ON HECKE ALGEBRA ISOMORPHISMS AND TYPES
FOR DEPTH-ZERO PRINCIPAL SERIES

THOMAS J. HAINES

ABSTRACT. These lectures describe Hecke algebra isomorphisms and types for depth-zero principal series blocks, a.k.a. Bernstein components \(R_s(G) \) for \(s = s_\chi = [T, \chi]_G \), where \(\chi \) is a depth-zero character on \(T(O) \). (Here \(T \) is a split maximal torus in a \(p \)-adic group \(G \).) We follow closely the treatment of A. Roche [Ro] with input from D. Goldstein [Gol] and L. Morris [Mor]. We give an elementary proof that \((I, \rho_\chi)\) is a type for \(s_\chi \), in the sense of Bushnell-Kutzko [BK]. This is a very special case of a result of Roche [Ro]. Our method is to imitate Casselman’s proof of Borel’s theorem on unramified principal series (the case \(\chi = 1 \) of the present theorem).

In contrast to the situation for general principal series blocks (see [Ro]), in the depth-zero case there is no restriction on the residual characteristic of \(F \).

1. Notation

We let \(F \) denote an arbitrary \(p \)-adic field with ring of integers \(\mathcal{O} \), and residue field \(k_F \). Let \(q \) denote the cardinality of \(k_F \). Write \(\varpi \) for a uniformizer.

Let \(G \) denote a connected reductive group, defined and split over \(\mathcal{O} \). Fix an \(F \)-split maximal torus \(T \) and a Borel subgroup \(B \) containing \(T \); assume \(T \) and \(B \) are defined over \(\mathcal{O} \). Let \(T = T(O) \) denote the maximal compact subgroup of \(T(F) \). Let \(\Phi \subset X^*(T) \) resp. \(\Phi^\vee \subset X_*(T) \) denote the set of roots resp. coroots for \(G,T \). Let \(U \) resp. \(\overline{U} \) denote the unipotent radical of \(B \) resp. the Borel subgroup \(\overline{B} \supset T \) opposite to \(B \).

The symbol \(I \) will stand for an Iwahori subgroup of \(G(F) \), which we shall assume it is in “good position” with respect to \(T \): the alcove \(\mathfrak{a} \) in the building for \(G(F) \) which is fixed by \(I \) is contained in the apartment corresponding to \(T \).

Let \(dx \) denote a Haar measure on \(G \). Denote the group of unramified characters of \(G(F) \) by \(X^\text{ur}(G) \) (see [BD] or [Be92] for the definition).

Let \(\mathcal{R}(G) \) denote the category of smooth representations of \(G(F) \).

Let \(L \) denote an \(F \)-Levi subgroup of \(G \) (by definition, \(L = C_G(A_L) \) for some \(F \)-split torus \(A_L \) in \(G \)). Let \(P = LN \) denote an \(F \)-parabolic subgroup, that is, a parabolic subgroup defined over \(F \), with unipotent radical \(N \) and with \(L \) as a Levi factor. Let \(\sigma \) denote any smooth representation of \(L \), and define the normalized parabolic induction by

\[
{\text{Ind}}_P^G(\delta_P^{1/2} \sigma),
\]
where $\delta_F(l) := |\det(\text{Ad}(l); \text{Lie}(N(F)))|_F$. Here $| \cdot |_F$ denotes the normalized absolute value on F.

Throughout these notes, we will frequently write G (resp. B,T, etc.) when we really mean $G(F)$ (resp. $B(F), T(F)$, etc.).

2. Bernstein decomposition (review)

A cuspidal pair (L, σ) consists of an F-Levi subgroup L of G, together with a supercuspidal representation σ of $L(F)$.

The group $G = G(F)$ acts “by conjugation” on cuspidal pairs: $g \cdot (L, \sigma) = (gL, g^* \sigma)$, where $gL = gLg^{-1}$ and $g^* \sigma(\cdot) = \sigma(g^{-1} \cdot g)$. Denote by $(L, \sigma)_G$ the G-conjugation class of (L, σ).

Let (L, σ) denote a cuspidal pair. We say (L_1, σ_1) is inertially equivalent to (L_2, σ_2) if there exists $g \in G(F)$ and $\chi \in X^u(L_2)$ such that $gL_1 = L_2$ and $g^* \sigma_1 \otimes \chi = \sigma_2$.

Let $s = [L, \sigma]_G$ denote the inertial equivalence class of (L, σ) (with respect to G). Note that s depends only on $(L, \sigma)_G$. Also s is a union of G-conjugacy classes of cuspidal pairs.

Fact: For $\pi \in \mathcal{R}(G)$ irreducible, there exist a (unique up to G-conjugacy) cuspidal pair (L, σ) such that π is a subquotient of $i^G_F(\sigma)$. Here $P = LN$ is an F-parabolic with unipotent radical N which has L as a Levi factor.

We call the class $(L, \sigma)_G$ as above the supercuspidal support of π.

Denote by $\mathcal{R}_s(G)$ the full subcategory of $\mathcal{R}(G)$ whose objects are the representations π each of whose irreducible subquotients has supercuspidal support belonging to the inertial class s. Once we fix a cuspidal pair (L, σ) in s, we may reformulate the condition for π to belong to $\mathcal{R}_s(G)$ as: every irreducible subquotient of π is a subquotient of some $i^G_F(\sigma \chi)$, $\chi \in X^u(L)$.

Theorem 2.0.1 (Bernstein decomposition). $\mathcal{R}(G) = \prod_s \mathcal{R}_s(G)$.

Definition 2.0.2. An s-type is a pair (K, ρ) consisting of a compact open subgroup $K \subset G$ together with an irreducible smooth representation $\rho : K \to \text{End}_C(W)$ such that an irreducible $\pi \in \mathcal{R}(G)$ belongs to $\mathcal{R}_s(G)$ iff $\pi|_K \supset \rho$.

Now let ρ be any irreducible smooth representation of K, on a vector space W. We define $e_\rho \in \mathcal{H}(G) = C^\infty_c(G, dx)$ by

$$e_\rho(x) = \begin{cases} dx(K)^{-1} \dim(\rho) \text{tr}_W(\rho(x^{-1})), & x \in K \\ 0, & x \notin K. \end{cases}$$

For any irreducible smooth representations ρ, ρ' of K, we have $e_\rho *_{dx} e_{\rho'} = \delta_{\rho, \rho'} e_\rho$, where $\delta_{\rho, \rho'} \in \{0,1\}$ vanishes unless ρ and ρ' are equivalent. This is an exercise using the Schur orthogonality relations on the group K. In particular, e_ρ is an idempotent of the algebra $\mathcal{H}(G)$.

If $\rho = 1$ (the trivial character) we write e_K in place of e_ρ.

For any $(\pi, V) \in \mathcal{R}(G)$, denote by V^ρ the ρ-isotypical component of V. We have $V^\rho = e_\rho V$. Also, we let $V[\rho] = \mathcal{H}(G) \cdot V^\rho$, the G-submodule of V generated by V^ρ. Below we will often write π^ρ in place of V^ρ.
We define $\mathcal{R}_\rho(G)$ to be the full subcategory of $\mathcal{R}(G)$ whose objects (π, V) satisfy $V = V[\rho]$.

There is a functor $\mathcal{R}_\rho(G) \rightarrow e_\rho \mathcal{H}(G)e_\rho \text{-Mod}$

$$\pi \mapsto \pi^\rho.$$

Proposition 2.0.3. If (K, ρ) is an s-type, then (2.0.1) is an equivalence of categories. Moreover, in that case $\mathcal{R}_s(G) = \mathcal{R}_\rho(G)$ as subcategories of $\mathcal{R}(G)$.

We will postpone the proof of this proposition to section 4.

3. Depth-zero principal series blocks

Example. Consider an Iwahori subgroup I in good position with respect to the torus T (this means that I fixes an alcove a in the apartment of the building for $G(F)$ corresponding to T). Also, for any Borel subgroup $B = TU$ containing T, with opposite Borel $\overline{B} = T\overline{U}$, we have the Iwahori decomposition

$$I = I_U \cdot ^T \cdot I_{\overline{U}},$$

where $I_U := U \cap I$, $I_{\overline{U}} := \overline{U} \cap I$, and $^T := T(\mathcal{O}) = T \cap I$.

The inertial class $s := [T, 1]_G$ indexes the Iwahori block $\mathcal{R}_s(G)$. A famous theorem of Borel asserts that an irreducible $\pi \in \mathcal{R}(G)$ is a constituent of an unramified principal series $i^G_B(\eta)$, $\eta \in X^{ur}(T)$, if and only if $\pi^I \neq 0$. That is, $(I, 1)$ is an s-type. This is a special case of the theorem we will prove below (Theorem 3.0.2).

It turns out that $e_I \mathcal{H}(G)e_I = \mathcal{H}(G, I)$, the Iwahori-Hecke algebra (see below). In conjunction with the Proposition 2.0.3, we thus recover the finer result of Borel which asserts that

$$\pi \mapsto \pi^I$$

gives an equivalence of categories between the Iwahori block and the category $\mathcal{H}(G, I)$-Mod.

Fix a character $\chi : ^T \rightarrow \mathbb{C}^\times$.

Definition 3.0.1. We say χ is **depth-zero** if χ factors through the quotient $^T \rightarrow T(k_F)$ (and we denote the factoring $T(k_F) \rightarrow \mathbb{C}^\times$ also by χ).

Choose any extension of χ to a character $\widetilde{\chi} : T(F) \rightarrow \mathbb{C}^\times$. Consider the inertial class

$$s := [T, \widetilde{\chi}]_G.$$

Since s depends only on the W-orbit of χ, we may also write s_χ for s.

Let I be an Iwahori in good position relative to T, as above. Let I^+ denote the pro-unipotent radical of I. There is an obvious isomorphism

$$^T / ^T \cap I^+ \cong I/I^+$$
so that \(\chi \) determines a character \(\rho = \rho_\chi : I \to \mathbb{C}^X \), which is trivial on \(I^+ \). In terms of the Iwahori decomposition (3.0.2), \(\rho \) is given by

\[
\rho(u \cdot t_0 \cdot \overline{\pi}) = \chi(t_0),
\]

for \(u \in I_U, t_0 \in \mathcal{O}T \), and \(\pi \in I_T \).

Theorem 3.0.2. If \(s = s_\chi \) as above, then \((I, \rho)\) is an \(s \)-type.

We shall prove this by imitating Casselman’s proof of Borel’s theorem on unramified principal series. One crucial ingredient is the theory of Hecke algebra isomorphisms for depth-zero principal series types, which we will review in section 5.

4. **Proof of Proposition 2.0.3**

We are in the general situation, where \((K, \rho)\) is a smooth irreducible representation on a vector space \(W \) (ie. \(\rho \) is not necessarily a character).

Lemma 4.0.1. Fix an inertial class \(s \).

(i) \((K, \rho)\) is an \(s \)-type \iff \(\text{ind} \rho := c - \text{Ind}_{K}^{G} \rho \) is a generator for \(\mathcal{R}_{s}(G) \), i.e., \(\text{ind} \rho \in \mathcal{R}_{s}(G) \) and \(\text{Hom}_{G}(\text{ind} \rho, \pi) \neq 0 \) for all \(\pi \neq 0 \) in \(\mathcal{R}_{s}(G) \).

(ii) In that case \(\mathcal{R}_{s}(G) = \mathcal{R}_{\rho}(G) \) as subcategories of \(\mathcal{R}(G) \). In particular \(\mathcal{R}_{\rho}(G) \) is closed under extensions and subquotients.

Proof. First, by Frobenius reciprocity (cf. [Ro],(7.1)) we have

\[
\text{Hom}_{G}(\text{ind} \rho, \pi) = \text{Hom}_{K}(\rho, \pi).
\]

This implies that \(\text{ind} \rho \) is a projective object in \(\mathcal{R}(G) \). (It is also true that \(\text{ind} \rho \) is finitely-generated as a \(G \)-module.)

Now let us prove (i).

(\(\Rightarrow \)): Suppose \((\pi, V) \in \mathcal{R}_{s} \) is non-zero. Since all irreducible subquotients of \(\pi \) are also in \(\mathcal{R}_{s} \) (hence contain \(\rho \)) and representations of \(K \) are completely reducible, it follows that \(\text{Hom}_{K}(\rho, \pi) \neq 0 \) and hence \(\text{Hom}_{G}(\text{ind} \rho, \pi) \neq 0 \).

Next we claim that \(\text{ind} \rho \in \mathcal{R}_{s} \). If not, then \(\text{ind} \rho \) possesses a non-zero quotient \(\tau \) in some \(\mathcal{R}_{t} \) with \(t \neq s \). Since \(\tau \) is finitely-generated (as \(\text{ind} \rho \) is), it possesses an irreducible quotient; we may assume \(\tau \) is itself irreducible. But then \(\text{Hom}_{K}(\rho, \tau) \neq 0 \) implies that \(\tau \supset \rho \) and this means that \((K, \rho)\) is not an \(s \)-type.

(\(\Leftarrow \)): Let \((\pi, V) \in \mathcal{R}(G) \) be irreducible and non-zero. Then

\[
\pi \in \mathcal{R}_{s}(G) \iff \text{Hom}_{G}(\text{ind} \rho, \pi) \neq 0
\]

\[
\iff \text{Hom}_{K}(\rho, \pi) \neq 0
\]

\[
\iff \pi \in \mathcal{R}_{\rho}(G).
\]

The first (\(\iff \)) holds because \(\text{ind} \rho \), hence any of its quotients, lies in \(\mathcal{R}_{s}(G) \).

This completes the proof of (i).
Now let us prove (ii). Suppose \((\pi, V) \in \mathcal{R}_s(G)\). We have \((V/V[\rho])^p = 0\). But then \(V/V[\rho] = 0\), since non-zero objects in \(\mathcal{R}_s(G)\) contain \(\rho\). So \(V = V[\rho]\), that is, \(\pi \in \mathcal{R}_p(G)\).

Conversely, if \(V = V[\rho]\), then \(\pi\) is a quotient of a direct sum of copies of \(\text{ind} \rho \in \mathcal{R}_s(G)\), hence \(\pi \in \mathcal{R}_s(G)\).

\[\square\]

Exercise: Since \(\text{ind} \rho\) is projective in \(\mathcal{R}(G)\) and a generator for \(\mathcal{R}_s(G)\) (i.e. \(\text{ind} \rho \in \mathcal{R}_s(G)\) and \(\text{Hom}_G(\text{ind} \rho, \pi) \neq 0\) for every \(\pi \neq 0\) in \(\mathcal{R}_s(G)\)), every \(\pi \in \mathcal{R}_s(G)\) is a quotient of a direct sum of copies of \(\text{ind} \rho\). (Consider the maximal subobject in \(\pi\) which is a quotient of a direct sum of copies of \(\text{ind} \rho\).)

We have shown that \(\text{ind} \rho\) is a f.g. projective generator of \(\mathcal{R}_s(G)\). From this, general categorical arguments ([Ba]) give (Morita) equivalences of categories

\[
\mathcal{R}_s(G) \cong \text{End}_G(\text{ind} \rho)^\text{op} \otimes \text{End}_C W\text{-Mod} \\
\pi \mapsto \text{Hom}_G(\text{ind} \rho, \pi) \mapsto \text{Hom}(\text{ind} \rho, \pi) \otimes W \\
t.f = f \circ t.
\]

Therefore, we need to relate \(\text{End}_G(\text{ind} \rho)^\text{op} \otimes \text{End}(W)\) to \(e_\rho \mathcal{H}(G)e_\rho\). First we define

\[
\mathcal{H}(G, \rho^\vee) = \{ \Phi : G \to \text{End}(W) \mid \Phi(k_1 g k_2) = \rho(k_1) \Phi(g) \rho(k_2), \forall k_i \in K, g \in G \}.
\]

Here the functions \(\Phi\) are assumed to be smooth with compact support. Also, \((\rho^\vee, W^\vee)\) is the representation given by \(\rho^\vee(k) := \rho(k^{-1})^\vee \in \text{End}(W^\vee)\). We view \(\mathcal{H}(G, \rho^\vee)\) as a convolution algebra using the Haar measure \(dx\) giving \(K\) volume 1.

The following lemma is left to the reader.

Lemma 4.0.2. We have mutually inverse algebra isomorphisms

\[
\phi \mapsto t_\phi : \mathcal{H}(G, \rho^\vee) \leftrightarrow \text{End}_G(\text{ind} \rho) : t \mapsto \phi_t,
\]

where

\[
t_\phi(f)(g) = \int_G \phi(x)(f(x^{-1}g)) \, dx \quad (f \in \text{ind} \rho, g \in G) \\
\phi_t(g)(w) = t(e_w)(g) \quad (g \in G, w \in W).
\]

Here \(e_w \in \text{ind} \rho\) is defined by

\[
e_w(g) = \begin{cases}
\rho(k)w, & g = k \in K \\
0, & g \notin K.
\end{cases}
\]

Furthermore, there is an anti-isomorphism of algebras

\[
\mathcal{H}(G, \rho^\vee) \cong \mathcal{H}(G, \rho) \\
\Phi \mapsto \Phi'
\]

given by \(\Phi'(g) := \Phi(g^{-1})^\vee \in \text{End}(W^\vee)\).
Finally, Roche checks in [Ro], p. 390, that there is an algebra isomorphism
\[\mathcal{H}(G, \rho) \otimes_{\mathbb{C}} \text{End}(W) \cong e_{\rho} \mathcal{H}(G)e_{\rho} \]
\[\Phi \otimes (w \otimes w^\vee) \mapsto (g \mapsto \dim \rho \langle w, \Phi(g)w^\vee \rangle) \quad (w \in W, w^\vee \in W^\vee). \]
In case \(\rho \) is a character, the last isomorphism gives \(\mathcal{H}(G, \rho) \cong e_{\rho} \mathcal{H}(G)e_{\rho} \) and is immediate.

Putting these isomorphisms together, we get isomorphisms
\[\text{End}_G(\text{ind}\rho)^{\text{opp}} \otimes \text{End}(W) \cong \mathcal{H}(G, \rho) \otimes \text{End}(W) \cong e_{\rho} \mathcal{H}(G)e_{\rho}. \]
In loc. cit. Roche checks that the induced categorical equivalence
\[\mathcal{R}_\rho(G) = \mathcal{R}_\rho(G) \cong e_{\rho} \mathcal{H}(G)e_{\rho} \text{-Mod} \]
is
\[(\pi, V) \mapsto \text{Hom}_G(\text{ind}\rho, \pi) = \text{Hom}_{K}(\rho, \pi) = \pi^\rho. \]
(Again, this is quite immediate in the case where \(\rho \) is a character.) This completes the proof of Proposition 2.0.3.

5. Hecke algebra isomorphisms

To prove Theorem 3.0.2, we need to review Hecke algebra isomorphisms. We follow Roche’s treatment [Ro].

5.1. Preliminaries. As before, fix a depth-zero character \(\chi : \circ T \to \mathbb{C}^\times \), and let \(s = [T, \chi]_G = s_\chi \), for any extension \(\bar{\chi} : T(F) \to \mathbb{C}^\times \) of \(\chi \). Also, write \(\rho = \rho_\chi \) for the associated character \(\rho : I = I_U \cdot \circ T \cdot \bar{I}_U \to \mathbb{C}^\times \), \(u t \rho \mapsto \chi(t) \).

Let \(N \) denote the normalizer of \(T \) in \(G \), let \(W = N/T = N(F)/T(F) \) denote the Weyl group, and write \(\tilde{W} = N(F)/\circ T \) for the Iwahori-Weyl group. There is a canonical isomorphism \(X_s(T) = T(F)/\circ T, \lambda \mapsto \varpi^\lambda := \lambda(\varpi) \) (independent of the choice of \(\varpi \)). The canonical homomorphism \(N(F)/\circ T = \tilde{W} \to W = N(F)/T(F) \) has a (non-canonical) section, hence there is a (non-canonical) isomorphism \(\tilde{W} = X_s(T) \rtimes W \).

Clearly \(N(F), \tilde{W} \) and \(W \) act on the set of depth-zero characters. We define
\[N_\chi = \{ n \in N(F) \mid n\chi = \chi \} \]
\[\tilde{W}_\chi = \{ w \in \tilde{W} \mid w\chi = \chi \} \]
\[W_\chi = \{ w \in W \mid w\chi = \chi \}. \]

There are obvious surjective homomorphisms \(N_\chi \to \tilde{W}_\chi \to W_\chi \).

Define \(\Phi_\chi \) (resp. \(\Phi_\chi^\vee \) resp. \(\Phi_{\chi, \text{aff}} \)) to be the set of roots \(\alpha \in \Phi \) (resp. coroots \(\alpha^\vee \in \Phi^\vee \) resp. affine roots \(a = \alpha + k \), where \(\alpha \in \Phi, k \in \mathbb{Z} \)) such that \(\chi \circ \alpha^\vee|_{\mathfrak{g}_\rho} = 1 \). Note that \(\tilde{W}_\chi \) acts in an obvious way on \(\Phi_{\chi, \text{aff}} \). Define the following subgroups of the group of affine-linear automorphisms of \(V := X_s(T) \otimes \mathbb{R} \):
\[W_\chi^\circ = \langle s_\alpha \mid \alpha \in \Phi_\chi \rangle \]
\[W_{\chi, \text{aff}} = \langle s_a \mid a \in \Phi_{\chi, \text{aff}} \rangle. \]
Here \(s_a \) and \(s_\alpha \) are the reflections on \(V \) corresponding to \(a \) and \(\alpha \).

Let \(\Phi^+ \) denote the \(B \)-positive roots in \(\Phi \), and set \(\Phi^+_\chi = \Phi \cap \Phi^+ \). Then let \(C_\chi \) resp. \(a_\chi \) denote the subsets in \(V \) defined by

\[
C_\chi = \{ v \in V \mid 0 < \alpha(v), \forall \alpha \in \Phi^+_\chi \}, \text{ resp.}
\]

\[
a_\chi = \{ v \in V \mid 0 < \alpha(v) < 1, \forall \alpha \in \Phi^+_\chi \}.
\]

For \(a \in \Phi^+_{\chi, \text{aff}} \) we write \(a > 0 \) if \(a(v) > 0 \) for all \(v \in a_\chi \). Similarly, we define an ordering on the set \(\Phi^+_{\chi, \text{aff}} \). Then let \(\Pi_{\chi, \text{aff}} = \{ a \in \Phi^+_{\chi, \text{aff}} \mid a \) is a minimal positive element \}. Define

\[
S_{\chi, \text{aff}} = \{ s_a \mid a \in \Pi_{\chi, \text{aff}} \}
\]

\[
\Omega_\chi = \{ w \in \tilde{W}_\chi \mid wa_\chi = a_\chi \}.
\]

It is clear that \(\Phi^+_{\chi} \) is a root system with Weyl group \(\tilde{W}_\chi \), and that \(\tilde{W}_\chi \subseteq W_\chi \). In general, \(W_\chi \) can be larger that \(\tilde{W}_\chi \) and is not even a Weyl group (see Example 8.3 in [Ro] and Remark 5.1.2 below). The following results are contained in [Ro].

Lemma 5.1.1.

1. The group \(W^\text{aff}_{\chi, \text{aff}} \) is a Coxeter group with system of generators \(S_{\chi, \text{aff}} \);
2. there is a canonical decomposition \(\tilde{W}_\chi = W^\text{aff}_{\chi, \text{aff}} \rtimes \Omega_\chi \), and the Bruhat order \(\leq_\chi \) and length function \(\ell_\chi \) on \(W^\text{aff}_{\chi, \text{aff}} \) can be extended in an obvious way to \(\tilde{W}_\chi \) such that \(\Omega_\chi \) consists of the length-zero elements;
3. if \(W^0_\chi = W_\chi \), then \(W^\text{aff}_{\chi, \text{aff}} \) is the affine Weyl group associated to the root system \(\Phi^+_{\chi} \subseteq V^* \), and \(C_\chi \) resp. \(a_\chi \) is the dominant Weyl chamber resp. base alcove in \(V \) corresponding to a set of simple positive affine roots, which can be identified with \(\Pi_{\chi, \text{aff}} \).

In the situation of (3), let \(\Pi_\chi \) denote the set of minimal elements of \(\Phi^+_{\chi} \). This is then a set of simple positive roots for the root system \(\Phi^+_{\chi} \).

Remark 5.1.2. In [Ro], pp. 393-6, Roche proves that \(W_\chi^0 = W_\chi \) at least when \(G \) has connected center and when \(p \) is not a torsion prime for \(\Phi^V \) (see loc. cit. p. 396). It is easy to see that \(W_\chi^0 = W_\chi \) always holds when \(G = \text{GL}_d \) (with no restrictions on \(p \)).

On the other hand, \(W_\chi \neq W_\chi^0 \) in general, even for \(G = \text{SL}_n \). Indeed, suppose \(G = \text{SL}_n \) with \(n \geq 3 \). Suppose \(n|q-1 \) and that \(\chi_1 \) is a character of \(\mathbb{F}_q^\times \) of order \(n \). Consider

\[
\chi(a_1, \ldots, a_n) := \chi_1(a_1)\chi_1^2(a_2) \cdots \chi_1^n(a_n).
\]

It is clear that \(W_\chi^0 = \{1\} \), but that, since \(a_1 \cdots a_n = 1 \), we have \(W_\chi \supseteq (1 \cdots n) \). In fact \(W_\chi \) is the cyclic group of order \(n \) generated by \((1 \cdots n) \).

5.2. **Statement.** Let \(\mathcal{H}(W^\text{aff}_{\chi, \text{aff}}) \) denote the affine Hecke algebra associated to the Coxeter group \((W^\text{aff}_{\chi, \text{aff}}, S_{\chi, \text{aff}}) \). It has the usual generators \(T_w, w \in W^\text{aff}_{\chi, \text{aff}} \), and relations

\[
T_{w_1w_2} = T_{w_1}T_{w_2}, \quad \text{if } \ell_\chi(w_1w_2) = \ell_\chi(w_1) + \ell_\chi(w_2),
\]

\[
T_s^2 = (q-1)T_s + qT_1, \quad \text{if } s \in S_{\chi, \text{aff}}.
\]
Let $\mathcal{H}_\chi := H(W_{\chi, \text{aff}}) \otimes \mathbb{C}[\Omega_\chi]$, where the twisted tensor product is the usual tensor product on the underlying vector spaces, but where multiplication is given by

$$(T_{w_1} \otimes e_{\omega_1})(T_{w_1} \otimes e_{\omega_2}) = T_{w_1 \omega_1(w_2)} \otimes e_{\omega_1 \omega_2}$$

where $\omega(\cdot)$ refers the conjugation action of $\omega \in \Omega_\chi$ on $W_{\chi, \text{aff}}$.

We write $T_{w \omega} := T_w \otimes e_{\omega}$.

The Hecke algebra isomorphism depends on a choice of extension $\hat{\chi}: N_\chi \to \mathbb{C}^\times$ of χ (this always exists: see [HL] 6.11 and [HR09]). Fix such a $\hat{\chi}$. Then for any $n \in N_\chi \mapsto w \in \hat{W}_\chi$, define

$$[InI]_{\hat{\chi}} \in \mathcal{H}(G, \rho)$$

to be the unique element in $\mathcal{H}(G, \rho)$ supported on InI and having value $\hat{\chi}^{-1}(n)$ at n. Note that $[InI]_{\hat{\chi}}$ depends on $w \in \hat{W}_\chi$ but not on the choice of $n \in N_\chi$ mapping to w.

Theorem 5.2.1 (Goldstein [Gol], Morris [Mor], Roche [Ro]). Let χ be a depth-zero character as above. For any extension $\hat{\chi}$ of χ as above, there is an algebra isomorphism

$$\mathcal{H}(G, \rho) \cong \mathcal{H}_\chi,$$

which sends $q^{-\ell(w)/2}[InI]_{\hat{\chi}}$ to $q^{-\ell(w)/2} T_w$.

Let $\Phi_n := \hat{\chi}(n)[InI]_{\hat{\chi}}$, the unique element in $\mathcal{H}(G, \rho)$ supported on InI and having $\Phi_n(n) = 1$.

Corollary 5.2.2. For any $n \in N_\chi$, the element $[InI]_{\hat{\chi}}$ (or equivalently, Φ_n) is invertible in $\mathcal{H}(G, \rho)$.

6. The morphism $V^\rho \to V_U^\chi$

We assume $B = TU$ and I are in “good position”: I fixes an alcove a contained in the apartment corresponding to T, and B is any Borel subgroup containing T. From χ we get ρ as usual.

For $(\pi, V) \in \mathcal{R}(G)$, let $V_U \in \mathcal{R}(T)$ denote the Jacquet module.

Proposition 6.0.1. Suppose (π, V) is irreducible (hence, cf. [Be92], admissible). Then the map $V \to V_U^\chi$ induces a oT-equivariant isomorphism

$$(6.0.1) \quad V^\rho \cong V_U^\chi.$$

Remark 6.0.2. Since $B = TU$ may be replaced with any $^wB = T^wU$ ($w \in W$), it follows that we may also hold B fixed and replace I with wI. That is, we may replace χ with $^w\chi$ and ρ with $^w\rho$, where the latter is the character on wI defined by $^w\rho(\cdot) = \rho(w^{-1} \cdot w)$. Such a replacement causes no harm for the proof of the main theorem (cf. section 7) because $\pi(w) : V^\rho \cong V^{^w\rho}$.

We will prove Proposition 6.0.1 using only a consequence of the Hecke algebra isomorphism, namely Corollary 5.2.2.
Proof. We change notation slightly and write the Iwahori decomposition as
\[I = \mathcal{U}_0 \circ T \mathcal{U}_0 \]
where \(\mathcal{U}_0 := I_U \) and \(\mathcal{U}_0 := I_U \).

For any \((\pi, V) \in \mathcal{R}(G)\), we define a projector \(P_I^\chi : V \to V^\rho \) by
\[
P_I^\chi(v) = \frac{1}{|I|} \int_I \rho(k)^{-1} \pi(k)v \, dk.
\]
It is clear that \(P_I^\chi \) really is a projector \(V \to V^\rho \).

Write \(V^\chi_{\mathcal{U}_0} \) for the set of \(v \in V \) which are fixed by \(\pi(U_0) \) and transform under \(\pi(t) \), \(t \in \circ T \), by the scalar \(\chi(t) \). Recall that we define \(P_{U_0}(v) := \frac{1}{|U_0|} \int_{U_0} \pi(k)v \, dk \).

Lemma 6.0.3 (Jacquet’s Lemma I). Let \(v \in V^\chi_{\mathcal{U}_0} \). Then \(P_I^\chi(v) = P_{U_0}(v) \) and has the same image in \(V_U \) as \(v \).

Proof. Writing the integral over \(I = U_0 \circ T \mathcal{U}_0 \) as an iterated integral proves the desired equality. The rest follows from a basic property of the operator \(P_{U_0} \). \(\Box\)

Recall we assume \((\pi, V) \in \mathcal{R}(G)\) is irreducible, hence admissible.

\(V^\rho \to V^\chi_U \) is surjective: The \(\circ T \)-morphism \(V^\chi \to V^\chi_U \) is surjective. Since \(V^\chi_U \) is finite-dimensional, there is a finite-dimensional subspace \(W \subset V^\chi \) which still surjects onto \(V^\chi_U \).

Choose a compact open subgroup \(\mathcal{U}_1 \subset \mathcal{U}_0 \) such that \(W \subset V^\chi_{\mathcal{U}_1} \).

Let \(T^+ \) denote the monoid of “positive” elements in \(T(F) \), i.e., those in a subset of the form \(\varpi^\nu \circ T \) where \(\nu \) is \(B \)-dominant. (This notion does not depend on the choice of \(\varpi \).)

Choose \(a \in T^+ \) such that \(a^{-1} \mathcal{U}_0 \mathcal{U}_1 \). Then \(\pi(a)W \subset V^{\chi_{\mathcal{U}_0}} \), and \(\pi(a)W \) has image \(\pi(a)V^\chi_U = V^\chi_U \). So, \(V^\chi_{\mathcal{U}_0} \to V^\chi_U \).

We need to prove the smaller subset \(V^\rho \subset V^{\chi_{\mathcal{U}_0}} \) still surjects onto \(V^\chi_U \). But this follows using Lemma 6.0.3: for \(v \in V^{\chi_{\mathcal{U}_0}} \), the element \(P_I^\chi(v) \) belongs to \(V^\rho \) and has the same image in \(V_U \) as \(v \). This completes the proof of the surjectivity.

\(V^\rho \to V^\chi_U \) is injective:

Lemma 6.0.4. For \(v \in V^\rho = e_\rho V \), and \(a \in T^+ \), we have
\[
\pi(\Phi_a)v = |IaI| P_I^\chi(\pi(a)v).
\]
Here the action of \(\mathcal{H}(G, \rho) \) on \(V^\rho \) is defined using the Haar measure \(dg \) which gives \(I \) measure 1, and \(|IaI| := \text{vol}_{dg}(IaI) \).

Proof. Let \(S_a \) denote any set of representatives in \(\mathcal{U}_0 \) for \(a^{-1} \mathcal{U}_0 \mathcal{U}_0 \\backslash \mathcal{U}_0 \). There is a natural bijection
\[
S_a \sim (a^{-1}Ia \cap I) \\backslash I \sim I \backslash IaI
\]
(we used $a^{-1} U_0 a \subseteq U_0$ and $U_0 \subseteq a^{-1} U_0 a$). We have

$$\pi(\Phi_a)v = \int_{I a I} \Phi_a(g) \pi(g) v \, dg$$

$$= \sum_{s \in S_a} \int_{I a s} \Phi_a(g) \pi(g) v \, dg$$

$$= |S_a| \int_I \rho^{-1}(k) \pi(k) \pi(a) v \, dk$$

$$= |S_a| \mathcal{P}_I^\chi(\pi(a)v).$$

Suppose $U_1 \subset U$ is a compact open subgroup. Let $V(U_1) = \{v \in V \mid \mathcal{P}_{U_1}(v) = 0\}$. It is easy to see that

$$\ker(V \to V_{U_1}) = \bigcup_{U_1} V(U_1).$$

Lemma 6.0.5 (Jacquet’s Lemma II). Suppose $v \in V^\rho \cap V(U_1)$ for some compact open subgroup $U_1 \subset U$. Suppose $a \in T^+$ satisfies $U_1 \subset a^{-1} U_0 a$. Then $\mathcal{P}_{U_0}(\pi(a)v) = 0$.

Proof. The vanishing of $\pi(a) \int_{U_0} \pi(a^{-1}ua)v \, du$ follows from the vanishing of $\int_{U_1} \pi(u)v \, du$, since U_1 is a subgroup of $a^{-1} U_0 a$. □

Now we can complete the proof of the injectivity. Suppose $v \in V^\rho$ maps to zero in $V_{U_1}^\chi$. Choose U_1 and $a \in T^+$ satisfying the hypotheses of Lemma 6.0.5. Note that $\pi(a)v \in V_{U_0}^\chi$. Then using Jacquet’s Lemmas I and II together with Lemma 6.0.4, we see

$$0 = \mathcal{P}_{U_0}(\pi(a)v) = \mathcal{P}_I^\chi(\pi(a)v) = |IaI|^{-1} \pi(\Phi_a)v.$$

Since Φ_a is invertible (Corollary 5.2.2), this implies $v = 0$, which is what we needed to show.

This completes the proof of Proposition 6.0.1. □

7. **Proof of Theorem 3.0.2 using Proposition 6.0.1**

Let $(\pi, V) \in \mathcal{R}(G)$ be irreducible. Replacing χ with a Weyl-conjugate if necessary (cf. Remark 6.0.2), we see that $\pi \in \mathcal{R}_d(G)$ iff there exists some $\eta \in X^\text{ur}(T)$ such that $\pi \hookrightarrow i_B^G(\tilde{\chi}\eta)$. By Frobenius reciprocity $\text{Hom}_G(V, i_B^G(\tilde{\chi}\eta)) = \text{Hom}_T(V_U, \mathbb{C}^{i_B^{1/2}\chi_{\eta}})$ this is equivalent to:

- \exists non-zero $V_U \to \mathbb{C}^{i_B^{1/2}\chi_{\eta}}$, for some $\eta \in X^\text{ur}(T)$

$\iff (V_U \tilde{\chi}^{-1})^* \text{ has a } \circ T\text{-invariant vector which is an eigenvector for } T/\circ T$

$\iff (V_U \tilde{\chi}^{-1})^* \text{ has a } \circ T\text{-invariant vector (since } T/\circ T \text{ is abelian)}$

$\iff (V_U \tilde{\chi}^{-1})^\circ T \neq 0$

$\iff V_U^\chi \neq 0$

$\iff V^\rho \neq 0$

$\iff \pi \in \mathcal{R}_\rho(G)$,
where of course \((\ast)\) comes from Proposition 6.0.1. This completes the proof. □

8. Remarks on constructing the Hecke algebra isomorphisms

8.1. Intertwining sets. Let \(\rho : K \to \mathbb{C}^\times\) be a smooth character.

Definition 8.1.1. We define the intertwining set \(I_G(\rho) \subset G\) by requiring that \(g \in I_G(\rho)\) iff
\[
\rho|_{K \cap sK} = g\rho|_{K \cap sK}.
\]
Equivalently, there exists \(\phi \neq 0\) in \(\mathcal{H}(G, \rho)\) supported on \(KgK\). [For one direction, if such a \(\phi\) exists, note that for \(k \in K \cap gK\) we have
\[
\rho(k)^{-1}\phi(g) = \phi(kg) = \phi(gg^{-1}k) = \phi(g)\rho(g^{-1}k)^{-1}.
\]

Lemma 8.1.2 ([Ro], Prop. 4.1). Let \(K = I\) and \(\rho = \rho_\chi\). Then

(i) \(I_G(\rho) \cap N = N_\chi\);
(ii) \(I_G(\rho) = IN_\chi I\).

The lemma shows that the set \([\mathcal{H}nI]\chi, n \in N_\chi / N_\chi \cap I \cong \widetilde{W}_\chi\) forms a \(\mathbb{C}\)-basis for \(\mathcal{H}(G, \rho)\).

Proof. (i): If \(n \in N \cap I_G(\rho)\), then \(n\rho|_{I \cap nI} = \rho|_{I \cap nI}\), which implies that \(n\chi|_{T} = \chi|_T\), hence \(n\chi = \chi\), i.e., \(n \in N_\chi\).

Conversely, suppose \(n \in N_\chi\) maps to \(w \in N/T = W\). We want to show: for \(i \in I \cap nI\), we have \(\rho(i) = \rho(n^{-1}in)\). Write \(i = i_- i_0 i_+ \in I\mathcal{T} T I_U\). Then
\[
I \ni n^{-1}in = n^{-1}i_- n \cdot n^{-1}i_0 n \cdot n^{-1}i_+ n \in \overline{U} T U',
\]
for \(U' := w^{-1}Uw\), and \(\overline{U} := w^{-1}Uw\). Since \(n^{-1}in \in I\) can also be expressed using the Iwahori decomposition as an element in \(I\mathcal{T} T I_U\), and the expressions in \(\overline{U} T U\) are unique, we see that
\[
n^{-1}i_- n \in I_{\overline{U}}, \quad n^{-1}i_+ n \in I_U,
\]
and in particular these elements belong to \(I^+\). Using this, we see
\[
\rho(n^{-1}in) = \chi(n^{-1}i_0 n) = n\chi(i_0) = \chi(i_0) = \rho(i).
\]
This completes part (i), and (ii) is a consequence of (i). □

8.2. Presentation for \(\text{End}(\text{ind} \rho^{-1})\). Recall there is a canonical isomorphism
\[
\mathcal{H}(G, \rho) \cong \text{End}_G(\text{ind} \rho^{-1})
\]
(Lemma 4.0.2). Therefore, we just need to find generators and relations for the right hand side.

Fix an extension \(\tilde{\chi} : N_\chi \to \mathbb{C}^\times\) of \(\chi\). For \(w \in \widetilde{W}_\chi\), choose an element \(n \in N_\chi\) mapping to it. We consider the element \(\Theta_n \in \text{End}_G(\text{ind} \rho^{-1})\) defined by
\[
(8.2.1) \quad \Theta_n(f)(x) = \frac{1}{|I^+|} \int_{I^+} f(n^{-1}ux) \, du, \quad (f \in \text{ind} \rho^{-1}).
\]
Here, $|I^+| := \text{vol}_d(I^+)$. Write $I_w^+ := I^+ \cap wI^+ \backslash I^+$ and $|I_w^+| := |I^+|/|I^+ \cap wI^+|$ (the ratio of the volumes). Since ρ is trivial on I^+, we see that

$$
(8.2.2) \quad \Theta_n(f)(x) = \frac{1}{|I_w^+|} \int_{I_w^+} f(n^{-1}ux) \, du.
$$

Note that since $I = {}^tTI^+ = (I \cap wI)I^+$ and $I^+ \cap wI = I^+ \cap wI^+$, there is a canonical isomorphism

$$
I_w^+ \cong I \cap wI \backslash I,
$$

and

$$
(8.2.3) \quad |I_w^+| = |I : I \cap wI| = q^{\ell(w)}.
$$

Lemma 8.2.1. Let $n \in N_G$ and let w denote its image in \widetilde{W}_G (and write $n = n_w$).

(i) $\Theta_n \in \text{End}_G(\text{ind} \rho^{-1})$.

(ii) For $n \in N_G$, let Φ_n denote the unique element in $\mathcal{H}(G, \rho)$ which is supported on InI and takes value 1 at n. Then $t_{\Phi_n} = q^{\ell(w)}\Theta_n$.

(iii) $\{\Theta_{nw}\}_{w \in \widetilde{W}_G}$ is a \mathbb{C}-basis for $\text{End}_G(\text{ind} \rho^{-1})$.

(iv) Let $n_i = n_{w_i}$ for $i = 1, 2$. If $\ell(w_1w_2) = \ell(w_1) + \ell(w_2)$, then $\Theta_{n_1n_2} = \Theta_{n_1} \circ \Theta_{n_2}$.

Proof. (i): We need to check that $\Theta_n(f) \in \text{ind} \rho^{-1}$. Write $i \in I$ as $i = ti_+$ for $t \in {}^tTI$ and $i_+ \in I^+$ (not a unique expression). Then since $\text{Ad}(t)$ is a measure-preserving automorphism of I^+, we have

$$
|I^+| \theta_n(f)(ix) = \int_{I^+} f(n^{-1}uti^+x) \, du = \int_{I^+} f(n^{-1}tn \cdot n^{-1}ui^+x) \, du
$$

$$
= n \chi(t)^{-1} \int_{I^+} f(n^{-1}ux) \, du
$$

$$
= \rho(i)^{-1} \int_{I^+} f(n^{-1}ux) \, du,
$$

since $n \chi(t) = \chi(t) = \rho(i)$.

(ii): By Lemma 4.0.2, it is enough to prove $\phi_{\Theta_n} = q^{-\ell(w)}\Phi_n$. Recalling $W = \mathbb{C}$ and letting $w = 1 \in \mathbb{C}$, we have

$$
\phi_{\Theta_n}(g)(w) = \Theta_n(e_w)(g)
$$

$$
= \frac{1}{|I^+|} \int_{I^+} e_w(n^{-1}ug) \, du.
$$

This is non-zero only if $n^{-1}ug \in I$ for some $u \in I^+$, i.e., only if $g \in \text{InI}$. Therefore $\phi_{\Theta_n} \in \mathcal{H}(G, \rho)$ is supported on InI. It remains to check its value at $g = n$. We find it is

$$
\frac{1}{|I^+|} \int_{I^+ \cap wI} e_w(n^{-1}un) \, du = \frac{|I^+ \cap wI^+|}{|I^+|} = q^{\ell(w)}
$$

(cf. (8.2.3)).
(iii): This is proved in greater generality in [Mor], 5.4, 5.5. Alternatively, we can use the fact that we have proved \(\{ \Phi_{n_w} \}_{w \in \widetilde{W}_\chi} \) is a basis for \(\mathcal{H}(G, \rho) \) (Lemma 8.1.2), together with part (ii).

(iv): This is proved in [Mor], Prop. 5.10. Alternatively, it is an easy consequence of (8.2.2) and standard calculations.

\[\text{□} \]

From now on we want to choose the family \(\{ n_w \} \) in a compatible way: we require that \(n_{w_1 w_2} = n_{w_1} n_{w_2} \) whenever \(\ell(w_1 w_2) = \ell(w_1) + \ell(w_2) \). It is always possible to do this (see [Mor], 5.2).

Note that \(\Theta_n \) depends on \(n \mapsto w \) and not just on \(w \). So, we define a new basis element in \(\mathcal{H}(G, \rho) \) by

\[B_w := \check{\chi}(n)^{-1} \Theta_n. \]

This indeed depends just on \(w \) (and \(\check{\chi} \), of course). We also define

\[T_w := q^{(\ell(\chi(w)) + \ell(w))/2} B_w = q^{(\ell(\chi(w)) - \ell(w))/2} \check{\chi}(n_w)^{-1} t_{\Phi_n w} \]

for \(w \in \widetilde{W}_\chi \). The main computation in this subject shows that these elements \(T_w \) generate the algebra \(\mathcal{H}_\chi \):

Theorem 8.2.2 (Goldstein [Gol], Morris [Mor]). The elements \(T_w, w \in \widetilde{W}_\chi \) satisfy the following relations:

(i) \(T_{w_1 w_2} = T_{w_1} T_{w_2} \), if \(\ell(\chi(w_1 w_2)) = \ell(\chi(w_1)) + \ell(\chi(w_2)) \)

(ii) \(T_s^2 = (q - 1)T_s + qT_1 \), if \(s \in S_{\chi, \text{aff}} \).

Thus, the algebra \(\text{End}_G(\text{ind} \rho^{-1}) \) is isomorphic to \(\mathcal{H}_\chi^{-1} = \mathcal{H}_\chi \), by an isomorphism which depends only on the choice of \(\check{\chi} \).

8.3. **Proof of Theorem 5.2.1.** We can now see that the isomorphism \(t_* \) of Lemma 4.0.2 gives the desired algebra isomorphism

\[\mathcal{H}(G, \rho) \xrightarrow{\sim} \mathcal{H}_\chi. \]

Indeed, by Lemma 8.2.1 and our definitions, \(t_* \) takes

\[q^{-\ell(w)/2} \check{\chi}^{-1}(n) \Phi_n \]

to

\[q^{-\ell(w)/2} \check{\chi}^{-1}(n) \Theta_n q^{\ell(w)/2} B_w = q^{-\ell(w)/2} T_w. \]

This completes the (sketch of the) proof of Theorem 5.2.1. \(\text{□} \)
REFERENCES

University of Maryland
Department of Mathematics
College Park, MD 20742-4015 U.S.A.
email: tjh@math.umd.edu