f}=x^{k} \widehat{g}$. But then since $\widehat{x^{k} g}=\widehat{x^{k}} \widehat{g}=$ $x^{k} \widehat{g}$, we have $f-x^{k} g \in I \subset x^{k} A$ (as explained in (2)). Thus $f \in x^{k} A$, proving the injectivity of every ϕ_{k}.

Now taking inverse limits, we see that $\lim _{\longleftarrow} \phi_{k}$ induces the map $\bar{\phi}: \widehat{A} \rightarrow \mathbb{R}[[x]]$, which is therefore an isomorphism. Thus \widehat{A} is Noetherian.

Claim 2: The ring \widehat{A} is a quotient of A, so is f.g. as an A-module. We have established the commutative diagram

Since ϕ is surjective (Borel's theorem), we see that $A \rightarrow \widehat{A}$ is surjective too.
Claim 3: The ring A is not Noetherian.
Note that A is a domain. If it were Notherian, then since $\mathfrak{a}=(x) \neq A$, Krull's theorem would imply that $I=\cap_{k} x^{k} A=(0)$. But it is well-known that $I \neq 0$: there exist non-zero germs f such that $f^{(n)}(0)=0$ for all $n \geq 0$. The simplest example is probably the germ

$$
f(x)=\left\{\begin{array}{l}
e^{-1 / x^{2}}, \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.
$$

8. Exercise 22.2.4 from the notes. From the first example in the notes right before Exercise 22.2.3 it is clear that $\operatorname{Sing}(V(f))=V\left(f, \frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$. Thus, by definition (of the LHS), we have

$$
\operatorname{dim}\left(\operatorname{Sing}(V(f))=\operatorname{dim}\left(k\left[X_{1}, \ldots, X_{n}\right] /\left(f, \frac{\partial f}{\partial X_{i}}\right)_{1 \leq i \leq n}\right) .\right.
$$

It remains to prove that the RHS is zero iff the ring $A=k[X] / I$ (where $I=\left(f, \frac{\partial f}{\partial X_{i}}\right)$) is finite-dimensional as a k-vector space. But this follows immediately from the notes Exercise 4.2.2. Indeed, if $\operatorname{dim}_{k} A<\infty$, then A is clearly Artin, and so $\operatorname{dim}(A)=0$. Conversely, if $\operatorname{dim}(A)=0$, then A is Artin and hence is a finite product of local Artin rings $A_{i}\left([\mathrm{AM}]\right.$, Thm. 8.7). Each A_{i} is f.g. as a k-algebra (since A is), and then by Exercise 4.2.2, each A_{i} is finite-dimensional. Thus A is finite-dimensional too.
9. Exercise 23.2.3 from the notes. Suppose $P=\left(x_{1}, x_{2}, \ldots, x_{n}, z\right)$ is a point on the variety $V\left(Z^{2}-f\right)$, where $f=\left(X_{1}-a_{1}\right)\left(X_{2}-a_{2}\right)$. It is easy to see that the Jacobian $J(P)$ is the row vector

$$
J(P)=\left(-x_{2}+a_{2},-x_{1}+a_{1}, 0, \ldots, 0,2 z\right)
$$

Clearly this vector is zero iff $x_{1}=a_{1}, x_{2}=a_{2}$, and $z=0$ (recall we are assuming $\operatorname{char}(k) \neq 2$ here $)$. Thus, $\operatorname{Sing}\left(V\left(Z^{2}-f\right)\right)$ is precisely the set of points of the form $\left(a_{1}, a_{2}, x_{3}, \ldots, x_{n}, 0\right)$, where $x_{i} \in k$ range freely. Thus the singular locus is identified with affine space \mathbb{A}^{n-2}, hence $\operatorname{dim}(\operatorname{Sing})=n-2$.

On the other hand, since $V\left(Z^{2}-f\right)$ is a hypersurface in $n+1$-space, its dimension is $n+1-1=n$. Thus, $\operatorname{codim}(Y, \operatorname{Sing}(Y))=2$. (NOTE: for a general normal variety, we have $\operatorname{codim}(Y, \operatorname{Sing}(Y)) \geq 2$; this example shows that that inequality cannot be improved.)

