
Homework 2 - Math 603 – Fall 05

Solutions

1. (a): In the notation of Atiyah-Macdonald, Prop. 5.17, we haveB ⊂
∑n

j=1Avj .
Since A is Noetherian, this implies that B is f.g. as an A-module.

(b): By Noether normalization we find a finite integral extension A ⊂ B, where
A = k[X1, . . . ,Xn]. Set K = Frac(A). We claim that L/K is a finite separable
extension. Indeed, K ⊗A B is a localization of the domain B, hence is a domain,
and L ⊃ K ⊗A B. Since moreover K ⊗A B is f.g. hence integral over K (since B is
f.g. over A), we see by Lemma 3.3.5 that K ⊗A B is a field. Since L is the smallest
field containing B, we have L = K ⊗A B, hence L/K is a finite extension. It is
obviously separable since char(K) = 0 by hypothesis.

Note that B̃ is the integral closure of A in L. Thus, we can apply part (a) to

see that B̃ is f.g. as an A-module. But then it is obviously f.g. as a B-module. It

follows from this that B̃ is f.g. as a k-algebra, since B is.

(c): Let Ã denote the integral closure of A in K; so Ã is a normal domain. Note

that B is the integral closure of Ã in L So by (a), B is a f.g. Ã-module. By (b), Ã
is a f.g. A-module. It follows that B is a f.g. A-module. It is then automatically
f.g. as a k-algebra, since A is.

2. First, we prove ΩA′/k′ = ΩA/k ⊗AA
′ (the latter is clearly also ΩA/k ⊗k k

′). If
M ′ ∈ A′-mod, then we can regard it as an A-module via the canonical map A→ A′.
We claim that there is an isomorphism

Derk(A,M ′) = Derk′(A′,M ′).

Indeed, this is given by the map D 7→ D′, where by definition D′(a⊗α′) := α′D(a).
This shows that there are canonical isomorphisms, functorial in M ′,

HomA′(ΩA/k ⊗A A′,M ′) = HomA(ΩA/k,M
′)

= Derk(A,M ′)

= Derk′(A′,M ′)

= HomA′(ΩA′/k′ ,M ′).

It follows (using e.g. Yoneda’s lemma), that there is a natural isomorphism of
the representing objects, ΩA/k ⊗A A′ = ΩA′/k′ .

Next, we prove ΩAS/k = ΩA/k ⊗A AS . We proved in class that AS/A is 0-étale,
and that hence ΩAS/A = 0 (since in particular AS/A is 0-unramified). Thus the
first fundamental exact sequence for k → A→ AS is split exact and has ΩAS/A = 0,
and this yields

ΩA/k ⊗A AS = ΩAS/k,

as desired.

3. (NOTE: the problem is supposed to ask for a NON-ZERO prime ideal.) In
a suitable coordinate system, we can suppose the mi’s correspond to points in the
plane (xi, yi) ∈ k2, with all the xi’s distinct. Then by Lagrange interpolation
(hint given in class), there is a polynomial f ∈ k[X] such that f(xi) = yi for all
i. Now consider g(X,Y ) = Y − f(X) ∈ k[X,Y ]. Note that g is non-zero, and is
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irreducible (if g factors, then considerations of Y -degrees show it must factor as
g = (a(X)Y + b(X)) · c(X), and then we would have a(X)c(X) = 1, i.e. c(X) is
a unit). Thus p := (g) is a non-zero prime ideal contained in each mi. Indeed,
g(xi, yi) = 0 for all i by construction.

4. Atiyah-Macdonald, Chapter 11, #2. Suppose dim(A) = d, and let x1, . . . , xd

denote the system of parameters we’re given. By definition, (x1, . . . , xd) = I, for
some m-primary ideal I.

We are assuming A is complete. What does this mean, i.e. for which topol-
ogy, I-adic or m-adic? Answer: there is actually no difference between these two
topologies, since there exists n > 0 with

m
n ⊂ I ⊂ m,

(and hence mrn ⊂ Ir ⊂ mr, for all r ≥ 0). See [AM], Cor. 7.16. However, it is

convenient here to think of A as being identical to Â = lim
←−

A/In.

Now by [AM] (11.21), the xi are algebraically independent, and hence ti 7→ xi

gives an injective map k[t1, . . . , td] → A. Since A is complete for the I-adic topology,
this extends to give

ψ : k[[t1, . . . , td]] → A,

which remains injective (by e.g. [AM] Prop. 10.2).
We want to use [AM] Prop. 10.24 to show that ψ makes A a f.g. module over

k[[t1, . . . , td]]. Note that in 10.24, the base ring A is k[[t1, . . . , td]] and the module M
is the ring A. Note also that the only hypothesis that is not obvious is “G(A) is f.g.
over G(k[[t1, . . . , td]])”. Now, the latter graded ring is just the polynomial algebra
k[t1, . . . , td] itself. Also, G(A) = ⊕∞n=0I

n/In+1 is clearly f.g. over the graded ring
A/I[x1, . . . , xd], so it is enough to show that A/I is f.g. as a k-module. But since
mn ⊂ I ⊂ m, it is enough to show that A/mn is f.g. as a k-module. But this is clear
since A/mn is finite-dimensional as a k-vector space: A/mn is filtered by finitely
many subquotients mk/mk+1, and each of these has finite k-dimension, since mk is
f.g as A-module.

5. Atiyah-Macdonald, Chapter 11, #3. We are being asked to prove the equality
dim(Am) = tr.degkA, where m is a maximal ideal of A, a f.g domain over a field k
(not necessarily algebraically closed). Note that we already did this in the notes:
it’s Theorem 7.3.1! There, we needed no hypothesis on k whatsoever.

6. Atiyah-Macdonald, Chapter 11, #4. Notation: let A = k[X1,X2, . . . , ] and
Ak = k[X1, . . . ,Xmk

], for k ≥ 1. It is clear that each pi is prime and that the set
S = A− (∪ipi) is a multiplicative set. Note that prime ideals of S−1A are precisely
those of the form S−1p, where p ⊂ A is a prime ideal contained in ∪ipi.

We need to verify the various other claims, made in the hint by Atiyah-Macdonald.

The two hypotheses of Atiyah-Macdonald, Chap. 7, Ex. 9 are satisfied here. The
key point is the following lemma.

Lemma 0.0.1. If S−1p is a non-zero prime ideal in S−1A and p ∩ Ak 6= 0, then

p ⊂ pj, for some j ≤ k.

Proof. Choose 0 6= x ∈ p∩Ak. Note that p∩Ak is contained the finite union of prime
ideals ∪i≤kpi ∩ Ak (since if i > k, then pi ∩ Ak = 0). Thus by Atiyah-Macdonald,
Prop. 1.11, p ∩Ak ⊂ pj ∩Ak, for some j ≤ k.
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Now for every k′ ≥ k, we have 0 6= x ∈ p ∩ Ak′ , which by the same argument is
contained in some pj′ ∩ Ak′ . In fact j′ ≤ k, since 0 6= x ∈ pj′ ∩ Ak. Thus, letting
k′ go to infinity, we see that p ⊂ ∪j≤kpj . Now again by Atiyah-Macdonald, Prop.
1.11, p ⊂ pj , for some j ≤ k. �

It follows that if S−1p is maximal, then p = pj for some j. Further, each S−1pj

is maximal. Thus,

Corollary 0.0.2. The maximal ideals of S−1A are precisely the S−1pj.

Now we can verify the hypotheses of Atiyah-Macdonald, Ex. 9 of Chap. 7. The
ring S−1AS−1pi

is a localization of the ring

k(Xj)j /∈[mi+1,...,mi+1][Xmi+1, . . . ,Xmi+1
],

hence is Noetherian. (In fact, one can prove that the above ring is isomorphic
to S−1AS−1pi

, which is also Api
. This also shows, shortening the argument given

below, that ht(S−1pi) = mi+1 −mi.)
Secondly, suppose 0 6= x/s, and let S−1pi be a maximal ideal containing x/s.

This is the same as saying 0 6= x ∈ pi. But x involves only finitely many variables,
and remains the same if all sufficiently high variables are specialized to zero. Hence
a non-zero x can only be contained in finitely many ideals pi Thus, x/s is contained
in only finitely many maximal ideals of S−1A.

We conclude that S−1A is Noetherian, by the quoted exercise in Atiyah-Macdonald.

Next, verify that ht(S−1pi) = mi+1 −mi. This will show that dim(S−1A) = ∞.
There is something to show here, because A is not a polynomial algebra in

finitely many variables. It is clear that ht(S−1pi) = ht(pi), since every prime ideal
contained in pi is contained in ∪ipi. It is also clear that ht(pi) ≥ mi+1 −mi and
further that ht(pi ∩Ak) = mi+1 −mi for all large k (since Ak is just a polynomial
algebra in finitely many variables). Suppose q0 ( · · · ( qd = pi is a chain of prime
ideals in A. Then intersecting it with Ak for large k (and noting that the inclusions
remain strict) shows that the chain has length ≤ ht(pi ∩Ak), which is mi+1 −mi.
We are now done.

7. Atiyah-Macdonald, Chapter 10, #11. Show that there is a non-Noetherian lo-

cal ring (A,m), and an ideal a ⊂ A such that the a-adic completion Â is Noetherian.

Show we can even arrange things such that Â is f.g. as an A-module.

Solution: Let A be the ring of germs of C∞ functions at x = 0, and let a denote the

ideal generated by the germ of the function x. Let Â denote the a-adic completion
of A.

Claim 1: Â can be identified with the ring of formal power series R[[x]], hence is
Noetherian.
Consider the map φ : A→ R[[x]] given by sending a germ f to its Taylor expansion

f̂ :=
∑∞

n=0
f(n)(0)

n! xn. Leibniz’ rule

(1) (fg)(n)(0) =

n∑

k=0

(
n

k

)
f (k)(0) g(n−k)(0)
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easily implies that f̂g = f̂ ĝ, and so the map f 7→ f̂ is an R-algebra homomorphism.
The theorem of Borel quoted in the hint given by Atiyah-Macdonald shows that

φ : f 7→ f̂ is surjective.
Let I = ker(φ). Clearly I consists of the germs f such that f (n)(0) = 0 for all

n ≥ 0. We claim that

(2) I = ∩∞k=0x
kA.

Indeed, by (1) it is clear that f ∈ xkA implies that f (n)(0) = 0 for all n < k.
Hence I ⊃ ∩kx

kA. Conversely, if f ∈ I, it is not too hard using Taylor’s remainder
theorem to show that the germ fk defined by

fk(x) =

{
f(x)x−k, if x 6= 0

0, if x = 0

is C∞. But then f = xkfk. Since this holds for all k, we have I ⊂ ∩kx
kA. Note

that I is therefore also the kernel of the natural map A→ Â.
Next we want to show that the homomorphism φ : A ։ R[[x]] factors through

the canonical map A → Â, giving us a surjective map φ : Â ։ R[[x]]. It is enough

to show that f 7→ f̂ induces a compatible family of homomorphisms

(3) φk : A/(xk) → R[[x]]/(xk).

We need to show that x̂k f ∈ xkR[[x]]. This follows easily from (1).
We claim that every φk is an isomorphism. Borel’s theorem implies that every

φk is surjective. To prove injectivity, suppose f ∈ A maps into xkR[[x]]. Then by

Borel’s theorem there is a g ∈ A such that f̂ = xkĝ. But then since x̂kg = x̂k ĝ =
xk ĝ, we have f − xkg ∈ I ⊂ xkA (as explained in (2)). Thus f ∈ xkA, proving the
injectivity of every φk.

Now taking inverse limits, we see that lim
←−

φk induces the map φ : Â → R[[x]],

which is therefore an isomorphism. Thus Â is Noetherian.

Claim 2: The ring Â is a quotient of A, so is f.g. as an A-module.
We have established the commutative diagram

A

��

φ
// R[[x]]

Â.

∼=

==
z

z
z

z
z

z
z

z

Since φ is surjective (Borel’s theorem), we see that A→ Â is surjective too.

Claim 3: The ring A is not Noetherian.
Note that A is a domain. If it were Notherian, then since a = (x) 6= A, Krull’s
theorem would imply that I = ∩kx

kA = (0). But it is well-known that I 6= 0: there
exist non-zero germs f such that f (n)(0) = 0 for all n ≥ 0. The simplest example
is probably the germ

f(x) =

{
e−1/x2

, if x 6= 0

0 if x = 0.
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8. Exercise 22.2.4 from the notes. From the first example in the notes right
before Exercise 22.2.3 it is clear that Sing(V (f)) = V (f, ∂f

∂X1
, . . . , ∂f

∂Xn
). Thus, by

definition (of the LHS), we have

dim(Sing(V (f)) = dim(k[X1, . . . ,Xn]/(f,
∂f

∂Xi
)1≤i≤n).

It remains to prove that the RHS is zero iff the ringA = k[X]/I (where I = (f, ∂f
∂Xi

))
is finite-dimensional as a k-vector space. But this follows immediately from the
notes Exercise 4.2.2. Indeed, if dimkA < ∞, then A is clearly Artin, and so
dim(A) = 0. Conversely, if dim(A) = 0, then A is Artin and hence is a finite
product of local Artin rings Ai ([AM], Thm. 8.7). Each Ai is f.g. as a k-algebra
(since A is), and then by Exercise 4.2.2, each Ai is finite-dimensional. Thus A is
finite-dimensional too.

9. Exercise 23.2.3 from the notes. Suppose P = (x1, x2, . . . , xn, z) is a point on
the variety V (Z2 − f), where f = (X1 − a1)(X2 − a2). It is easy to see that the
Jacobian J(P ) is the row vector

J(P ) = (−x2 + a2,−x1 + a1, 0, . . . , 0, 2z).

Clearly this vector is zero iff x1 = a1, x2 = a2, and z = 0 (recall we are assuming
char(k) 6= 2 here). Thus, Sing(V (Z2 − f)) is precisely the set of points of the
form (a1, a2, x3, . . . , xn, 0), where xi ∈ k range freely. Thus the singular locus is
identified with affine space An−2, hence dim(Sing) = n− 2.

On the other hand, since V (Z2−f) is a hypersurface in n+1-space, its dimension
is n+1−1 = n. Thus, codim(Y,Sing(Y )) = 2. (NOTE: for a general normal variety,
we have codim(Y,Sing(Y )) ≥ 2; this example shows that that inequality cannot be
improved.)


