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Abstract. These lectures describe Hecke algebra isomorphisms and types for depth-zero

principal series blocks, a.k.a. Bernstein components Rs(G) for s = sχ = [T, eχ]G, where χ

is a depth-zero character on T (O). (Here T is a split maximal torus in a p-adic group G.)

We follow closely the treatment of A. Roche [Ro] with input from D. Goldstein [Gol] and

L. Morris [Mor]. We give an elementary proof that (I, ρχ) is a type for sχ, in the sense of

Bushnell-Kutzko [BK]. This is a very special case of a result of Roche [Ro]. Our method

is to imitate Casselman’s proof of Borel’s theorem on unramified principal series (the case

χ = 1 of the present theorem).

In contrast to the situation for general principal series blocks (see [Ro]), in the depth-zero

case there is no restriction on the residual characteristic of F .

1. Notation

We let F denote an arbitrary p-adic field with ring of integers O, and residue field kF . Let

q denote the cardinality of kF . Write ̟ for a uniformizer.

Let G denote a connected reductive group, defined and split over O. Fix an F -split

maximal torus T and a Borel subgroup B containing T ; assume T and B are defined over

O. Let ◦T = T (O) denote the maximal compact subgroup of T (F ). Let Φ ⊂ X∗(T ) resp.

Φ∨ ⊂ X∗(T ) denote the set of roots resp. coroots for G,T . Let U resp. U denote the

unipotent radical of B resp. the Borel subgroup B ⊃ T opposite to B.

The symbol I will stand for an Iwahori subgroup of G(F ), which we shall assume it is in

“good position” with respect to T : the alcove a in the building for G(F ) which is fixed by I

is contained in the apartment corresponding to T .

Let dx denote a Haar measure on G. Denote the group of unramified characters of G(F )

by Xur(G) (see [BD] or [Be92] for the definition).

Let R(G) denote the category of smooth representations of G(F ).

Let L denote an F -Levi subgroup of G (by definition, L = CG(AL) for some F -split torus

AL in G). Let P = LN denote an F -parabolic subgroup, that is, a parabolic subgroup

defined over F , with unipotent radical N and with L as a Levi factor. Let σ denote any

smooth representation of L, and define the normalized parabolic induction by

iGP (σ) = IndG
P (δ

1/2
P σ),
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where δP (l) := |det(Ad(l); Lie(N(F )))|F . Here | · |F denotes the normalized absolute value

on F .

Throughout these notes, we will frequently write G (resp. B,T , etc.) when we really mean

G(F ) (resp. B(F ), T (F ), etc.).

2. Bernstein decomposition (review)

A cuspidal pair (L, σ) consists of an F -Levi subgroup L of G, together with a supercuspidal

representation σ of L(F ).

The group G = G(F ) acts “by conjugation” on cuspidal pairs: g · (L, σ) = ( gL, gσ), where
gL = gLg−1 and gσ(·) = σ(g−1 · g). Denote by (L, σ)G the G-conjugation class of (L, σ).

Let (L, σ) denote a cuspidal pair. We say (L1, σ1) is inertially equivalent to (L2, σ2) if

there exists g ∈ G(F ) and χ ∈ Xur(L2) such that gL1 = L2 and gσ1 ⊗ χ = σ2.

Let s = [L, σ]G denote the inertial equivalence class of (L, σ) (with respect to G). Note

that s depends only on (L, σ)G. Also s is a union of G-conjugacy classes of cuspidal pairs.

Fact: For π ∈ R(G) irreducible, there exist a (unique up to G-conjugacy) cuspidal pair

(L, σ) such that π is a subquotient of iGP (σ). Here P = LN is an F -parabolic with unipotent

radical N which has L as a Levi factor.

We call the class (L, σ)G as above the supercuspidal support of π.

Denote byRs(G) the full subcategory ofR(G) whose objects are the representations π each

of whose irreducible subquotients has supercuspidal support belonging to the inertial class s.

Once we fix a cuspidal pair (L, σ) in s, we may reformulate the condition for π to belong to

Rs(G) as: every irreducible subquotient of π is a subquotient of some iGP (σχ), χ ∈ Xur(L).

Theorem 2.0.1 (Bernstein decomposition). R(G) =
∏

s
Rs(G).

Definition 2.0.2. An s-type is a pair (K, ρ) consisting of a compact open subgroup K ⊂

G together with an irreducible smooth representation ρ : K → EndC(W ) such that an

irreducible π ∈ R(G) belongs to Rs(G) iff π|K ⊃ ρ.

Now let ρ be any irreducible smooth representation of K, on a vector space W . We define

eρ ∈ H(G) = C∞
c (G, dx) by

eρ(x) =





dx(K)−1 dim(ρ) trW (ρ(x−1)), x ∈ K

0, x /∈ K.

For any irreducible smooth representations ρ, ρ′ of K, we have eρ ∗dx eρ′ = δρ,ρ′eρ, where

δρ,ρ′ ∈ {0, 1} vanishes unless ρ and ρ′ are equivalent. This is an exercise using the Schur

orthogonality relations on the group K. In particular, eρ is an idempotent of the algebra

H(G).

If ρ = 1 (the trivial character) we write eK in place of eρ.

For any (π, V ) ∈ R(G), denote by V ρ the ρ-isotypical component of V . We have V ρ = eρV .

Also, we let V [ρ] = H(G) · V ρ, the G-submodule of V generated by V ρ. Below we will often

write πρ in place of V ρ.
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We define Rρ(G) to be the full subcategory of R(G) whose objects (π, V ) satisfy V = V [ρ].

There is a functor

Rρ(G)→ eρH(G)eρ-Mod(2.0.1)

(π, V ) 7→ πρ.

Proposition 2.0.3. If (K, ρ) is an s-type, then (2.0.1) is an equivalence of categories. More-

over, in that case Rs(G) = Rρ(G) as subcategories of R(G).

We will postpone the proof of this proposition to section 4.

3. Depth-zero principal series blocks

Example. Consider an Iwahori subgroup I in good position with respect to the torus T

(this means that I fixes an alcove a in the apartment of the building for G(F ) corresponding

to T ). Also, for any Borel subgroup B = TU containing T , with opposite Borel B = TU , we

have the Iwahori decomposition

(3.0.2) I = IU ·
◦T · IU ,

where IU := U ∩ I, IU := U ∩ I, and ◦T := T (O) = T ∩ I.

The inertial class s := [T, 1]G indexes the Iwahori block Rs(G). A famous theorem of

Borel asserts that an irreducible π ∈ R(G) is a constituent of an unramified principal series

iGB(η), η ∈ Xur(T ), if and only if πI 6= 0. That is, (I, 1) is an s-type. This is a special case

of the theorem we will prove below (Theorem 3.0.2).

It turns out that eIH(G)eI = H(G, I), the Iwahori-Hecke algebra (see below). In con-

junction with the Proposition 2.0.3, we thus recover the finer result of Borel which asserts

that

π 7→ πI

gives an equivalence of categories between the Iwahori block and the category H(G, I)-Mod.

Fix a character χ : ◦T → C
×.

Definition 3.0.1. We say χ is depth-zero if χ factors through the quotient ◦T → T (kF ) (and

we denote the factoring T (kF )→ C
× also by χ).

Choose any extension of χ to a character χ̃ : T (F )→ C
×. Consider the inertial class

s := [T, χ̃]G.

Since s depends only on the W -orbit of χ, we may also write sχ for s.

Let I be an Iwahori in good position relative to T , as above. Let I+ denote the pro-

unipotent radical of I. There is an obvious isomorphism

◦T/ ◦T ∩ I+ →̃ I/I+
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so that χ determines a character ρ = ρχ : I → C
×, which is trivial on I+. In terms of the

Iwahori decomposition (3.0.2), ρ is given by

ρ(u · t0 · u) = χ(t0),

for u ∈ IU , t0 ∈
◦T , and u ∈ IU .

Theorem 3.0.2. If s = sχ as above, then (I, ρ) is an s-type.

We shall prove this by imitating Casselman’s proof of Borel’s theorem on unramified prin-

cipal series. One crucial ingredient is the theory of Hecke algebra isomorphisms for depth-zero

principal series types, which we will review in section 5.

4. Proof of Proposition 2.0.3

We are in the general situation, where (K, ρ) is a smooth irreducible representation on a

vector space W (ie. ρ is not necessarily a character).

Lemma 4.0.1. Fix an inertial class s.

(i) (K, ρ) is an s-type ⇐⇒ ind ρ := c−IndG
K ρ is a generator for Rs(G), i.e., ind ρ ∈

Rs(G) and HomG(ind ρ, π) 6= 0 for all π 6= 0 in Rs(G).

(ii) In that case Rs(G) = Rρ(G) as subcategories of R(G). In particular Rρ(G) is closed

under extensions and subquotients.

Proof. First, by Frobenius reciprocity (cf. [Ro],(7.1)) we have

HomG(ind ρ, π) = HomK(ρ, π).

This implies that ind ρ is a projective object in R(G). (It is also true that ind ρ is finitely-

generated as a G-module.)

Now let us prove (i).

(⇒): Suppose (π, V ) ∈ Rs is non-zero. Since all irreducible subquotients of π are also

in Rs (hence contain ρ) and representations of K are completely reducible, it follows that

HomK(ρ, π) 6= 0 and hence HomG(ind ρ, π) 6= 0.

Next we claim that ind ρ ∈ Rs. If not, then ind ρ possesses a non-zero quotient τ in some

Rt with t 6= s. Since τ is finitely-generated (as ind ρ is), it possesses an irreducible quotient;

we may assume τ is itself irreducible. But then HomK(ρ, τ) 6= 0 implies that τ ⊃ ρ and this

means that (K, ρ) is not an s-type.

(⇐): Let (π, V ) ∈ R(G) be irreducible and non-zero. Then

π ∈ Rs(G)⇐⇒ HomG(ind ρ, π) 6= 0

⇐⇒ HomK(ρ, π) 6= 0

⇐⇒ π ∈ Rρ(G).

The first (⇐=) holds because ind ρ, hence any of its quotients, lies in Rs(G).

This completes the proof of (i).
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Now let us prove (ii). Suppose (π, V ) ∈ Rs(G). We have (V/V [ρ])ρ = 0. But then

V/V [ρ] = 0, since non-zero objects in Rs(G) contain ρ. So V = V [ρ], that is, π ∈ Rρ(G).

Conversely, if V = V [ρ], then π is a quotient of a direct sum of copies of ind ρ ∈ Rs(G),

hence π ∈ Rs(G).

�

Exercise: Since ind ρ is projective in R(G) and a generator for Rs(G) (i.e. ind ρ ∈ Rs(G)

and HomG(ind ρ, π) 6= 0 for every π 6= 0 in Rs(G)), every π ∈ Rs(G) is a quotient of a direct

sum of copies of ind ρ. (Consider the maximal subobject in π which is a quotient of a direct

sum of copies of ind ρ.)

We have shown that ind ρ is a f.g. projective generator of Rs(G). From this, general

categorical arguments ([Ba]) give (Morita) equivalences of categories

Rs(G) ≈ EndG(ind ρ)opp-Mod ≈ EndG(ind ρ)opp ⊗ EndCW -Mod

π 7→ HomG(ind ρ, π) 7→ HomG(ind ρ, π)⊗W

t.f = f ◦ t.

Therefore, we need to relate EndG(ind ρ)opp ⊗ End(W ) to eρH(G)eρ. First we define

H(G, ρ∨) = {Φ : G→ End(W ) | Φ(k1gk2) = ρ(k1)Φ(g)ρ(k2), ∀ki ∈ K, g ∈ G}.

Here the functions Φ are assumed to be smooth with compact support. Also, (ρ∨,W∨) is the

representation given by ρ∨(k) := ρ(k−1)∨ ∈ End(W∨). We view H(G, ρ∨) as a convolution

algebra using the Haar measure dx giving K volume 1.

The following lemma is left to the reader.

Lemma 4.0.2. We have mutually inverse algebra isomorphisms

φ 7→ tφ : H(G, ρ∨)
−→
←− EndG(ind ρ) : t 7→ φt,

where

tφ(f)(g) =

∫

G
φ(x)(f(x−1g)) dx (f ∈ ind ρ, g ∈ G)

φt(g)(w) = t(ew)(g) (g ∈ G,w ∈W ).

Here ew ∈ ind ρ is defined by

ew(g) =





ρ(k)w, g = k ∈ K

0, g /∈ K.

Furthermore, there is an anti-isomorphism of algebras

H(G, ρ∨) →̃ H(G, ρ)

Φ 7→ Φ′

given by Φ′(g) := Φ(g−1)∨ ∈ End(W∨).
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Finally, Roche checks in [Ro], p. 390, that there is an algebra isomorphism

H(G, ρ) ⊗C End(W ) →̃ eρH(G)eρ

Φ⊗ (w ⊗ w∨) 7→ (g 7→ dim ρ 〈w,Φ(g)w∨〉) (w ∈W, w∨ ∈W∨).

In case ρ is a character, the last isomorphism gives H(G, ρ) ∼= eρH(G)eρ and is immediate.

Putting these isomorphisms together, we get isomorphisms

EndG(ind ρ)opp ⊗ End(W ) →̃ H(G, ρ)⊗ End(W ) →̃ eρH(G)eρ.

In loc. cit. Roche checks that the induced categorical equivalence

Rs(G) = Rρ(G) →̃ eρH(G)eρ-Mod

is

(π, V ) 7→ HomG(ind ρ, π) = HomK(ρ, π) = πρ.

(Again, this is quite immediate in the case where ρ is a character.) This completes the proof

of Proposition 2.0.3.

5. Hecke algebra isomorphisms

To prove Theorem 3.0.2, we need to review Hecke algebra isomorphisms. We follow Roche’s

treatment [Ro].

5.1. Preliminaries. As before, fix a depth-zero character χ : ◦T → C
×, and let s =

[T, χ̃]G = sχ, for any extension χ̃ : T (F ) → C
× of χ. Also, write ρ = ρχ for the associ-

ated character ρ : I = IU ·
◦T · IU → C

×, utu 7→ χ(t).

Let N denote the normalizer of T in G, let W = N/T = N(F )/T (F ) denote the Weyl

group, and write W̃ = N(F )/ ◦T for the Iwahori-Weyl group. There is a canonical isomor-

phism X∗(T ) = T (F )/ ◦T, λ 7→ ̟λ := λ(̟) (independent of the choice of ̟). The canonical

homomorphism N(F )/ ◦T = W̃ → W = N(F )/T (F ) has a (non-canonical) section, hence

there is a (non-canonical) isomorphism W̃ = X∗(T ) ⋊ W .

Clearly N(F ), W̃ and W act on the set of depth-zero characters. We define

Nχ = {n ∈ N(F ) | nχ = χ}

W̃χ = {w ∈ W̃ | wχ = χ}

Wχ = {w ∈W | wχ = χ}.

There are obvious surjective homomorphisms Nχ → W̃χ →Wχ.

Define Φχ (resp. Φ∨
χ resp. Φχ,aff) to be the set of roots α ∈ Φ (resp. coroots α∨ ∈ Φ∨

resp. affine roots a = α + k, where α ∈ Φ, k ∈ Z) such that χ ◦ α∨|O×

F
= 1. Note that W̃χ

acts in an obvious way on Φχ,aff . Define the following subgroups of the group of affine-linear

automorphisms of V := X∗(T )⊗ R:

W ◦
χ = 〈sα | α ∈ Φχ〉

Wχ,aff = 〈sa | a ∈ Φχ,aff〉.
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Here sa and sα are the reflections on V corresponding to a and α.

Let Φ+ denote the B-positive roots in Φ, and set Φ+
χ = Φχ ∩ Φ+. Then let Cχ resp. aχ

denote the subsets in V defined by

Cχ = {v ∈ V | 0 < α(v), ∀α ∈ Φ+
χ }, resp.

aχ = {v ∈ V | 0 < α(v) < 1, ∀α ∈ Φ+
χ }.

For a ∈ Φχ,aff we write a > 0 if a(v) > 0 for all v ∈ aχ. Similarly, we define an ordering on

the set Φχ,aff . Then let Πχ,aff = {a ∈ Φχ,aff | a is a minimal positive element}. Define

Sχ,aff = {sa | a ∈ Πχ,aff}

Ωχ = {w ∈ W̃χ | waχ = aχ}.

It is clear that Φχ is a root system with Weyl group W ◦
χ , and that W ◦

χ ⊆Wχ. In general,

Wχ can be larger that W ◦
χ and is not even a Weyl group (see Example 8.3 in [Ro] and Remark

5.1.2 below). The following results are contained in [Ro].

Lemma 5.1.1. (1) The group Wχ,aff is a Coxeter group with system of generators Sχ,aff ;

(2) there is a canonical decomposition W̃χ = Wχ,aff ⋊ Ωχ, and the Bruhat order ≤χ and

length function ℓχ on Wχ,aff can be extended in an obvious way to W̃χ such that Ωχ

consists of the length-zero elements;

(3) if W ◦
χ = Wχ, then Wχ,aff (resp. W̃χ) is the affine (resp. extended affine) Weyl group

associated to the root system Φχ ⊂ V ∗, and Cχ resp. aχ is the dominant Weyl chamber

resp. base alcove in V corresponding to a set of simple positive affine roots, which

can be identified with Πχ,aff .

In the situation of (3), let Πχ denote the set of minimal elements of Φ+
χ . This is then a set

of simple positive roots for the root system Φχ.

Remark 5.1.2. In [Ro], pp. 393-6, Roche proves that W ◦
χ = Wχ at least when G has

connected center and when p is not a torsion prime for Φ∨ (see loc. cit. p. 396). It is easy to

see that W ◦
χ = Wχ always holds when G = GLd (with no restrictions on p).

On the other hand, Wχ 6= W ◦
χ in general, even for G = SLn. Indeed, suppose G = SLn

with n ≥ 3. Suppose n|q − 1 and that χ1 is a character of F
×
q of order n. Consider

χ(a1, . . . , an) := χ1(a1)χ
2
1(a2) · · ·χ

n
1 (an).

It is clear that W ◦
χ = {1}, but that, since a1 · · · an = 1, we have Wχ ∋ (12 · · · n). In fact Wχ

is the cyclic group of order n generated by (12 · · · n).

5.2. Statement. Let H(Wχ,aff) denote the affine Hecke algebra associated to the Coxeter

group (Wχ,aff , Sχ,aff). It has the usual generators Tw, w ∈Wχ,aff , and relations

Tw1w2
= Tw1

Tw2
, if ℓχ(w1w2) = ℓχ(w1) + ℓχ(w2)

T 2
s = (q − 1)Ts + qT1. if s ∈ Sχ,aff .
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Let Hχ := H(Wχ,aff)⊗̃C[Ωχ], where the twisted tensor product is the usual tensor product

on the underlying vector spaces, but where multiplication is given by

(Tw1
⊗ eω1

)(Tw1
⊗ eω2

) = Tw1ω1(w2) ⊗ eω1ω2

where ω(·) refers the conjugation action of ω ∈ Ωχ on Wχ,aff .

We write Twω := Tw ⊗ eω.

The Hecke algebra isomorphism depends on a choice of extension χ̆ : Nχ → C
× of χ (this

always exists: see [HL] 6.11 and [HR09]). Fix such a χ̆. Then for any n ∈ Nχ 7→ w ∈ W̃χ,

define

[InI]χ̆ ∈ H(G, ρ)

to be the unique element in H(G, ρ) supported on InI and having value χ̆−1(n) at n. Note

that [InI]χ̆ depends on w ∈ W̃χ but not on the choice of n ∈ Nχ mapping to w.

Theorem 5.2.1 (Goldstein [Gol], Morris [Mor], Roche [Ro]). Let χ be a depth-zero character

as above. For any extension χ̆ of χ as above, there is an algebra isomorphism

H(G, ρ) →̃ Hχ,

which sends q−ℓ(w)/2[InI]χ̆ to q−ℓχ(w)/2Tw.

Let Φn := χ̆(n)[InI]χ̆, the unique element inH(G, ρ) supported on InI and having Φn(n) =

1.

Corollary 5.2.2. For any n ∈ Nχ, the element [InI]χ̆ (or equivalently, Φn) is invertible in

H(G, ρ).

6. The morphism V ρ → V χ
U

We assume B = TU and I are in “good position”: I fixes an alcove a contained in the

apartment corresponding to T , and B is any Borel subgroup containing T . From χ we get ρ

as usual.

For (π, V ) ∈ R(G), let VU ∈ R(T ) denote the Jacquet module.

Proposition 6.0.1. Suppose (π, V ) is irreducible (hence, cf. [Be92], admissible). Then the

map V → VU induces a ◦T -equivariant isomorphism

(6.0.1) V ρ →̃ V χ
U .

Remark 6.0.2. Since B = TU may be replaced with any wB = T wU (w ∈ W ), it follows

that we may also hold B fixed and replace I with wI. That is, we may replace χ with wχ

and ρ with wρ, where the latter is the character on wI defined by wρ(·) = ρ(w−1 · w). Such

a replacement causes no harm for the proof of the main theorem (cf. section 7) because

π(w) : V ρ →̃ V
wρ.

We will prove Proposition 6.0.1 using only a consequence of the Hecke algebra isomorphism,

namely Corollary 5.2.2.



Hecke algebra isomorphisms and types for depth-zero principal series 9

Proof. We change notation slightly and write the Iwahori decomposition as

I = U0
◦T U0

where U0 := IU and U0 := IU .

For any (π, V ) ∈ R(G), we define a projector Pχ
I : V → V ρ by

Pχ
I (v) =

1

|I|

∫

I
ρ(k)−1π(k)v dk.

It is clear that Pχ
I really is a projector V → V ρ.

Write V χU0 for the set of v ∈ V which are fixed by π(U 0) and transform under π(t),

t ∈ ◦T , by the scalar χ(t). Recall that we define PU0
(v) := 1

|U0|

∫
U0

π(k)v dk.

Lemma 6.0.3 (Jacquet’s Lemma I). Let v ∈ V χU0 . Then Pχ
I (v) = PU0

(v) and has the same

image in VU as v.

Proof. Writing the integral over I = U0
◦T U0 as an iterated integral proves the desired

equality. The rest follows from a basic property of the operator PU0
. �

Recall we assume (π, V ) ∈ R(G) is irreducible, hence admissible.

V ρ → V χ
U is surjective: The ◦T -morphism V χ → V χ

U is surjective. Since V χ
U is finite-

dimensional, there is a finite-dimensional subspace W ⊂ V χ which still surjects onto V χ
U .

Choose a compact open subgroup U1 ⊂ U0 such that W ⊂ V χU1 .

Let T+ denote the monoid of “positive” elements in T (F ), i.e., those in a subset of the

form ̟ν ◦T where ν is B-dominant. (This notion does not depend on the choice of ̟.)

Choose a ∈ T+ such that a−1U0a ⊂ U1. Then π(a)W ⊂ V χU0 , and π(a)W has image

π(a)V χ
U = V χ

U . So, V χU0 ։ V χ
U .

We need to prove the smaller subset V ρ ⊂ V χU0 still surjects onto V χ
U . But this follows

using Lemma 6.0.3: for v ∈ V χU0, the element Pχ
I (v) belongs to V ρ and has the same image

in VU as v. This completes the proof of the surjectivity.

V ρ → V χ
U is injective:

Lemma 6.0.4. For v ∈ V ρ = eρV , and a ∈ T+, we have

π(Φa)v = |IaI| Pχ
I (π(a)v).

Here the action of H(G, ρ) on V ρ is defined using the Haar measure dg which gives I

measure 1, and |IaI| := voldg(IaI).

Proof. Let Sa denote any set of representatives in U0 for a−1U0a\U0. There is a natural

bijection

Sa →̃ (a−1Ia ∩ I)\I →̃ I\IaI
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(we used a−1U0a ⊆ U0 and U0 ⊆ a−1U0a). We have

π(Φa)v =

∫

IaI
Φa(g)π(g)v dg

=
∑

s∈Sa

∫

Ias
Φa(g)π(g)v dg

= |Sa|

∫

I
ρ−1(k)π(k)π(a)v dk

= |Sa| P
χ
I (π(a)v).

�

Suppose U1 ⊂ U is a compact open subgroup. Let V (U1) = {v ∈ V | PU1
(v) = 0}. It is

easy to see that

ker(V → VU ) =
⋃

U1

V (U1).

Lemma 6.0.5 (Jacquet’s Lemma II). Suppose v ∈ V ρ ∩ V (U1) for some compact open

subgroup U1 ⊂ U . Suppose a ∈ T+ satisfies U1 ⊂ a−1U0a. Then PU0
(π(a)v) = 0.

Proof. The vanishing of π(a)
∫
U0

π(a−1ua)v du follows from the vanishing of
∫
U1

π(u)v du,

since U1 is a subgroup of a−1U0a. �

Now we can complete the proof of the injectivity. Suppose v ∈ V ρ maps to zero in V χ
U .

Choose U1 and a ∈ T+ satisfying the hypotheses of Lemma 6.0.5. Note that π(a)v ∈ V χU0 .

Then using Jacquet’s Lemmas I and II together with Lemma 6.0.4, we see

0 = PU0
(π(a)v) = Pχ

I (π(a)v) = |IaI|−1 π(Φa)v.

Since Φa is invertible (Corollary 5.2.2), this implies v = 0, which is what we needed to show.

This completes the proof of Proposition 6.0.1. �

7. Proof of Theorem 3.0.2 using Proposition 6.0.1

Let (π, V ) ∈ R(G) be irreducible. Replacing χ with a Weyl-conjugate if necessary (cf.

Remark 6.0.2), we see that π ∈ Rs(G) iff there exists some η ∈ Xur(T ) such that π →֒ iGB(χ̃ η).

By Frobenius reciprocity HomG(V, iGB(χ̃ η)) = HomT (VU , C
δ
1/2

B eχ η
) this is equivalent to:

∃ non-zeroVU → C
δ
1/2

B eχη
, for some η ∈ Xur(T )

⇐⇒ (VU χ̃−1)∗ has a ◦T -invariant vector which is an eigenvector for T/ ◦T

⇐⇒ (VU χ̃−1)∗ has a ◦T -invariant vector (since T/ ◦T is abelian)

⇐⇒ (VU χ̃−1)
◦T 6= 0

⇐⇒ V χ
U 6= 0

(⋆)
⇐⇒ V ρ 6= 0

⇐⇒ π ∈ Rρ(G),
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where of course (⋆) comes from Proposition 6.0.1. This completes the proof. �

8. Remarks on constructing the Hecke algebra isomorphisms

8.1. Intertwining sets. Let ρ : K → C
× be a smooth character.

Definition 8.1.1. We define the intertwining set IG(ρ) ⊂ G by requiring that g ∈ IG(ρ) iff

ρ|K∩ gK = gρ|K∩ gK .

Equivalently, there exists φ 6= 0 in H(G, ρ) supported on KgK. [For one direction, if such a

φ exists, note that for k ∈ K ∩ gK we have

ρ(k)−1φ(g) = φ(kg) = φ(g g−1

k) = φ(g)ρ( g−1

k)−1.]

Lemma 8.1.2 ([Ro], Prop. 4.1). Let K = I and ρ = ρχ. Then

(i) IG(ρ) ∩N = Nχ;

(ii) IG(ρ) = INχI.

The lemma shows that the set {[InI]χ̆, n ∈ Nχ/Nχ∩ I ∼= W̃χ} forms a C-basis for H(G, ρ).

Proof. (i): If n ∈ N ∩ IG(ρ), then nρ|I∩nI = ρ|I∩ nI , which implies that nχ| ◦T = χ| ◦T , hence
nχ = χ, i.e., n ∈ Nχ.

Conversely, suppose n ∈ Nχ maps to w ∈ N/T = W . We want to show: for i ∈ I ∩ nI, we

have ρ(i) = ρ(n−1in). Write i = i− i0 i+ ∈ IU
◦T IU . Then

I ∋ n−1in = n−1i−n · n−1i0n · n
−1i+n ∈ U

′
T U ′,

for U ′ := w−1Uw, and U
′

:= w−1Uw. Since n−1in ∈ I can also be expressed using the

Iwahori decomposition as an element in I
U

′
◦T IU ′ , and the expressions in U

′
TU are unique,

we see that

n−1i−n ∈ I
U

′ , n−1i+n ∈ IU ′ ,

and in particular these elements belong to I+. Using this, we see

ρ(n−1in) = χ(n−1i0n) = nχ(i0) = χ(i0) = ρ(i).

This completes part (i), and (ii) is a consequence of (i). �

8.2. Presentation for End(ind ρ−1). Recall there is a canonical isomorphism

H(G, ρ) ∼= EndG(ind ρ−1)

(Lemma 4.0.2). Therefore, we just need to find generators and relations for the right hand

side.

Fix an extension χ̆ : Nχ → C
× of χ. For w ∈ W̃χ, choose an element n ∈ Nχ mapping to

it. We consider the element Θn ∈ EndG(ind ρ−1) defined by

(8.2.1) Θn(f)(x) =
1

|I+|

∫

I+

f(n−1ux) du, (f ∈ ind ρ−1).
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Here, |I+| := voldu(I+). Write I−w := I+ ∩ wI+\I+ and |I−w | := |I
+|/|I+ ∩ wI+| (the ratio of

the volumes). Since ρ is trivial on I+, we see that

(8.2.2) Θn(f)(x) =
1

|I−w |

∫

I−w

f(n−1ux) du.

Note that since I = ◦TI+ = (I ∩ wI)I+ and I+ ∩ wI = I+ ∩ wI+, there is a canonical

isomorphism

I−w →̃ I ∩ wI\I,

and

(8.2.3) |I−w | = [I : I ∩ wI] = qℓ(w).

Lemma 8.2.1. Let n ∈ Nχ and let w denote its image in W̃χ (and write n = nw).

(i) Θn ∈ EndG(ind ρ−1).

(ii) For n ∈ Nχ, let Φn denote the unique element in H(G, ρ) which is supported on InI

and takes value 1 at n. Then tΦn = qℓ(w)Θn.

(iii) {Θnw}w∈fWχ
is a C-basis for EndG(ind ρ−1).

(iv) Let ni = nwi for i = 1, 2. If ℓ(w1w2) = ℓ(w1) + ℓ(w2), then Θn1n2
= Θn1

◦Θn2
.

Proof. (i): We need to check that Θn(f) ∈ ind ρ−1. Write i ∈ I as i = ti+ for t ∈ ◦T and

i+ ∈ I+ (not a unique expression). Then since Ad(t) is a measure-preserving automorphism

of I+, we have

|I+| θn(f)(ix) =

∫

I+

f(n−1uti+x) du =

∫

I+

f(n−1tn · n−1ui+x) du

= nχ(t)−1

∫

I+

f(n−1ux) du

= ρ(i)−1

∫

I+

f(n−1ux) du,

since nχ(t) = χ(t) = ρ(i).

(ii): By Lemma 4.0.2, it is enough to prove φΘn = q−ℓ(w)Φn. Recalling W = C and letting

w = 1 ∈ C, we have

φΘn(g)(w) = Θn(ew)(g)

=
1

|I+|

∫

I+

ew(n−1ug) du.

This is non-zero only if n−1ug ∈ I for some u ∈ I+, i.e., only if g ∈ InI. Therefore

φΘn ∈ H(G, ρ) is supported on InI. It remains to check its value at g = n. We find it is

1

|I+|

∫

I+∩wI
ew(n−1un) du =

|I+ ∩ wI+|

|I+|
= q−ℓ(w)

(cf. (8.2.3)).
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(iii): This is proved in greater generality in [Mor], 5.4, 5.5. Alternatively, we can use the fact

that we have proved {Φnw}w∈fWχ
is a basis for H(G, ρ) (Lemma 8.1.2), together with part

(ii).

(iv): This is proved in [Mor], Prop. 5.10. Alternatively, it is an easy consequence of (8.2.2)

and standard calculations. �

From now on we want to choose the family {nw} in a compatible way: we require that

nw1w2
= nw1

nw2
whenever ℓ(w1w2) = ℓ(w1) + ℓ(w2). It is always possible to do this (see

[Mor], 5.2).

Note that Θn depends on n 7→ w and not just on w. So, we define a new basis element in

H(G, ρ) by

Bw := χ̆(n)−1Θn.

This indeed depends just on w (and χ̆, of course). We also define

Tw := q(ℓχ(w)+ℓ(w))/2Bw

= q(ℓχ(w)−ℓ(w))/2 χ̆(nw)−1 tΦnw

for w ∈ W̃χ. The main computation in this subject shows that these elements Tw generate

the algebra Hχ:

Theorem 8.2.2 (Goldstein [Gol], Morris [Mor]). The elements Tw, w ∈ W̃χ satisfy the

following relations:

(i) Tw1w2
= Tw1

Tw2
, if ℓχ(w1w2) = ℓχ(w1) + ℓχ(w2)

(ii) T 2
s = (q − 1)Ts + qT1, if s ∈ Sχ,aff .

Thus, the algebra EndG(ind ρ−1) is isomorphic to Hχ−1 = Hχ, by an isomorphism which

depends only on the choice of χ̆.

8.3. Proof of Theorem 5.2.1. We can now see that the isomorphism t• of Lemma 4.0.2

gives the desired algebra isomorphism

H(G, ρ) →̃ Hχ.

Indeed, by Lemma 8.2.1 and our definitions, t• takes

q−ℓ(w)/2[InI]χ̆ = q−ℓ(w)/2 χ̆−1(n)Φn

to

q−ℓ(w)/2χ̆−1(n)Θn qℓ(w) = qℓ(w)/2Bw = q−ℓχ(w)/2Tw.

This completes the (sketch of the) proof of Theorem 5.2.1. �
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Ann. Sci. École Norm. Sup. 4ee série, tome 31, no 3 (1998), 361-413.

University of Maryland

Department of Mathematics

College Park, MD 20742-4015 U.S.A.

email: tjh@math.umd.edu


