Homework 2 - Math 603 — Fall 05
Solutions

1. (a): In the notation of Atiyah-Macdonald, Prop. 5.17, we have B C > ", Av;.

Since A is Noetherian, this implies that B is f.g. as an A-module.
(b): By Noether normalization we find a finite integral extension A C B, where
A = k[X;,...,X,]. Set K = Frac(A). We claim that L/K is a finite separable
extension. Indeed, K ® 4 B is a localization of the domain B, hence is a domain,
and L O K ® 4 B. Since moreover K ® 4 B is f.g. hence integral over K (since B is
f.g. over A), we see by Lemma 3.3.5 that K ® 4 B is a field. Since L is the smallest
field containing B, we have L = K ®4 B, hence L/K is a finite extension. It is
obviously separable since char(K) = 0 by hypothesis.

Note that B is the integral closure of A in L. Thus, we can apply part (a) to
see that B is f.g. as an A-module. But then it is obviously f.g. as a B-module. It
follows from this that B is f.g. as a k-algebra, since B is.

(¢): Let A denote the integral closure of A in K; so A is a normal domain. Note
that B is the integral closure of A in L So by (a), B is a f.g. A-module. By (b), A

is a f.g. A-module. It follows that B is a f.g. A-module. It is then automatically
f.g. as a k-algebra, since A is.

2. First, we prove Qa/ /1y = Q4/, ®4 A" (the latter is clearly also Q4 /5, @y k'). If
M’ € A’-mod, then we can regard it as an A-module via the canonical map A — A’.
We claim that there is an isomorphism

Dery (A, M') = Dery/ (A", M').
Indeed, this is given by the map D — D', where by definition D'(a®a’) := o/ D(a).
This shows that there are canonical isomorphisms, functorial in M’,
HOHlA/(QA/k XA AI,M/) = HomA(QA/k,M/)
= Dery (A, M")
= Dery/ (A", M)
= HomA/ (QA’/k:’7 M’).

It follows (using e.g. Yoneda’s lemma), that there is a natural isomorphism of
the representing objects, 4, ®4 A" = Qa/ /1.

Next, we prove Q4 /p = Qa/i @4 As. We proved in class that Ag/A is 0-étale,
and that hence Q4,4 = 0 (since in particular Ag/A is O0-unramified). Thus the
first fundamental exact sequence for k — A — Ag is split exact and has Q4,4 = 0,
and this yields

Qasp ®a As = Qagyr,
as desired.

3. (NOTE: the problem is supposed to ask for a NON-ZERO prime ideal.) In

a suitable coordinate system, we can suppose the m;’s correspond to points in the

plane (z;,7;) € k%, with all the z;’s distinct. Then by Lagrange interpolation

(hint given in class), there is a polynomial f € k[X] such that f(x;) = y; for all

i. Now consider g(X,Y) =Y — f(X) € k[X,Y]. Note that g is non-zero, and is
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irreducible (if g factors, then considerations of Y-degrees show it must factor as
g = (a(X)Y + (X)) - ¢(X), and then we would have a(X)c(X) = 1, i.e. ¢(X) is
a unit). Thus p := (g) is a non-zero prime ideal contained in each m;. Indeed,
g(x;,y;) = 0 for all ¢ by construction.

4. Atiyah-Macdonald, Chapter 11, #2. Suppose dim(A) = d, and let x4, ..., 24
denote the system of parameters we're given. By definition, (x1,...,24) = I, for
some m-primary ideal I.

We are assuming A is complete. What does this mean, i.e. for which topol-
ogy, I-adic or m-adic? Answer: there is actually no difference between these two
topologies, since there exists n > 0 with

m"CICm,

(and hence m™ C I" Cc m", for all » > 0). See [AM], Cor. 7.16. However, it is
convenient here to think of A as being identical to A =lim A/I™.

Now by [AM] (11.21), the z; are algebraically independent, and hence t; — x;
gives an injective map klt1,...,tq] — A. Since A is complete for the I-adic topology,
this extends to give

U k[t ..., td)] = A,
which remains injective (by e.g. [AM] Prop. 10.2).

We want to use [AM] Prop. 10.24 to show that ¢ makes A a f.g. module over
E[[t1,...,tq]]. Note that in 10.24, the base ring A is k[[t1, .. ., t4]] and the module M
is the ring A. Note also that the only hypothesis that is not obvious is “G(A) is f.g.
over G(k[[t1,...,td4]])”. Now, the latter graded ring is just the polynomial algebra
klt1, ..., tq) itself. Also, G(A) = @22 1™ /I™*! is clearly f.g. over the graded ring
A/Ilxy,...,24), so it is enough to show that A/I is f.g. as a k-module. But since
m” C I C m, it is enough to show that A/m™ is f.g. as a k-module. But this is clear
since A/m™ is finite-dimensional as a k-vector space: A/m™ is filtered by finitely
many subquotients m¥ /m**1 and each of these has finite k-dimension, since m* is
f.g as A-module.

5. Atiyah-Macdonald, Chapter 11, #3. We are being asked to prove the equality
dim(Ay) = tr.deg, A, where m is a maximal ideal of A, a f.g domain over a field k&
(not necessarily algebraically closed). Note that we already did this in the notes:
it’s Theorem 7.3.1! There, we needed no hypothesis on k& whatsoever.

6. Atiyah-Macdonald, Chapter 11, #4. Notation: let A = k[X, Xa,...,] and
A = k[X1,..., X, ], for k> 1. Tt is clear that each p; is prime and that the set
S = A— (U;p;) is a multiplicative set. Note that prime ideals of S~!A are precisely
those of the form S~!'p, where p C A is a prime ideal contained in U;p;.

We need to verify the various other claims, made in the hint by Atiyah-Macdonald.

The two hypotheses of Atiyah-Macdonald, Chap. 7, Ex. 9 are satisfied here. The
key point is the following lemma.

Lemma 0.0.1. If S™'p is a non-zero prime ideal in S™'A and p N A # 0, then
p Cy;, for some j < k.

Proof. Choose 0 # = € pNAj. Note that pN Ay is contained the finite union of prime
ideals U;<gp; N Ay, (since if ¢ > k, then p, N Ay = 0). Thus by Atiyah-Macdonald,
Prop. 1.11, pN Ay C p; N Ay, for some j < k.
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Now for every kK’ > k, we have 0 # x € p N Ags, which by the same argument is
contained in some p;s N Ags. In fact j° < k, since 0 # x € p;» N A. Thus, letting
k' go to infinity, we see that p C Uj<ip,;. Now again by Atiyah-Macdonald, Prop.
1.11, p C py, for some j < k. O

It follows that if S~™!p is maximal, then p = p; for some j. Further, each S~'p;
is maximal. Thus,

Corollary 0.0.2. The mazimal ideals of ST*A are precisely the S™'p;.

Now we can verify the hypotheses of Atiyah-Macdonald, Ex. 9 of Chap. 7. The
ring S™'Ag-1,, is a localization of the ring

k<Xj)j¢[mi+17m,mi+1][Xmi-i-lv cee 7Xmi+1]7

hence is Noetherian. (In fact, one can prove that the above ring is isomorphic
to S7'Ag-1,,, which is also Ap,. This also shows, shortening the argument given
below, that ht(S™1p;) = m; 1 — m;.)

Secondly, suppose 0 # x/s, and let S~!p; be a maximal ideal containing z/s.
This is the same as saying 0 # x € p,;. But x involves only finitely many variables,
and remains the same if all sufficiently high variables are specialized to zero. Hence
a non-zero z can only be contained in finitely many ideals p; Thus, x/s is contained
in only finitely many maximal ideals of S~1A.

We conclude that S~1 A is Noetherian, by the quoted exercise in Atiyah-Macdonald.

Neat, verify that ht(S~'p;) = m;1 — m;. This will show that dim(S™1A) = oo.

There is something to show here, because A is not a polynomial algebra in
finitely many variables. It is clear that ht(S~!'p;) = ht(p;), since every prime ideal
contained in p; is contained in U;p;. It is also clear that ht(p;) > m;11 — m; and
further that ht(p; N Agx) = m;41 — m; for all large k (since Ay is just a polynomial
algebra in finitely many variables). Suppose qo C -+ C qq = p; is a chain of prime
ideals in A. Then intersecting it with Ay for large k (and noting that the inclusions
remain strict) shows that the chain has length < ht(p; N A), which is m;1 — m.
We are now done.

7. Atiyah-Macdonald, Chapter 10, #11. Show that there is a non-Noetherian lo-
cal ring (A, m), and an ideal a C A such that the a-adic completion A is Noetherian.
Show we can even arrange things such that A is f.g. as an A-module.

Solution: Let A be the ring of germs of C'*° functions at x = 0, and let a denote the

ideal generated by the germ of the function x. Let A denote the a-adic completion
of A.

Claim 1: A can be identified with the ring of formal power series R|[[x]], hence is
Noetherian.
Consider the map ¢ : A — R][z]] given by sending a germ f to its Taylor expansion

f;: S mx". Leibniz’ rule

n=0 n!

n

) 19”0 =3 (1) 105" 0)

k=0
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easily implies that E = fﬁ, and so the map f — ]?is an R-algebra homomorphism.
The theorem of Borel quoted in the hint given by Atiyah-Macdonald shows that
o: fr— fis surjective.

Let I = ker(¢). Clearly I consists of the germs f such that f((0) = 0 for all
n > 0. We claim that

(2) I =N z"A.

Indeed, by (1) it is clear that f € z*A implies that f(™(0) = 0 for all n < k.
Hence I D Nz*A. Conversely, if f € I, it is not too hard using Taylor’s remainder
theorem to show that the germ f; defined by

—k i
R e

is C>. But then f = a2 f;. Since this holds for all k, we have I C N;z*A. Note
that I is therefore also the kernel of the natural map A — A.

Next we want to show that the homomorphism ¢ : A — R[[z]] factors through
the canonical map A — A, giving us a surjective map & : A —» R[[z]]. It is enough
to show that f — f induces a compatible family of homomorphisms

(3) O A/ (%) — Ri[z]]/(«").

We need to show that z* f € x*R[[z]]. This follows easily from (1).

We claim that every ¢y is an isomorphism. Borel’s theorem implies that every
¢y, is surjective. To prove injectivity, suppose f € A maps into 2*R[[z]]. Then by
Borel’s theorem there is a g € A such that f = 2*§. But then since zkg = 2% § =
z* g, we have f —aFg € I C 2% A (as explained in (2)). Thus f € zF A, proving the
injectivity of every ¢y.

Now taking inverse limits, we see that lim ¢4 induces the map é: A — R[[z]],

which is therefore an isomorphism. Thus A is Noetherian.

Claim 2: The ring Ais a quotient of A, so is f.g. as an A-module.
We have established the commutative diagram

A—2- R[]

|

o~

A.

IR

Since ¢ is surjective (Borel’s theorem), we sce that A — A is surjective too.

Claim 3: The ring A is not Noetherian.

Note that A is a domain. If it were Notherian, then since a = (z) # A, Krull’s
theorem would imply that I = Npa* A = (0). But it is well-known that I # 0: there
exist non-zero germs f such that £ (0) = 0 for all n > 0. The simplest example

is probably the germ
fay = {7 a0
0if x =0.



5

8. Exercise 22.2.4 from the notes. From the first example in the notes right
before Exercise 22.2.3 it is clear that Sing(V'(f)) = V(/f, 80)?1 Yoy 3%{1). Thus, by
definition (of the LHS), we have

of
0X;
It remains to prove that the RHS is zero iff the ring A = k[X]/I (where I = (f, 68—)](:))
is finite-dimensional as a k-vector space. But this follows immediately from the
notes Exercise 4.2.2. Indeed, if dimpA < oo, then A is clearly Artin, and so
dim(A) = 0. Conversely, if dim(A) = 0, then A is Artin and hence is a finite
product of local Artin rings A; ([AM], Thm. 8.7). Each A; is f.g. as a k-algebra
(since A is), and then by Exercise 4.2.2, each A; is finite-dimensional. Thus A is
finite-dimensional too.

dim(Sing(V (f)) = dim(k[X1, ..., X.]/(f,

)1<i<n)-

9. Exercise 23.2.3 from the notes. Suppose P = (21, 2,...,Z,,2) is a point on
the variety V(22 — f), where f = (X1 — a1)(X2 — a2). It is easy to see that the
Jacobian J(P) is the row vector

J(P) = (=29 + ag, —x1 + a1,0,...,0,2z).

Clearly this vector is zero iff 1 = a1, 2 = ag, and z = 0 (recall we are assuming
char(k) # 2 here). Thus, Sing(V(Z? — f)) is precisely the set of points of the
form (a1, as,x3,...,2,,0), where x; € k range freely. Thus the singular locus is
identified with affine space A"~2 hence dim(Sing) = n — 2.

On the other hand, since V(Z2— f) is a hypersurface in n+ 1-space, its dimension
isn+1—1 = n. Thus, codim(Y, Sing(Y)) = 2. (NOTE: for a general normal variety,
we have codim(Y, Sing(Y")) > 2; this example shows that that inequality cannot be
improved.)



