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Abstract. Let G be an unramified group over a p-adic field F , and let E/F be a finite
unramified extension field. Let θ denote a generator of Gal(E/F ). This paper concerns the
matching, at all semi-simple elements, of orbital integrals on G(F ) with θ-twisted orbital
integrals on G(E). More precisely, suppose φ belongs to the center of a parahoric Hecke
algebra for G(E). This paper introduces a base change homomorphism φ 7→ bφ taking
values in the center of the corresponding parahoric Hecke algebra for G(F ). It proves that
the functions φ and bφ are associated, in the sense that the stable orbital integrals (for
semi-simple elements) of bφ can be expressed in terms of the stable twisted orbital integrals
of φ. In the special case of spherical Hecke algebras (which are commutative) this result
becomes precisely the base change fundamental lemma proved previously by Clozel [Cl90]
and Labesse [Lab90]. As has been explained in [H05], the fundamental lemma proved in this
paper is a key ingredient for the study of Shimura varieties with parahoric level structure at
the prime p.

1. Introduction

Let F be a p-adic field, and E/F an unramified extension of degree r. Let θ denote a
generator for Gal(E/F ). Let G be an unramified connected reductive group over F . Let
ResE/FGE denote the Weil restriction of scalars of GE = G⊗F E to a group over F . The au-
tomorphism θ of E determines an F -automorphism of ResE/FGE as well as an automorphism
of its F -points G(E), which will also be denoted by the symbol θ.

Let H(G) denote the convolution algebra of locally constant and compactly supported
C-valued functions on G(F ), convolution being defined using some choice of Haar measure,
specified later. For a compact open subgroup P ⊂ G(F ), we denote by HP(G) the subalgebra
of H(G) consisting of P-bi-invariant functions.

To simplify things, for the remainder of this introduction we assume that Gder is sim-
ply connected. In this case stable conjugacy classes in G(F ) are intersections of G(F )-
conjugacy classes with G(F ). Consider the concrete norm N : G(E) → G(E) given by
Nδ = δθ(δ) · · · θr−1(δ). It is known ([Ko82]) that Nδ is stably conjugate to an element
N δ ∈ G(F ), and that this determines a well-defined norm map

N : {stable θ-conjugacy classes in G(E)} → {stable conjugacy classes in G(F )}.

(Of course the norm map still exists when Gder 6= Gsc; see [Ko82].) We shall say γ ∈ G(F ) is
a norm if γ is stably conjugate to N δ, for some δ ∈ G(E).
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Fix a semi-simple element γ ∈ G(F ) and let Gγ ⊂ G denote its centralizer. For f ∈ H(G)
we can then define the orbital integral

OG
γ (f) =

∫

Gγ(F )\G(F )
f(g−1γg)

dg

dt
,

depending on the choice of Haar measures dg and dt on G(F ) and Gγ(F ). We may also
consider the stable orbital integral

SOG
γ (f) =

∑

γ′

e(Gγ′)O
G
γ′(f).

Here γ′ ranges over the conjugacy classes in G(F ) which are stably conjugate to γ, and
e(H) ∈ {1,−1} is the sign attached by Kottwitz [Ko83] to a connected reductive group H.
Note that our assumption that Gder is simply connected implies that the centralizers Gγ′ are
connected. If γ and γ′ are stably conjugate, their centralizers are inner forms of each other
and therefore it makes sense to require the Haar measures on these groups to be compatible
with each other, see [Ko88], p. 631.

Similarly, for an element δ ∈ G(E) such that N δ is semi-simple, we define its θ-centralizer
to be the connected reductive group Gδθ over F such that

Gδθ(F ) = {x ∈ G(E) | x−1δθ(x) = δ}.

Then for φ ∈ H(G(E)) we define the twisted orbital integral

TO
G(E)
δθ (φ) =

∫

Gδθ(F )\G(E)
φ(h−1δθ(h))

dh

dt

and its stable version
SO

G(E)
δθ (φ) =

∑

δ′

e(Gδ′θ)TO
G(E)
δ′θ (φ).

Here δ′ ranges over the θ-conjugacy classes in G(E) whose norm down to G(F ) is in the same
stable conjugacy class as that of δ. If γ ∈ G(F ) lies in the stable conjugacy class of Nδ, Gδθ
is an inner form of Gγ , and therefore it makes sense to require the Haar measures on these
groups to be compatible (see loc. cit. ).

Definition 1.0.1. The functions f ∈ H(G) and φ ∈ H(G(E)) are associated if the following
condition holds: for every semi-simple γ ∈ G(F ), the stable orbital integral SOG

γ (f) vanishes
if γ is not a norm, and if there exists δ ∈ G(E) such that N δ = γ, then

SOG
γ (f) = SO

G(E)
δθ (φ).

Denote by K a hyperspecial maximal compact subgroup of G(F ) and let HK(G) denote
the corresponding spherical Hecke algebra. Of course K also gives rise to K(E) ⊂ G(E), and
a corresponding spherical Hecke algebra HK(G(E)).

The base change homomorphism for spherical Hecke algebras is a homomorphism of C-
algebras

b : HK(G(E)) → HK(G).

It is characterized by the following property. Let WF denote the Weil group of F . For an
unramified admissible homomorphism ψ : WF → LG, let ψ′ : WE → LG denote its restric-
tion to the subgroup WE of WF . Let πψ and πψ′ denote the corresponding representations
of G(F ) and G(E). Then for any φ ∈ HK(G(E)) we have

〈trace πψ′ , φ〉 = 〈trace πψ, bφ〉.
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The fundamental lemma for stable base change normally refers to the following statement
pertaining to spherical Hecke algebras, proved by Clozel [Cl90], and also by Labesse [Lab90].

Theorem 1.0.2. (Clozel, Labesse) If φ ∈ HK(G(E)), then bφ and φ are associated.

The proof relies on a global argument using the simple trace formula of Deligne-Kazhdan
[DKV] as well as Kottwitz’s stabilization of the elliptic regular part of the twisted trace
formula. Another essential ingredient is the special case of the theorem, wherein φ is the unit
element of the spherical Hecke algebra, also proved by Kottwitz [Ko86b].

In this article we prove an analogue of Theorem 1.0.2 for central elements in parahoric
Hecke algebras. We fix an Iwahori subgroup I ⊂ G(F ) which is contained in K. Also, fix a
parahoric subgroup J containing I. The subgroups I, J,K of G(F ) give rise to corresponding
subgroups of G(E), which we denote by the same symbols. Let HJ(G) denote the corre-
sponding parahoric Hecke algebra. In general this algebra is non-commutative. Denote its
center by Z(HJ(G)).

We can define a base-change homomorphism

b : Z(HJ(G(E))) → Z(HJ(G))

which is characterized in much the same way as in the spherical case (see section 3). Provided
that J ⊆ K, it is compatible with the spherical case in the following sense. Let IK denote the
characteristic function of K. By virtue of the Bernstein isomorphism and its compatibility
with the Satake isomorphism, we have an isomorphism of algebras

− ∗J IK : Z(HJ(G)) →̃ HK(G)

(as well as the obvious analogue of this for G(E) replacing G(F )). Then the aforementioned
compatibility is the commutativity of the following diagram

Z(HJ(G(E)))
−∗J(E)IK(E)
−−−−−−−→

∼
HK(G(E))

b

y
y b

Z(HJ(G))
−∗J IK−−−→

∼
HK(G).

The main theorem of this paper is the following result.

Theorem 1.0.3. If φ ∈ Z(HJ(G(E))), then bφ and φ are associated.

As in the spherical case, the proof breaks naturally into two parts. The theorem is proved
by induction on the semi-simple rank of G. The first part is to use descent formulas (see
section 4) and the induction hypothesis to reduce the problem to elliptic semi-simple elements
γ ∈ G(F ). Various other reductions (see section 5) allow us to assume G is adjoint and γ is
strongly regular and elliptic. The second part is to prove the theorem in the strongly regular
elliptic case using a global argument (see sections 8 and 9).

Our initial approach to this problem, in the special case where J = I and G is F -split,
followed closely the strategy of Labesse [Lab90]. This case of the theorem was proved in
collaboration with Ngô Bao Châu. Somewhat surprisingly, the fact that φ belongs to the
center of the Iwahori-Hecke algebra permitted us to bypass certain technical difficulties that
arise for the case of spherical functions, allowing for an even easier proof. However, in
attempting to generalize Labesse’s arguments to general parahoric subgroups J , we ran into
serious difficulties. In fact it seems that Labesse’s elementary functions do not in principle
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carry enough information to handle the general parahoric case. Because of this we eventually
settled on an approach much closer to that of Clozel [Cl90]. However, as suggested by a
referee’s remark recorded in the introduction of [Cl90], one can further streamline Clozel’s
original argument by replacing elliptic traces with compact traces. We do so in this article,
and in the process were heavily influenced by a paper of Hales [Ha95] which carried out that
idea in a different situation.

The motivation for this article comes from our program to compute the local factors of
the Hasse-Weil zeta functions of some Shimura varieties with parahoric level structure at a
prime p. This has already been carried out in a special case in [H05], to which we refer for
more details. Here, let us only indicate very briefly how Theorem 1.0.3 is used.

Suppose Sh is a PEL Shimura variety attached to Shimura data (G,X,K), where K =
KpKp and Kp is a parahoric subgroup of G(Qp) = G(Qp). We suppose Sh is defined by a
moduli problem over the local ring OEp

, where p is a prime ideal in the reflex field E dividing
p. To compute the semi-simple local Hasse-Weil zeta function at p following the method of
Kottwitz [Ko92], one needs to express the semi-simple Lefschetz number in the form

(1.0.1)
∑

x∈Sh(kr)

Trss(Φr
p, RΨx(Qℓ)) =

∑

γ0

∑

(γ,δ)

c(γ0; γ, δ)Oγ (f
p)TOδσ(φr),

for every finite extension kr of the residue field of Ep (notation as in [H05]). Now suppose Sh
is attached to a Siegel moduli problem (type C) or a “fake unitary” Shimura variety (type
A), and the group G = GQp is split of type C resp. A. The theory of Rapoport-Zink local

models [RZ] shows that RΨ is computed from a parahoric-equivariant perverse sheaf RΨMloc

on an appropriate parahoric flag variety. The main theorem of [HN02] shows that RΨMloc
is

“central” with respect to convolution of perverse sheaves. From this, one can show ([H05])
that the test function φr making (1.0.1) hold belongs to the center of a parahoric Hecke
algebra for G (over an unramified extension of Qp).

Next, a “pseudo-stabilization” is performed on the right hand side of (1.0.1), and then via
the Arthur-Selberg trace formula it is expressed (albeit with some strong assumptions here
to avoid mention of endoscopy) in the form

(1.0.2)
∑

(γ0,γ,δ)

c(γ0; γ, δ)Oγ(f
p)TOδσ(φr) =

∑

π

m(π) Trπ(fp f (r)
p f∞).

Here, π runs over certain automorphic representations of G(AQ). The main problem is to

find and describe a function f
(r)
p on G(Qp) which makes this identity hold. Theorem 1.0.3

implies the following: if we put f
(r)
p = bφr, then (1.0.2) holds.

The end result of all this is an expression of the semi-simple local L-factor at p in terms
of semi-simple automorphic L-functions (see [H05]). The generality of Theorem 1.0.3 (and
the fact that the geometric techniques of [HN02] will apply to certain forms of type A or C)
means that we expect these methods to apply to certain unitary groups which are non-split
at p. For example, we expect to be able to handle those “fake unitary” cases where GQp is a
quasi-split unitary group attached to a quadratic extension of Qp in which p remains prime,
as well as some natural generalizations of this situation.

Let us now summarize the contents of the paper. Section 2 gives notation and basic defini-
tions. Section 3 describes the Bernstein isomorphism, defines the base change homomorphism
for centers of parahoric Hecke algebras, and gives some necessary properties thereof. Section
4 establishes the descent formulas and proves the lemmas needed to compare them effectively.
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Section 5 contains the reduction steps mentioned above. Sections 6 and 7 provide technical
tools needed in the global argument explained in sections 8 and 9.

We point out that the proof simplifies significantly in two special cases: (1) J is a hyperspe-
cial maximal parahoric subgroup K; and (2) G is split over F and J is an Iwahori subgroup
I. The most technical aspects of the paper arise in connection with the subset EW (P, J) of
the relative Weyl group EW over E, which parametrizes the set P (E)\G(E)/J(E), where
P (E) is a standard parabolic subgroup (see section 4). But the set EW (P,K) is a singleton,
and for split groups the set EW (P, I) can be taken to be the Kostant representatives WP

in the (absolute) Weyl group W . Thus in both cases the equality θ(w) = w holds for all
w ∈ EW (P, J), and we may ignore the somewhat technical Lemma 4.5.4. Also, that equality
makes the arguments in subsection 6.4 much more transparent.

In case (1) our proof essentially reduces to Clozel’s argument in [Cl90], with a few notable
differences stemming from our use of compact traces. The use of compact traces appears to
force some minor changes to Clozel’s global argument (see sections 8 and 9). For example,
in 8.1 (b), the “stabilizing functions” at the place v1 (which is inert here) are different from
those used in [Cl90] (where v1 is split). Why the difference? Using compact traces seems
to require one to work with adjoint groups (see e.g. subsection 6.5). Lemma 8.4.1, which is
used to justify the “stabilizing property” of the functions φv1 and fv1 of 8.1 (b), differs from
Clozel’s analogous assertion (in the proof of Lemma 6.5 of [Cl90]) and comes in because it is
adapted to adjoint groups. (Clozel works instead with certain non-semi-simple groups with
simply connected derived group.) But the proof of Lemma 8.4.1 seems to require that the
place v1 be inert rather than split. Generalized Kottwitz functions have all the necessary
properties at inert places (whereas Clozel’s original stabilizing function φv1 does not even
make sense unless the place v1 is split). That is why we used generalized Kottwitz functions
at v1.

Finally, we explain the relation of Theorem 1.0.3 to the recent progress on the fundamental
lemma due to Ngô, Laumon, Waldspurger, and others. Recently Ngô has proved the (stan-
dard endoscopy) fundamental lemma for Lie algebras [Ngo]. Combined with work of Hales
[Ha95] and Waldspurger ([W97], [W07], [W08]), Ngô’s result implies the transfer theorem
for standard endoscopy, and presumably also for twisted endoscopy. Stable base change is
related to a very special case of twisted endoscopy. So in the special case related to base
change, these theorems yield the following statement: suppose φ is any element in C∞

c (G(E))
(for example we could take φ ∈ Z(HJ(G(E)))). Then there exists a function f ∈ C∞

c (G(F ))
such that (φ, f) are associated in the sense of Definition 1.0.1. However f is not uniquely
determined as a function (one can change it by any function all of whose stable orbital inte-
grals vanish) and no explicit characterization of f is given in general. Theorem 1.0.3 proves
that when φ ∈ Z(HJ(G(E))), then f can be taken to be in Z(HJ(G(F ))) and in fact such
an f is determined from φ using a simple and explicit rule.

Acknowledgments: The main results of this paper were discovered in collaboration with Ngô
Bao Châu. In 2000-2001, Ngô and I worked out a proof of the main theorem in a special case
(mentioned above). Ngô’s influence remained an important factor in my subsequent attempts
to prove the main theorem in its current generality, during which time the original plan of
attack had to be significantly altered. However, Ngô has declined to be named as a coauthor
for the end result. I wish to express my debt to Ngô for his insights and for the impetus he
gave to this project in its early stages.



6 T. Haines

During the long gestation period for this paper, I also benefited from conversations and/or
correspondence with several other people, including the following: J. Arthur, J.-F. Dat, T.
Hales, R. Kottwitz, J.-P. Labesse, M. Rapoport, M. Reeder, A. Roche, and J.-K. Yu. It is a
pleasure to thank all these people. In addition, I am especially grateful to R. Kottwitz and
M. Rapoport for their continuing interest in this project, and to Kottwitz for some helpful
remarks on the manuscript, and for pointing out an inaccuracy in section 5.

I am indebted to Christian Kaiser, who discovered an error in an early version of this
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2. Parahoric subgroups and other preliminaries

2.1. Basic notation. Let F denote a p-adic field. Let OF denote the ring of integers in F ,
and ̟ ∈ OF a uniformizer. Let q = pn denote the cardinality of the residue field of F . Fix
an algebraic closure F for F , and let L denote the completion of the maximal unramified
extension of F inside F . Let σ ∈ Aut(L/F ) denote the Frobenius automorphism of L over
F . Let OL denote the ring of integers in L. The valuation valF : F× → Z will be normalized
such that valF (̟) = 1. Define |x|F = q−valF (x) for x ∈ F×.

We let G denote a connected reductive group which is defined and unramified over F .
Sometimes we use the symbol G to denote the group G(F ) of F -points. Let A denote a
maximal F -split torus in G, and set T := CentG(A), a maximal torus in G defined over F
and split over L.

We consider the (extended) Bruhat-Tits building B(G(L))) resp. B(G) for G(L) resp.
G(F ), cf. [BT1],[BT2]. The Bruhat-Tits buildings associated to the semi-simple F -groups
Gad and Gder are canonically identified and will be denoted Bss(G). The group G(L) ⋊
Aut(L/F ) resp. G(F ) acts on B(G(L)) resp. B(G). The σ-fixed subset B(G(L))σ can be
identified with B(G).

Let AL resp. A denote the apartment of B(G(L)) resp. B(G) corresponding to the torus
T resp. A. Then AL resp. A is endowed with a family of hyperplanes given by the vanishing
of the affine roots Φaff(G,T,L) resp. Φaff(G,A,F ) (see [Tits]). Under the identification
B(G) = B(G(L))σ , the apartment A is identified with (AL)σ. Moreover, the affine roots
Φaff(G,A,F ) are the non-constant restrictions to A = (AL)σ of the affine roots Φaff(G,T,L)
([Tits],1.10.1). The affine roots determine the notions of alcoves, facets, and Weyl chambers
used throughout this article.

2.2. Parahoric subgroups. Fix once and for all a σ-invariant alcove a in AL. Also, fix a
σ-invariant facet aJ and a σ-invariant hyperspecial “vertex” a0, both contained in the closure
of a. According to Bruhat-Tits theory (cf. [Tits], [BT2]), associated to aJ is a smooth affine
OL-group scheme G◦

aJ
with generic fiber G and connected special fiber, with the property that

G◦
aJ

(OL) fixes pointwise the facet aJ . The “ambient” group scheme GaJ
here, of which G◦

aJ

is the maximal subgroup scheme with connected geometric fibers, is defined/characterized in
[Tits] 3.4.1 as the smooth affine OL-group scheme with generic fiber G such that GaJ

(OL)
is the subgroup of G(L) which fixes aJ pointwise. Since we have assumed aJ is σ-invariant,
GaJ

is actually defined over OF .
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Definition 2.2.1. A parahoric subgroup of G(L) is one of the form G◦
aJ

(OL), which we shall
denote simply by J(L). A parahoric subgroup of G(F ) will be a subgroup of G(F ) of the
form J(L) ∩G(F ) =: J .

Thus, the facets a0, a and aJ give rise to parahoric subgroups of G(L), specifically a
(hyperspecial) maximal parahoric subgroupK(L), an Iwahori subgroup I(L), and a parahoric
subgroup J(L). We have K(L) ⊃ I(L) ⊂ J(L). Since the facets a0, a and aJ are σ-
invariant, we get the corresponding parahoric subgroups K, I and J in G(F ) by intersecting
the parahoric subgroups in G(L) with G(F ).

Of course, one defines similarly the notion of parahoric subgroup for an arbitrary connected
reductive group over the field L (or F ).

2.3. Alternative descriptions of parahoric subgroups. In this subsection we allow G to
be any connected reductive group over L. Let AL denote a maximal L-split torus of G (con-
taining A and defined over F in case G is defined over F ). Suppose AL is the corresponding
apartment in B(G(L)). In [Ko97] Kottwitz defined a surjective homomorphism

κG : G(L) ։ X∗(Z(Ĝ)Γ0)

where Γ0 := Gal(L/L) denotes the inertia group. The homomorphisms κG vary with G in a
functorial manner. Let G(L)1 denote the kernel of κG.

The group G(L) acts on the building Bss = B(Gad(L)), and the facet aJ determines a
facet ass

J in Bss. In fact there is a G(L)-equivariant isomorphism (which is G(L)⋊Aut(L/F )-
equivariant if G is defined over F )

B(G(L)) = Bss × VG,

where VG := X∗(Z(G))Γ0 ⊗ R. Furthermore, we have parallel decompositions

AL = AL
ss × VG

aJ = ass
J × VG,

where AL
ss denotes the apartment of Bss corresponding to the maximal L-split torus ALder ⊂

Gder.
Let Fix(ass

J ) denote the subgroup of G(L) which fixes ass
J pointwise.

Theorem 2.3.1 ([HR]). The parahoric subgroup J(L) := G◦
aJ

(OL) of G(L) can be described
as

(2.3.1) J(L) = Fix(ass
J ) ∩G(L)1 = GaJ

(OL) ∩G(L)1.

Now suppose the torus T is the centralizer of the maximal L-split torus AL. According to
[BT2], the group T (L) contains a unique parahoric subgroup T ◦(OL), where T ◦ is the neutral
component of the lft Néron model T for the L-torus T . Moreover, we have T ◦(OL) = T (L)1
(cf. [R]). In [BT2], 5.2, the group T ◦(OL) is denoted Z◦(OL).

Let T (L)b denote the maximal bounded subgroup of T (L), that is, the set of t ∈ T (L)
such that val(χ(t)) = 0 for all χ ∈ X∗(T )Γ0 . We have T (L)b ⊇ T (L)1, and T (L)b coincides
with the kernel of the homomorphism vT : T (L) → X∗(T )Γ0/torsion derived from κT in the
obvious way ([Ko97], 7.2). In [BT2], 5.2, the group T (L)b is denoted by Z(OL).
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Putting the equalities Z◦(OL) = T (L)1 and Z(OL) = T (L)b together with [BT2] 5.2.4 (and

identifying our GaJ
with the group-scheme Ĝass

J
of loc. cit.) we get the decompositions

J(L) = G◦
aJ

(OL) = T (L)1 · UaJ
(OL)(2.3.2)

GaJ
(OL) = T (L)b · UaJ

(OL).(2.3.3)

Here, UaJ
denotes the group-scheme generated by the root-group schemes Ua,aJ

of loc. cit.
In particular a denotes a (relative) root of GL for the torus AL with corresponding root
subgroup Ua ⊂ GL and in the notation of [Tits], 1.4,

(2.3.4) U∗
a,aJ

(OL) = {u ∈ U∗
a (L) | α(a, u)(x) ≥ 0 ∀x ∈ aJ}.

(The superscript ∗ designates the non-identity elements: α(a, u) is an affine-linear functional
on X∗(A

L)R which is defined for u 6= 1.) We recall that α(a, u) is used to define the filtration
Ua+l (l ∈ R) of Ua(L): an element u ∈ U∗

a (L) belongs to U∗
a+l if and only if α(a, u) ≥ a+ l

(cf. [Tits], 1.4).
Finally, suppose GL is split. Then T is L-split and so T (L)b = T (L)1. Thus (2.3.2) and

(2.3.3) imply the following corollary.

Corollary 2.3.2. If G splits over L, then G◦
aJ

(OL) = GaJ
(OL).

Clearly this applies to our usual situation, where G is an unramified F -group.

2.4. Unramified characters of T (F ). For this subsection we temporarily change notation
and let T denote any F -torus and A the maximal F -split subtorus of T . Let T (L)b resp. Tb
denote the maximal bounded subgroup of T (L) resp. T (F ).

We can embed X∗(A) into A(F ) by identifying µ ∈ X∗(A) with ̟µ := µ(̟) ∈ A(F ).

Lemma 2.4.1. Suppose that T splits over L. Then we have

(i) Tb = T (F ) ∩ T (L)1;
(ii) T (F )/Tb ∼= X∗(A) via κT .

Proof. Let V L resp. V denote the real vector space underlying AL resp. A. That is,
V L := X∗(T )R = Hom(X∗(T ),R) and V := X∗(A)R = Hom(X∗(A),R). Following [Tits],
define ν : T (L) → V L by mapping t ∈ T (L) to the homomorphism

ν(t) : X∗(T ) → R

χ 7→ −valL(χ(t)).

Since ν is σ-equivariant and (V L)σ = V , this restricts to a homomorphism ν : T (F ) → V ;
the kernel of the latter is Tb.

There is an inclusion i : X∗(T ) →֒ X∗(T )R. By [Ko97], (7.4.5), there is a commutative
diagram with exact rows

0 // T (L)1 // T (L)
i◦κT // X∗(T )R

0 // Tb // T (F )
−ν //

OO

X∗(A)R

OO

where the vertical arrows are injective. This shows that i◦κT and −ν agree as maps T (F ) →
V , proving part (i) and the equality of the images in V of −ν and κT |T (F ). Furthermore,
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consider the exact sequence

0 // T (L)1 ∩ T (F ) // T (F )
κT // X∗(A) // 0

resulting from taking σ-invariants of

0 // T (L)1 // T (L)
κT // X∗(T ) // 0,

and using the fact that

(2.4.1) H1(〈σ〉, T (L)1) = 0

(cf. [Ko97], (7.6.1)). We see that κT |T (F ) has image X∗(A), proving (ii). �

An unramified character of T (F ) is a homomorphism χ : T (F )/T (F )∩T (L)1 → C×. From
the previous lemma we deduce the following result.

Lemma 2.4.2. If T splits over L, an unramified character of T (F ) can be described as any
of the following:

(i) a homomorphism T (F )/T (F ) ∩ T (L)1 → C×;
(ii) a homomorphism T (F )/Tb → C×;
(iii) a homomorphism X∗(A) → C×.

2.5. Weyl groups and Weyl chambers. Now we return to the conventions preceding
subsection 2.3, so that T denotes the centralizer of the fixed maximal F -split torus A in the
unramified F -group G. Let NS = NormG(S) for any torus S ⊂ G. We use FW , or W , or
sometimes W (F ) to denote the relative Weyl group W := NA(F )/T (F ) of G over F . The
absolute Weyl group of G can be identified with W (L) := NT (L)/T (L).

Lemma 2.5.1. We have W (L)σ = FW .

Proof. Let R ⊂ (V L)∗ resp. FR ⊂ V ∗ denote the absolute resp. relative roots associated
to (G,T ) resp. (G,A). By a result of Steinberg [St], W (L)σ is the Weyl group W (Rσ) of
the Steinberg root system Rσ ⊂ V ∗. Let j : (V L)∗ → V ∗ be the restriction homomorphism.
By its very construction Rσ consists of the non-zero elements of j(R) which are not smaller
multiples of other elements in j(R). Further, by [Bor91], 21.8, FR consists of the non-zero
elements of j(R). It follows that Rσ = ( FR)nm, the non-multipliable relative roots. Thus,
W (Rσ) = W ( FR) = FW . �

We will think of a0 resp. aσ0 as the “origin” of our apartment AL resp. A. The base
alcove a belongs to a unique Weyl chamber CL0 having vertex a0, which we will call the base
chamber or the dominant chamber in AL. It determines the dominant Weyl chamber C0 in
the apartment A.

Let B(T ) denote the set of Borel subgroups B = TU which contain T and are defined over
F . The set B(T ) is a torsor for the relative Weyl group W (for w ∈ W and B ∈ B(T ), let
wB or wB denote wBw−1). For each B = TU ∈ B(T ), define the Weyl chamber CU in A,
and the notion of B-positive root, as follows. The chamber CU is the unique one with vertex
aσ0 such that Tb U(F ) is the union of the fixers of all “quartiers” x + CU (x ∈ V ) in B(G)
having the direction of CU . Furthermore, a B-positive root is one that appears in Lie(B).
Equivalently, a root α is B-positive if and only if it takes positive values on the chamber CU ,

where B = TU is the unique element of B(T ) which is opposite to B.



10 T. Haines

We may write C0 in the form CU0
for a unique Borel B0 = TU0 ∈ B(T ). Thus, the

roots α ∈ Lie(B0) are positive on CU0
, and a coweight λ belonging to the closure of CU0

is
B0-dominant.

In the sequel, a “positive root” will mean a B0-positive root, and a “dominant coweight”
will mean B0-dominant coweight. Note that by our conventions, the “reduction modulo ̟”
of I is B0. More precisely, we have B0 ∩ I = B0 ∩K.

Throughout the paper, we will often write B in place of B0. Occasionally B will denote
instead a general element of B(T ), but we shall indicate when this is what is meant.

2.6. Iwahori Weyl group and extended affine Weyl group. In Bruhat-Tits theory is
defined a homomorphism ν : NA(F ) → V ⋊W , which extends the homomorphism ν : T (F ) →

V discussed earlier (see [Tits]). Its kernel is Tb. Via ν the group W̃ := NA(F )/Tb can be
viewed as a group of affine-linear transformations of V . It splits (the splitting depending on
a choice of special vertex in A) as a semi-direct product

W̃ ∼= Λ ⋊W,

where Λ is the group of translations on V isomorphic via ν to T (F )/Tb; W̃ is termed the
extended affine Weyl group. There is a natural inclusion of lattices X∗(A) →֒ Λ. In fact
Lemma 2.4.1 above shows that X∗(A) = Λ (for another proof of this, see [Bor79], 9.5).

Define the Iwahori-Weyl group W̃ (L) to be the quotient group NT (L)/T (L)1. Using
NT (F ) = NA(F ), (2.4.1), and Lemma 2.4.1 we see that

W̃ (L)σ = NA(F )/T (F ) ∩ T (L)1 = W̃ .

(This can be used to give another proof of Lemma 2.5.1.)
Now suppose J(L) and J ′(L) are parahoric subgroups of G(L) associated to σ-invariant

facets contained in a. We may define the subgroup of W̃ (L) resp. W̃ = W̃ (L)σ

W̃J(L) :=NT (L) ∩ J(L)/T (L)1

resp. W̃J :=W̃J(L)σ = NA(F ) ∩ J/T (F ) ∩ T (L)1

where J is defined as before to be G(F ) ∩ J(L).
Then by a result from [HR], there is a canonical bijection

J\G(F )/J ′ = W̃J\W̃/W̃J ′ .

We have an analogous result holding for the objects over L in place of F . In particular, we
have the Bruhat-Tits and also the Iwasawa decompositions over L and F :

G(L) =
∐

w∈fW (L)

I(L)w I(L) =
∐

w∈fW (L)

U(L)w I(L)

G(F ) =
∐

w∈fW

I w I =
∐

w∈fW

U(F )w I.

The Iwasawa decompositions on the right hold for any B = TU ∈ B(T ). Implicit in these

decompositions is the choice of a σ-equivariant set-theoretic embedding W̃ (L) = X∗(T ) ⋊
W (L) →֒ NT (L). We embed X∗(T ) using µ 7→ µ(̟), and W (L) by choosing fixed represen-
tatives of W (L) in K(L) ∩NT (L).
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2.7. Bruhat orders and length functions. When we speak of the Bruhat order on W or

W̃ or the affine Weyl group Waff , we will always mean the Bruhat order defined relative to

the reflections through the walls of C0 resp. aσ. Also, the length function ℓ on W̃ is defined
in terms of the reflections through the walls of aσ. Analogous conventions specify the Bruhat

order and length function on W̃ (L).

2.8. (Semi)standard Levi and parabolic subgroups. In this paper, the following notions
of (semi)standard Levi and parabolic subgroups will be useful. A Levi subgroup M ⊆ G is
called an F -Levi subgroup if M is the centralizer in G of an F -split torus in G. Equivalently,
M is a Levi component of a parabolic subgroup P ⊆ G which is defined over F ; moreover,
in that case M = CentG(AM ), where AM is the F -split component of the center of M . (See
[Bor91], 20.4 and [Spr], 15.1).

Recall we have fixed a maximal F -split torus A ⊂ G. We call an F -Levi subgroup M in
G semistandard provided that AM ⊆ A (it follows that M ⊇ T ).

We call a parabolic subgroup P ⊂ G an F -parabolic subgroup if P is defined over F ,
and semistandard if P ⊃ A. A semistandard F -Levi subgroup M ⊂ G is a Levi factor of a
semistandard F -parabolic subgroup ([Bor91], 20.4).

A parabolic subgroup P ⊂ G will be called standard if P ⊇ B0. Similarly, a Levi subgroup
M will be called standard if M is the unique semistandard Levi factor of a standard parabolic
subgroup.

2.9. Parahoric subgroups of F -Levi subgroups. Let M denote a semistandard F -Levi
subgroup of G. Suppose that M is the Levi factor of an F -parabolic subgroup P . Write
P = MN , where N denotes the unipotent radical of P .

We wish to show that J∩M is a parahoric subgroup ofM , and to describe the corresponding
facet in the building B(M). This gives rise to an important cohomology vanishing result
(Lemma 2.9.1 (c) below) which will be used in the descent of twisted orbital integrals (cf.
section 4).

Let AL
M denote the apartment in B(M(L)) corresponding to the torus T , so that neglecting

the Coxeter complex structures we have AL
M

∼= X∗(T )R
∼= AL. Since the Bruhat-Tits affine

roots of T associated to M(L) form a subset of those which are associated to G(L), the affine
root hyperplanes in X∗(T )R coming from M form a subset of those coming from G. Thus
every facet in AL is contained in a unique facet of AL

M . We now define the facet aMJ ⊂ AL
M

to be the unique facet containing aJ .

Lemma 2.9.1. Let M denote a semistandard F -Levi subgroup of G, and let P = MN denote
an F -rational parabolic subgroup having M as Levi factor. Then the following statements hold:

(a) J ∩M is the parahoric subgroup of M corresponding to the facet aMJ ; in particular
I ∩M is an Iwahori subgroup of M ;

(b) J ∩ P = (J ∩M)(J ∩N);
(c) H1(〈σ〉, J(L) ∩ P ) = 1.

Proof. Part (a): As a first approximation to this result, note that aMJ ⊇ aJ implies the
containment

(2.9.1) GaJ
(OL) ∩M ⊇ G

aM
J

(OL).

In view of Theorem 2.3.1, we need to show that

Fix(ass
J ) ∩ ker(κG) ∩M = Fix(aM,ss

J ) ∩ ker(κM ),
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or equivalently that

(2.9.2) GaJ
(OL) ∩ ker(κG) ∩M = G

aM
J

(OL) ∩ ker(κM ).

By the functoriality of G 7→ κG (see [Ko97]) we have a commutative diagram

M(L) //

κM

��

G(L)

κG

��

X∗(Z(M̂ )Γ0) // X∗(Z(Ĝ)Γ0),

which together with (2.9.1) shows that the inclusion ′′ ⊇′′ holds in (2.9.2).
We need to prove the inclusion “⊆” in (2.9.2). Let I ′M denote any Iwahori subgroup of

M(L) corresponding to an alcove a′
M of AL

M whose closure contains aMJ . The following claim
clearly suffices, since the affine Weyl group WM,aff and the Iwahori subgroup I ′M for M belong
to ker(κM ).

Claim: Any element of G(L)1 ∩M which fixes one point in aMJ belongs to I ′M WM,aff I
′
M

and fixes every point in aMJ .

Proof: Suppose x ∈ G(L)1 ∩M fixes a point in aMJ ⊂ a′
M . By the Bruhat-Tits decomposi-

tion I ′M (L)\M(L)/I ′M (L) = W̃M (L), we may assume x ∈ W̃M(L) = X∗(T ) ⋊WM (L). Write

x = ̟λw for λ ∈ X∗(T ) and w ∈ WM(L) (where w is viewed in M(L) using any choice of
representative in K(L) ∩M). We have ̟λ ∈ G(L)1.

Now since G is split over L, we have X∗(Z(Ĝ)Γ0) = X∗(Z(Ĝ)) = X∗(T )/Q∨, where Q∨

denotes the lattice in X∗(T ) spanned by the coroots for T in Lie(G) (the final equality is due
to Borovoi [Bo]). Furthermore, the compatibility of κG and

κT : T (L) → X∗(T )

means that κG sends ̟λ to the image of λ in X∗(T )/Q∨. It follows that λ ∈ Q∨.
Let Q∨

M denote the lattice in X∗(T ) spanned by the coroots for T in Lie(M). Let n

denote the order of w. Then xn is the translation by the coweight µ :=
∑n−1

i=0 w
iλ. Since

this fixes a point in aMJ , we must have µ = 0. But wiλ ≡ λ modulo Q∨
M , and it follows

that λ ∈ (Q∨
M )Q ∩ Q∨ = Q∨

M . Thus, x ∈ WM,aff . This means that x is a type-preserving

automorphism of the apartment AL
M which fixes a point in the facet aMJ , and this implies

that it fixes aMJ pointwise. This proves the claim. �

Part (b): Write OL =: O. Choosing a faithful O-representation ρ : G◦
aJ

→ GLn,O, and
viewing J(L) = G◦

aJ
(O) as the subgroup of matrices in G(L) →֒ GLn(L) which have entries

in O, the equality G◦
aJ

(O) ∩ P = (G◦
aJ

(O) ∩M)(G◦
aJ

(O) ∩N) follows from the corresponding
one for parabolic subgroups of GLn.

Part (c): Since by (a) J(L) ∩M is the OL-points of an OF -group scheme with connected
geometric fibers, we have H1(〈σ〉, J(L) ∩M) = 1 (by Greenberg’s theorem [Gr]). Thus in
view of (b) it is enough to show that H1(〈σ〉, J(L) ∩N) = 1. We use [BT2], 5.1.8, 5.1.16-18,
5.2.2-4. Since J(L) ∩ N is σ-stable, by descent it comes from a smooth connected group
scheme over OF . The latter is itself a product of σ-stable connected smooth OF -subgroups

U
♮
b,(k,l) (notation of loc. cit. 5.2.2) which is the scheme associated to a locally free OF -module

of finite type. It then follows as in loc. cit. 5.1.18 (i.e. ultimately from Shapiro’s lemma
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and H1(〈σ〉,OL) = 1) that H1(〈σ〉, (U♮b,(k,l))L) = 1, and from this H1(〈σ〉, J(L) ∩ N) = 1

follows. �

3. Definition and properties of the base change homomorphism

Let G,A, T etc. be as in the previous section.

3.1. Bernstein isomorphism. Let χ be an unramified character of T (F ), that is, a char-
acter χ : T (F ) → C× which is trivial on Tb = T (F ) ∩ T (L)1. By Lemma 2.4.2, χ can be
identified with a homomorphism X∗(A) → C×. Note that χ : X∗(A) → C× extends by
linearity to give a C-algebra homomorphism χ : C[X∗(A)] → C.

Let B ∈ B(T ). For any unramified character χ, consider the (unitarily normalized) un-

ramified principal series iGB(χ) := IndGB(δ
1/2
B χ). The Hecke algebra HJ(G) acts on the right

on the J-invariants iGB(χ)J by convolution ∗ of functions (using the Haar measure on G giving
J measure 1).

Now let R := C[X∗(A)], an algebra with action of the Weyl group FW =: W . Recall that
for J = I, the Bernstein isomorphism is an isomorphism

B : RW →̃ Z(HI(G)),

characterized in terms of the action of Z(HI(G)) on unramified principal series, as follows.
Write B = TU as before, and abbreviate A(F ) =: A and A(OF ) =: AO. Further write H

in place of HI(G). Let M = MB be defined to be the complex vector space

M = Cc(AOU\G/I) = Cc(TbU\G/I).

The subscript “c” means that we consider functions supported on only finitely many double
cosets. As a complex vector space, M has a basis consisting of the functions vx := 1AOUxI

(x ∈ W̃ ).
The vector space M is an (R,H)-bimodule. It is clear that H acts on the right on M

by right convolutions ∗. One proves as in [HKP] Lemma 1.6.1 that M is free of rank 1 as
an H-module, with canonical generator v1. (This fact was observed earlier by Chriss and
Khuri-Makdisi [CK], who derived it from the Bernstein presentation of H.) The ring R can
be viewed as the Hecke algebra Cc(A/AO), where convolution of functions is defined using
the Haar measure da on A which gives AO measure 1. With this in mind, R acts on the
left on M by normalized left convolutions ·. More precisely, letting r ∈ R, we define the left
action of r on ϕ ∈ M by the integral

(3.1.1) r · ϕ(g) =

∫

A
r(a) δ

1/2
B (a)ϕ(a−1g) da.

In other words, if λ ∈ X∗(A) and if ̟λ is regarded as both an element in A/AO and as the
characteristic function on A/AO for the subset ̟λ, then

̟λ · vx = δ
1/2
B (̟λ) v̟λx.

The Bernstein isomorphism B : RW →̃ Z(HI(G)) is characterized by the identity

(3.1.2) B−1(z) · ϕ = ϕ ∗ z

for every z ∈ Z(HI(G)), ϕ ∈ M.
We have an identification C⊗R,χ−1 M = iGB(χ)I which respects the right H-actions on each

side (see [HKP], [H07]). We use the identification to transport the left R-action on M to
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one on iGB(χ)I , also denoted ·. Say φ ∈ iGB(χ)I corresponds to ϕ ∈ M. Then for r ∈ R and
g ∈ G(F ), we have

(3.1.3) (r · φ)(g) =

∫

A
r(a) δ

1/2
B (a)φ(a−1g) da =

∑

a∈A/AO

r(a) δ
1/2
B (a)φ(a−1g),

which since φ(a−1g) = (δ
−1/2
B χ−1)(a)φ(g) can be written as

(3.1.4)
( ∑

a∈A/AO

r(a)χ−1(a)
)
φ(g) = χ−1(r)φ(g).

In other words, z ∈ Z(HI(G)) acts by right convolutions on iGB(χ)I by the scalar chχ(z) :=
χ−1(B−1(z)).

An exposition of these facts for split groups can be found in [HKP], and for unramified
groups they can be proved in a similar way, see [H07]. Some other references containing
overlapping material are [BD] and [CK].

The following generalization of the Bernstein isomorphism to parahoric Hecke algebras
can be deduced from the theory of the Bernstein center (see [BD], Prop. 3.14), but we shall
give a more elementary proof here, still based on ideas of Bernstein (as presented in [HKP],
[H07]). We now change slightly our notation. Let · (resp. ∗) denote the convolution product
in HI(G) (resp. HJ(G)) determined by the Haar measure which gives I (resp. J) measure 1.

Theorem 3.1.1 (Bernstein isomorphism). Convolution by the characteristic function IJ gives
an isomorphism

−·IJ : Z(HI(G)) → Z(HJ(G)).

The composition

RFW
B // Z(HI(G))

−·IJ // Z(HJ(G))

is an isomorphism (still denoted B) characterized by the following property: under the right
convolution action, any z ∈ Z(HJ(G)) acts on the representation iGB(χ)J by the scalar

chχ(z) := χ−1(B−1(z)).

Proof. Again write H in place of HI(G). Write L for the fraction field Frac(R) and note that
LW = Frac(RW ). Write eJ = [J : I]−1IJ , an idempotent in HI(G). The map h 7→ [J : I]−1h
gives an isomorphism of algebras

(HJ(G), ∗, IJ ) →̃ (eJHeJ , ·, eJ).

Thus, it suffices to show that −·eJ : Z(H) → Z(eJHeJ) is an isomorphism. We have a
commutative diagram

H
eJ ·−·eJ // HJ

Z(H)

OO

−·eJ //

��

Z(HJ)

��

OO

LW // LW ⊗RW ,eJ
Z(HJ),



Base change fundamental lemma for parahoric Hecke algebras 15

where we are using the Bernstein isomorphism for the case J = I to identify Z(H) with RW ,
and thus to embed Z(H) into LW . Further, the tensor product is formed using the inclusion
RW →֒ LW and −·eJ : RW → Z(HJ).

The latter map is injective. Indeed, suppose z ∈ Z(H). Then for any χ, the element
zeJ ∈ Z(HJ) acts on the right on iGB(χ)J by the same scalar, namely chχ(z), by which z acts
on iGB(χ)I . Also, iGB(χ)J 6= 0 for all χ. So, if zeJ = 0, we have chχ(z) = 0 for every χ, and
this implies that z = 0.

Further, HJ is torsion-free as an RW -module (via −·eJ), and so Z(HJ) → LW ⊗RW ,eJ

Z(HJ) is injective too.

Lemma 3.1.2. The canonical map LW → LW ⊗RW ,eJ
Z(HJ) is an isomorphism. In partic-

ular, LW ⊗RW ,eJ
Z(HJ) is a field, and its subring Z(HJ) is a domain.

To prove Lemma 3.1.2, first we show that

LW ⊗RW ,eJ
Z(HJ) = Z(LW ⊗RW ,eJ

HJ).

Indeed, it is clear that the left hand side is contained in the right hand side. To prove the
opposite inclusion, observe that elements in LW ⊗RW ,eJ

HJ can be expressed as pure tensors
r
s ⊗ h (r, s ∈ RW , and h ∈ HJ), and that h 7→ 1⊗ h gives an injection HJ →֒ LW ⊗RW ,eJ

HJ

(since HJ is torsion-free as an RW -module via −·eJ).
Next, note that

LW ⊗RW ,eJ
HJ = (1 ⊗ eJ)(L

W ⊗RW H)(1 ⊗ eJ ),

as LW -algebras. The isomorphism associates an element 1
s ⊗ eJheJ on the left hand side to

the element (1 ⊗ eJ )(1
s ⊗ h)(1 ⊗ eJ ) on the right hand side.

Finally, as in the proof of Lemma 2.3.1 from [HKP], the algebra LW ⊗RW H is a matrix
algebra over LW , and 1 ⊗ eJ is an idempotent in that algebra. But it is an elementary
exercise in linear algebra to show that for any field k and idempotent e ∈ Mn(k), we have
Z(eMn(k)e) = ek. This completes the proof of Lemma 3.1.2. �

Now we complete the proof of the theorem. The ring R is finite over RW , and H is finite
over R. Thus H is finite over RW . Since RW is Noetherian, Z(HJ) is finite hence integral

over eJR
W as well. By Lemma 3.1.2 and the above remarks, RW

∽

−→ eJR
W and Z(HJ) have

the same fraction field, namely LW . The equality eJR
W = Z(HJ) follows since R (hence

also RW ) is an integrally closed domain.
The assertion concerning the action of Z(HJ) on unramified principal series now follows

from the special case J = I, see (3.1.2-3.1.4). �

In the sequel, for a coweight µ ∈ X∗(A), the function zµ = zJµ will denote the unique
element of Z(HJ(G)) such that

B−1zµ =
∑

λ∈W (F )µ

tλ

where tλ denotes the the element λ ∈ X∗(A), viewed as an element of the group algebra
C[X∗(A)].

3.2. Base change homomorphism. Let E ⊃ F be an unramified extension of degree r,
and let θ denote a generator for Gal(E/F ). Let AE denote a maximal E-split torus of G,
containing A. We may assume AE is defined over F (using e.g. [BT2], 5.1.12). Write W (E)
(resp. W (F )) for the relative Weyl group of G over E (resp. F ); W (E) then acts on the
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cocharacter lattice X∗(A
E). For ν ∈ X∗(A

E) note that
∑r−1

i=0 θ
iν ∈ X∗(A). This defines the

norm homomorphism

N : C[X∗(A
E)]W (E) → C[X∗(A)]W (F ).

(Here we used W (F ) = W (E)θ; see Lemma 2.5.1.) Now we define the base change homo-
morphism

b : Z(HJ(G(E))) → Z(HJ(G(F )))

to be the unique map making the following diagram commute:

C[X∗(A
E)]W (E) B

∼
//

N
��

Z(HJ(G(E)))

b

��
C[X∗(A)]W (F ) B

∼
// Z(HJ(G(F ))).

3.3. Compatibilities of the Bernstein isomorphism.

3.3.1. Compatibility with change of parahoric, and Satake isomorphism. First suppose that
J1 ⊂ J2 are two parahoric subgroups containing I. By construction of the Bernstein isomor-
phisms B1 and B2, the following diagram commutes.

RW

=

��

B1

∼
// Z(HJ1(G))

−∗J1
IJ2

��

RW
B2

∼
// Z(HJ2(G)).

Here −∗J1 refers to convolution using the Haar measure giving J1 measure 1.
In a special case this is a restatement of the compatibility of the Bernstein and Satake

isomorphisms (see [HKP], section 4.6). Namely, if J1 = J is contained in a (hyper)special
maximal compact J2 = K, then the following diagram commutes

RW

=

��

B
∼

// Z(HJ(G))

−∗J IK

��

RW HK(G),
S
∼

oo

where S denotes the Satake isomorphism.
It follows that for the base change homomorphisms b1 and b2, and z ∈ Z(HJ1G(E)) we

have

(3.3.1) b2(z ∗J1(E) IJ2(E)) = b1(z) ∗J1(F ) IJ2(F ).

3.3.2. Compatibility with constant term homomorphism. Fix an F -Levi subgroupM ⊃ T and
an F -parabolic P = MN . Recall the definition of the modulus character for P , a function
on m ∈M(F ) given by

δP (m) := |det(Ad(m); LieN(F ))|F ,

where | · |F is the normalized absolute value on F . Here Ad(m) is the derivative of the
conjugation action (m,n) 7→ mnm−1, for n ∈ N(F ).



Base change fundamental lemma for parahoric Hecke algebras 17

For a compactly-supported locally constant function f on G(F ), we define the locally

constant function f (P ) on M(F ) by the formula

(3.3.2) f (P )(m) = δ
1/2
P (m)

∫

N(F )
f(mn) dn = δ

−1/2
P (m)

∫

N(F )
f(nm) dn,

where dn is the Haar measure giving N(F ) ∩ J measure 1. (Warning: f (P ) depends on the
choice of J since the latter is used to define the Haar measure; in the sequel we will allow J
to vary.)

Note that this definition of f (P ) differs from the conventional one (as in, e.g. [Cl90], 2.1),
in that it does not incorporate “averaging over K-conjugacy”. However, this notion is exactly
what is needed in our context, in part because of the following important fact, which will be
proved in subsection 4.8. Also, it is well-adapted to descent in our setting, as shown by the
descent formulas (4.4.4) and (4.4.5) below which relate (twisted) orbital integrals on G and
M .

Proposition 3.3.1. The constant term preserves centers of parahoric Hecke algebras. If
f (P ) is defined using the parahoric subgroup J , then the following diagram is commutative.

RWG(F )
B
∼

//

incl.
��

Z(HJ(G(F )))

f 7→f(P )

��

RWM (F )
B
∼

// Z(HJ∩M (M(F ))).

Since the norm homomorphisms for M and G are obviously compatible with the inclusion

C[X∗(A
E)]WG(E) →֒ C[X∗(A

E)]WM (E)

and its analogue for F replacing E, we have the following corollary.

Corollary 3.3.2. With the assumptions above, the following diagram commutes

Z(HJ(G(E)))
f 7→f(P )

//

b
��

Z(HJ∩M (M(E)))

b
��

Z(HJ(G(F )))
f 7→f(P )

// Z(HJ∩M (M(F ))).

3.3.3. Compatibility with conjugation by w ∈ W (F ). Recall that for φ ∈ HJ(G(F )), and
w ∈ W (F ), we set wφ(g) = φ(w−1gw). The map φ 7→ wφ obviously gives an isomorphism
HJ(G(F )) →̃ HwJ(G(F )).

Fix an unramified character ξ of T (F ), and define for Φ ∈ iGB(ξ)J the function wΦ ∈
iGwB(wξ)

wJ by wΦ(g) := Φ(w−1gw). The map Φ 7→ wΦ determines an isomorphism

iGB(ξ)J →̃ iGwB(wξ)
wJ ,

where wξ(t) := ξ(w−1tw) for t ∈ T (F ). This intertwines the right actions of HJ(G) resp.
HwJ(G), in the sense that

wΦ ∗ wφ = w(Φ ∗ φ).
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From this it easily follows that the following diagram commutes:

RW (F )
B
∼

//

=

��

Z(HJ(G(F )))

φ 7→wφ
��

RW (F )
B
∼

// Z(HwJ(G(F ))).

Of course the analogue of this also holds for the field extension E replacing F . As a
consequence we get the following lemma.

Lemma 3.3.3. For w ∈W (F ), the following diagram commutes

Z(HJ(G(E)))
φ 7→wφ//

b
��

Z(HwJ(G(E)))

b
��

Z(HJ(G(F )))
φ 7→wφ// Z(HwJ(G(F ))).

3.4. Extending b to a map b : HJ(E)/ker → HJ/ker. The discussion in this and the
following subsection is aimed toward proving the Schwartz-continuity of b (Corollary 3.5.3).
This is needed in the final argument of this paper (section 9), where we will apply Clozel’s
temperedness argument (section 7) to a certain linear form which involves b. The Schwartz-
continuity of b is necessary in order to know that that form is also Schwartz-continuous, as
section 8 requires.

In the spherical case considered in [Cl90], the situation is substantially simplified due to
the commutativity of the spherical Hecke algebras, and much of the following material is
unnecessary.

3.4.1. Preliminaries on N : Â → ÂE. Let Â denote the complex torus which is dual to the
F -split torus A; it carries a canonical action of the relative Weyl group W (F ) associated to

A ⊂ G. Let Âu denote the maximal compact subgroup of Â. Replacing the field F with

its extension E, we define analogous objects ÂE and ÂEu. Let C[Â/W (F )] denote the ring

of regular functions on the complex variety Â/W (F ), which we identify with C[X∗(A)]W (F ).

The norm homomorphism N : C[X∗(A
E)]W (E) → C[X∗(A)]W (F ) induces a homomorphism

(3.4.1) N : C[ÂE/W (E)] → C[Â/W (F )].

Let us describe the corresponding morphism of complex varieties. Let ΓE/F denote the Galois

group Gal(E/F ) = 〈θ〉; it acts on the complex torus ÂE. Since A is the F -split component
of AE, it follows that

Â = (ÂE)ΓE/F
.

For t ∈ ÂE , we define Nt = tθ(t) · · · θr−1(t) ∈ ÂE . This determines a homomorphism of
complex tori

N : Â→ ÂE

and thus a morphism (also denoted with the symbol N) of complex varieties

(3.4.2) N : Â/W → ÂE/W (E).

The corresponding homomorphism on the level of regular functions is precisely (3.4.1) which

is defined to be compatible with the norm homomorphism N =
∑r−1

i=0 θ
i defined earlier.
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3.4.2. Definition of f 7→ f̂ . An element t ∈ Â can be regarded as an unramified character on

T (F ). We set πt := iGB(t). To any function f ∈ HJ(G) we associate its Fourier transform f̂ ,

a regular function on the variety Â/W defined by the equation

(3.4.3) f̂(t) := 〈trace πt, f〉.

Set

ker = {f ∈ HJ(G) | f̂(t) = 0, ∀t ∈ Â}.

The map f 7→ f̂ determines a C-vector space isomorphism

(3.4.4) HJ(G)/ker →̃ C[Â/W ].

(The homomorphism is surjective since its restriction to Z(HJ(G)) is obviously surjective,
by the Bernstein isomorphism, Theorem 3.1.1.)

This discussion applies just as well when we replace F with its extension field E. We can
then define the C-vector space homomorphism

b : HJ(G(E))/ker → HJ(G)/ker

to be the unique one making the following diagram commutative:

HJ(G(E))/ker
f 7→ bf

∼
//

b
��

C[ÂE/W (E)]

N
��

HJ(G)/ker
f 7→ bf

∼
// C[Â/W ].

In other words, bf is characterized by the identity

(3.4.5) 〈trace πt, bf〉 = 〈trace πNt, f〉.

3.4.3. Compatibility of b and b. From the discussion above, the C-vector space homomor-
phism Z(HJ(G)) → HJ(G)/ker is an isomorphism.

Lemma 3.4.1. (i) The map b is linear with respect to b: for any f ∈ HJ(G(E))/ker
and z ∈ Z(HJ(G(E))), we have b(zf) = b(z)bf .

(ii) The following diagram commutes:

Z(HJ(G(E)))
∼ //

C·b
��

HJ(G(E))/ker

b
��

Z(HJ(G))
∼ // HJ(G)/ker,

where the constant C is the cardinality of B(E)\G(E)/J(E) divided by the cardinality
of B(F )\G(F )/J(F ).

3.5. The Schwartz-continuity of b.
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3.5.1. Preliminaries for extending b to Schwartz spaces. We will define an extension b̃ of b to
appropriate spaces of Schwartz functions.

For t ∈ Âu, the representation πt is tempered and we may define

f̂(t) := 〈trace πt, f〉,

for f belonging to the Schwartz space C(G(F )). We will consider this for f ∈ CJ(G), the
space of J-bi-invariant Schwartz functions on G(F ). Set

ker = {f ∈ CJ(G) | f̂(t) = 0, ∀t ∈ Âu}.

Since Âu is a Zariski-dense subset of Â, we have inclusions

C[Â]W →֒ C∞[Âu]
W

HJ(G)/ker →֒ CJ(G)/ker.

We will endow CJ(G) and its quotient CJ(G)/ker with the Schwartz topology (see [Sil79],

Chap. 4). We will endow C∞[Âu] with the C∞-topology. Note that HJ(G)/ker resp. C[Â]W

is a dense subspace of CJ(G)/ker resp. C∞[Âu]
W .

3.5.2. The trace Paley-Wiener theorem for Schwartz functions. The following is a conse-
quence of a much more general result of Arthur [Ar94].

Proposition 3.5.1. (Arthur) The map f 7→ f̂ determines an open surjective homomorphism
of topological vector spaces

CJ(G) → C∞[Âu]
W .

Hence CJ(G)/ker ∼= C∞[Âu]
W as topological vector spaces.

3.5.3. The definition and Schwartz-continuity of b̃. We define b̃ : CJ(G(E))/ker → CJ(G)/ker
to be the unique map making the following diagram commute:

CJ(G(E))/ker
f 7→ bf

∼
//

eb
��

C∞[ÂEu]
W (E)

N
��

CJ(G)/ker
f 7→ bf

∼
// C∞[Âu]

W .

It is clear that b̃ is an extension of b, in an obvious sense. The following is immediate in
light of Proposition 3.5.1.

Lemma 3.5.2. The map b̃ : CJ(G(E))/ker → CJ(G)/ker is continuous with respect to the
Schwartz topologies.

Using Lemma 3.4.1 we deduce the following result, which was the goal of this subsection.

Corollary 3.5.3. The homomorphism b : Z(HJ(G(E))) → Z(HJ(G)) is continuous, when
each algebra Z(HJ) is given the Schwartz topology (the topology it inherits as a subspace of
the appropriate CJ).
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4. Descent of twisted orbital integrals

4.1. On Galois cohomology of k-Levi subgroups. Here we let k denote any field, and G
any connected reductive group over k. Recall that a k-Levi subgroup M ⊆ G is a Levi factor
of a k-rational parabolic subgroup of G. It is easy to see that

(4.1.1) ker[H1(k,M) → H1(k, G)] = {1}

if M is a k-Levi subgroup. In fact a twisting argument (cf. [Ko86a], 1.3) shows further that
in that case,

H1(k,M) → H1(k, G)

is injective.

4.2. Elements with non-elliptic norm. Now we return to the notation of section 2. Fur-
ther, let E/F be an unramified extension of degree r, and use the symbol σ to denote both
the Frobenius automorphism in Aut(L/F ) and its restriction to Gal(E/F ).

The following result is needed for our reduction, via descent, of the fundamental lemma to
semi-simple elements γ ∈ G(F ) which are elliptic. It seems not to appear elsewhere, although
in some sense it must be implicit in the work of Clozel [Cl90] and Labesse [Lab90]. A proof
is given here because no reference has come to light. 1

Lemma 4.2.1. Suppose γ ∈ G(F ) is semi-simple and M ⊆ G is an F -Levi subgroup with
G◦
γ ⊆ M (hence G◦

γ = M◦
γ and γ ∈ M(F )). Suppose δ ∈ G(E) has N δ = γ. Then there

exists an element δ1 ∈ M(E) such that NM (δ1) = γ and such that δ and δ1 are σ-conjugate
under G(E).

Here NM denotes the norm function relative to the group M .

Proof. We will use the following notation: letting σ denote an extension of σ ∈ Gal(E/F ) to
Gal(F/F ), we set gσ := σ(g) and g−σ := σ(g−1), for g ∈ G(F ).

First we consider the case where Gder = Gsc. In that case G◦
γ = Gγ and stable σ-conjugacy

(resp. stable conjugacy) is F -σ-conjugacy (resp. F -conjugacy), cf. [Ko82]. Choose any
h ∈ G(F ) with h(Nδ)h−1 = γ. Applying σ to the equation Nδ = h−1γh and using (Nδ)σ =
δ−1(Nδ)δ, we see that hδh−σ ∈ Gγ ⊆M .

A similar calculation shows that hh−τ ∈ Gγ ⊆ M for any τ ∈ Gal(F/E). The map
τ 7→ hh−τ determines an element of ker(H1(E,M) → H1(E,G)), which is trivial by (4.1.1)
for k = E. Writing hh−τ = m−1mτ for some m ∈ M(F ) and every τ ∈ Gal(F/E), we see
that mh ∈ G(E).

Now δ is clearly σ-conjugate under G(E) to δ1 := (mh)δ(mh)−σ ∈ M(E). Since Nδ1 =
mγm−1, we have NMδ1 = γ.

Let us now derive the general case of the lemma from the special case just considered.
Choose a z-extension α : G′ → G which is adapted to E in the sense of [Ko82]. Let Z =
ker(α). Let M ′ = α−1(M), an F -Levi subgroup of G′. Choose elements γ′ ∈ G′(F ) and
δ′ ∈ G′(E) with α(γ′) = γ and α(δ′) = δ. We have γ′ ∈ M ′(F ), and G′

γ′ ⊆ M ′. Further,

N δ = γ implies that N δ′ = γ′z for some z ∈ Z(F ); replacing γ′ with γ′z we may assume
N δ′ = γ′. Since G′

der is simply-connected, we already know that δ′ is σ-conjugate under

1Clozel’s related Lemma 2.12 in [Cl90] concerns the special case where δ is σ-regular, but this is not enough
for our purposes. We also draw the reader’s attention to the fact that Lemma 4.2.1 is used implicitly in the
descent step in the proof of [Cl90], Prop. 7.2.
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G′(E) to an element δ′1 ∈ M ′(E) for which NM ′(δ′1) = γ′. It follows that δ is σ-conjugate
under G(E) to δ1 := α(δ′1) ∈M(E), and that NM(δ1) = γ (use loc. cit. Lemma 5.6). �

Remark 4.2.2. The lemma is stated under our standing hypothesis that E/F is an unrami-
fied extension, with σ denoting the Frobenius generator. However, the same statement holds
(with the same proof) when E is any cyclic extension of our field F and σ is any generator
of Gal(E/F ).

How will this result be used? Fix a semi-simple element γ ∈ G(F ), and let S denote the
F -split component of the center of G◦

γ . Let M := CentG(S), an F -Levi subgroup of G. It
is clear that γ is an elliptic element in M(F ), and that γ is elliptic in G(F ) if and only if
M = G.

Now suppose that γ is not elliptic in G, so that M ( G. The fundamental lemma is
proved by induction on semi-simple rank (it being obvious for tori), and so we may assume it
is already known for M . Suppose we want to show φ and bφ are associated at γ. If γ is not
a norm from G(E), it is not a norm from M(E), so that the vanishing of OG

γ (bφ) will follow
by induction using the descent formula (4.4.6) below. Now suppose γ is a norm from G(E).
Then Lemma 4.2.1 applies to show that γ is a norm from M(E). The desired matching
of stable (twisted) orbital integrals is then proved by descending to M , i.e. by using the
equations (4.4.4) and (4.4.6) (and taking into account the crucial Lemma 4.5.3 which allows
us to compare these equations).

4.3. Descent preliminaries. We continue with the notation of the previous subsection.
Our standard Borel subgroup B = TU determines a set of simple positive (relative) roots
∆0.

As mentioned above, in descent we are given a proper F -Levi subgroup M which is a Levi
factor in an F -parabolic P = MN . Since it is harmless to conjugate by elements of G(F ),
we may assume M and P are standard, i.e. M ⊇ T and P ⊇ B, i.e., N ⊆ U .

Let UM := U ∩M and BM = B ∩M , so that BM is a Borel subgroup of M with Levi
decomposition BM = UMT . The Levi M corresponds to a subset ∆M ⊂ ∆0. The relative
Weyl group FWM := NM (T )(F )/T (F ) is a Coxeter subgroup of (FW, {sα, α ∈ ∆0}) with
generating set {sα, α ∈ ∆M}.

For each element w ∈ FW , we shall choose once and for all a representative in K, denoted
by the same symbol.

Let E/F be an unramified extension of degree r contained in L, and fix a generator
θ ∈ Gal(E/F ).

For m ∈M(F ), we define following Harish-Chandra the functions DG(F )/M(F ) and ∆P
2 by

DG(F )/M(F )(m) = det(1 − Ad(m−1); Lie(G(F ))/Lie(M(F )))

∆P (m) = det(1 − Ad(m−1); Lie(N(F ))).

Let N denote the unipotent radical of the parabolic subgroup P ⊃ M which is opposite
to P . Using the decomposition Lie(G(F )) = Lie(N(F )) ⊕ Lie(M(F )) ⊕ Lie(N(F )), one can
prove the identity |DG(F )/M(F )|F = |∆P |

2
F δP .

We have similar definitions for DG(E)/M(E), δP (E), etc. for E replacing F . For the time
being, we will work over E, and use the symbols G, P , J , W , etc. in place of G(E), P (E),
J(E), EW , etc.

2We retain this standard notation for this function despite our very similar notation for sets of simple roots!
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The refined Iwasawa decomposition states that

G =
∐

w∈WP

PwI,

where WP denotes the set of minimal coset representatives for the elements of WM\W , with
respect to the Bruhat order defined by B. Since I ⊂ J , each P, J-double coset is a union of
P, I-double cosets. So each P, J-double coset is of the form PwJ for an element w ∈ WP

(which is not unique in general). Choose a set of such representatives, and denote it by

EW (P, J). Thus

G =
∐

w∈EW (P,J)

PwJ.

For technical purposes that will become clear later, we choose a lift for each w in the hyper-
special compact subgroup K(E) ⊃ I(E), and continue to denote that representative by the
symbol w.

Fix once and for all Haar measures dg,dj on G,J respectively, such that voldg(J) =
voldj(J) = 1. On P = MN we fix a (left) Haar measure dp such that voldp(P ∩ J) = 1.
For any integrable smooth function φ on G which is supported on PwJ , we have the follow-
ing integration formula

(4.3.1)

∫

G
φ(g) dg = q−1

E,w

∫

P

∫

J
φ(pwj) dj dp,

where qE,w := voldp(P ∩ wJ), and wJ := wJw−1. The two integrals are proportional because
as distributions on P×J , both are left P -invariant and right J-invariant. The proportionality
can be computed by using a test function, for instance the characteristic function of wJ .

In the same manner, we have for any integrable smooth function φ on G, the formula

(4.3.2)

∫

G
φ(g) dg =

∑

w∈EW (P,J)

q−1
E,w

∫

P

∫

J
φ(pwj) dj dp.

The following variant will be useful. Let dpw (resp. dmw, dnw) denote the (left) Haar
measure on P (resp. M ,N) such that voldpw(P∩ wJ) (resp. voldmw(M∩ wJ), voldnw(N∩ wJ))
has the value 1. Then we have

(4.3.3)

∫

G
φ(g) dg =

∑

w∈EW (P,J)

∫

P

∫

J
φ(pwj) dj dpw.

4.4. Descent formulas. Let us recall the set-up: γ ∈ G(F ) is a semi-simple element, S
denotes the F -split component of the center of G◦

γ , and M = CentG(S), an F -Levi subgroup.
We suppose γ is not elliptic in G(F ), so that M is a proper Levi subgroup of G. Choose
an F -parabolic P = MN with M as Levi factor. As above, we may assume P and M are
standard.

We have γ ∈ M(F ) and G◦
γ = M◦

γ . We assume γ = N δ for an element δ ∈ M(E) (see
Lemma 4.2.1).

The twisted centralizer Gδθ of δθ is an inner form of Gγ whose group of F -points is

Gδθ(F ) := {g ∈ G(E) | g−1δθ(g) = δ}.

The inclusion M◦
δθ ⊆ G◦

δθ is an equality for dimension reasons (they are inner forms of
M◦
γ = G◦

γ).
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Since Gδθ and Gγ are inner forms, we may choose compatible measures dgδθ on Gδθ(F )
and dgγ on Gγ(F ), and use the former to define

(4.4.1) TOG
δθ(φ) :=

∫

G◦
δθ\G(E)

φ(g−1δθg)dḡ.

Here, as in the sequel, we abbreviate by writing G◦
δθ in place of G◦

δθ(F ). Since G◦
δθ = M◦

δθ,

we may choose the same measure dgδθ = dmδθ in defining TOM
δθ (ψ) for an integrable smooth

function ψ on M(E).
Using (4.3.3) and the substitution g = mnwj in each summand, we get for φ ∈ HJ(G(E))

the formula

TOδθ(φ) =

∫

G◦
δθ\G

φ(g−1δθg) dḡ

=
∑

w∈EW (P,J)

∫

M◦
δθ\M

∫

N

∫

J
φ(j−1w−1n−1m−1δθmθnθ(w)θj) dj dnw dm̄w.

Since φ is J-bi-invariant, we may suppress the integral over J . For each m we write
m0 := m−1δθm ∈ M(E). Also, define the smooth function w,θφ by the equality w,θφ(g) =
φ(w−1gθ(w)). We easily see

(4.4.2) TOδθ(φ) =
∑

w∈EW (P,J)

∫

M◦
δθ\M

∫

N

w,θφ(m0(m
−1
0 n−1m0θn)) dnw dm̄w.

Consider the map of F -manifolds N(E) → N(E) given by n 7→ m−1
0 n−1m0θn. The

absolute value of the Jacobian of this transformation is a constant (independent of m, but
depending on δ)

|det(θ − Ad(m−1
0 ); LieN(E))|F = |det(1 − Ad(Nm−1

0 ); LieN(F ))|F

= |DG(F )/M(F )(Nm0)|
1/2 δP (F )(Nm0)

−1/2

= |DG(F )/M(F )(N δ)|1/2 δP (E)(m0)
−1/2.

Here we regard θ − Ad(m−1
0 ) as an F -linear endomorphism of LieN(E). These equalities

follow from standard calculations, see e.g. [Ko80], §8. Thus by the change of variables formula
for F -manifolds, we may write (4.4.2) as
(4.4.3)

TOδθ(φ) = |DG(F )/M(F )(N δ)|
−1/2
F

∑

w∈EW (P,J)

∫

M◦
δθ\M

δ
1/2
P (E)(m0)

∫

N

w,θφ(m0n) dnw dm̄w.

Thus we have

(4.4.4) TO
G(E)
δθ (φ) = |DG(F )/M(F )(N δ)|

−1/2
F

∑

w∈EW (P,J)

TO
M(E)
δθ ((w,θφ)(P (E))),

where it is understood that TOM(E) is formed using dmw and (·)(P (E)) is formed using dnw.
If we consider the special case E = F (θ = 1), and use the equality γ = N δ = δ,

we have a corresponding descent formula for functions in HJ(G(F )). We write it out in a
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special case: assume φ ∈ Z(HJ(G(E))) and consider the descent formula for the function
bφ ∈ Z(HJ(G(F ))):

(4.4.5) OG(F )
γ (bφ) = |DG(F )/M(F )(γ)|

−1/2
F

∑

w∈ FW (P,J)

OM(F )
γ [(wbφ)(P (F ))],

where for a function ψ we define wψ(x) := ψ(w−1xw). Using the compatibility of b with
conjugation by w and constant term (Corollary 3.3.2 and Lemma 3.3.3), this is

(4.4.6) OG(F )
γ (bφ) = |DG(F )/M(F )(γ)|

−1/2
F

∑

w∈FW (P,J)

OM(F )
γ b[(wφ)(P (E))],

4.5. Lemmas needed to compare descent formulas. Now, to compare (4.4.4) with
(4.4.6), we need several lemmas. Our first goal is to prove we may choose the sets of repre-
sentatives FW (P, J) and EW (P, J) in such as way that FW (P, J) = EW (P, J)θ.

Recall that we are temporarily writing W in place of the relative Weyl group EW over E.
We also sometimes denote the latter byW (E), when we think of it as the Aut(L/E)-invariants
in the (absolute) Weyl group LW .

Definition 4.5.1. We define the subset (WM\W )min ⊂W to consist of the elements w ∈W
which have minimal length in their cosets WMw. Here, we use the Borel subgroup B = B0

to define the Coxeter structure (and thus the notion of length) on W .

Lemma 4.5.2. (a) If w ∈ (WM\W )min, then wI ∩M = I ∩M .

(b) Let p denote the projection of W̃ = X∗(A)⋊W onto W . Let W J = p(W̃J). Then the
canonical map W → P\G/J induces a bijection

WM\W/W J →̃ P\G/J.

(c) P (F )\G(F )/J(F ) = [P (E)\G(E)/J(E)]θ , and hence

WM (F )\W (F )/W J(F ) = [WM (E)\W (E)/W J(E)]
θ.

Thus, we may choose the sets FW (P, J) and EW (P, J) in such a way that

FW (P, J) = EW (P, J)θ

and each set consists of elements w which are minimal in their cosets WMw.

Our second goal is to prove that the only summands in (4.4.4) which are nonzero are those
indexed by w ∈ FW (P, J).

Lemma 4.5.3. The summands in (4.4.4) indexed by w ∈ EW (P, J) with θ(w) 6= w are zero.

This lemma follows immediately using the twisted version of the Kazhdan density theorem
(see [KoRo]) and the following lemma. To state this, recall that we say a (left) representation
Π of G(E) is θ-stable provided it extends to a (left) representation of the group G∗(E) :=
G(E) ⋊ 〈θ〉. Equivalently, there is an isomorphism of G(E)-modules Iθ : Π →̃ Πθ, where Πθ

is the representation on the space of Π where the G(E)-action is given by Πθ(g) = Π(θ(g)).
If Π is irreducible, the intertwiner Iθ is uniquely determined up to a non-zero scalar (Schur’s
lemma). When in addition [E : F ] = r, we normalize Iθ so that Irθ = id; then Iθ is uniquely
determined up to an rth root of unity.

Lemma 4.5.4. Let φ ∈ Z(HJ(G(E))). If w ∈ (WM (E)\W (E))min and θ(w) 6= w, then for
every θ-stable admissible representation σ of M(E), we have

〈trace σIθ, (
w,θφ)(P )〉 = 0.
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The upshot of these lemmas is that we may effectively compare (4.4.4) with (4.4.6), and
thereby by induction on semi-simple ranks, reduce the fundamental lemma to the case where
γ is an elliptic element.

Remark 4.5.5. Suppose σ is an admissible representation of M such that iGP (σ) has I-fixed
vectors. It follows using Lemma 4.5.2, part (a), that σ has I ∩ M -fixed vectors. Indeed,
suppose 0 6= Φ ∈ iGP (σ)I . Then there exists w ∈ (WM\W )min such that Φ(w) 6= 0. But

Φ(w) is fixed by every operator σ(iM ) for iM ∈ I ∩M , since σ(iM )Φ(w) = Φ(w · w
−1
iM ) and

w−1
iM ∈ I by Lemma 4.5.2, part (a).

Remark 4.5.6. For our general parahoric J , and for w a minimal element of its coset WMw,
one might hope that the analogue of Lemma 4.5.2 (a) holds true: wJ ∩M = J ∩M . However,
this usually fails when J 6= I. For instance, the inclusion J ∩M ⊂ wJ fails for the group
G = Sp(4), where (numbering simple roots αi and fundamental coweights ω∨

i as in [Bou]),
M is the Levi corresponding to the simple root α2, w = sα1 , and J is the parahoric subgroup
fixing the vertex 1

2ω
∨
1 in the base alcove a). In fact, sα2 ∈ J ∩M but sα2 /∈

sα1J since sα2

does not fix the vertex sα1(
1
2ω

∨
1 ).

4.6. Proof of Lemma 4.5.2. Part (a): Since I∩M and wI∩M are Iwahori subgroups of M
(Lemma 2.9.1), it is enough to prove I∩M ⊂ wI. Indeed, two Iwahori subgroups which both
fix a given alcove must coincide ([BT2], 4.6.29). For this proof, let a resp. aM denote the
alcove of the building for G resp. M corresponding to the Iwahori subgroup I resp. I ∩M .
Note that aM is the union of a along with some other alcoves a′. Given y ∈ I ∩M , we want
to show y ∈ wI, i.e., y fixes wa. If wa ⊂ aM , we are done. If wa * aM , there is a simple
root α ∈ ∆M such that wa and a are separated by the hyperplane given by α = 0. But then
sαw < w in the Bruhat order on W , a contradiction of w ∈ (WM\W )min.

Note: Let B denote B0 or B0. Then the same proof shows wB ∩M = B ∩M ; this fact is
used in subsection 6.4.

Part (b): It is clear that the map is well-defined, and surjective, by the refined Iwasawa
decomposition G =

∐
w∈WP PwI. To show it is injective, we use our assumption that P,M

are standard, that is, P ⊇ B and M ⊇ A. Suppose w1, w2 ∈ W represent two double cosets
in WM\W/W J such that Pw1J = Pw2J . We may assume w1, w2 ∈ WP . Write w1j = pw2

with j ∈ J and p = nm = nuM̟
νwM iM with uM ∈ U ∩M , wM ∈ WM , iM ∈ I ∩M , and

ν ∈ X∗(A) (using the usual Iwasawa decomposition for m ∈M). By part (a), we have

w1j = nuM̟
νwMw2i

for some i ∈ I.
There is a sufficiently B-dominant cocharacter λ ∈ X∗(A) such that ̟λ(nuM )̟−λ ∈ I.

Thus we have the identity

̟λw1j = i′̟λ+νwMw2i,

for some i′ ∈ I. It is easy to show that W̃J ⊂Waff (see the Claim in the proof of Lemma 2.9.1)

and that W̃J is generated by simple affine reflections which fix aJ . Now using J = IW̃JI and

the BN-pair relations, we obtain an element wJ ∈ W̃J such that

I̟λw1wJI = I̟λ+νwMw2I,

and hence by the uniqueness in the Bruhat-Tits decomposition G =
∐
w∈fW

IwI, we conclude

that ̟λw1wJ = ̟λ+νwMw2 and thus w1p(wJ) = wMw2.
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Part (c): Let X = P\G, an F -variety carrying the action of J by right multiplications. We
must show the canonical map i : X(F )/J(F ) → [X(E)/J(E)]θ is bijective. Extending θ
to an automorphism θ ∈ Aut(L/F ) with fixed field F , it is enough to establish a canonical
bijection

(4.6.1) X(F )/J(F ) →̃ [X(L)/J(L)]θ

(along with the analogue of this for E replacing F ). The surjectivity follows from the fact that
H1(〈θ〉, J(L)) = 1, a consequence of Greenberg’s theorem [Gr] since J(L) coincides with the
OL-points of an OF -group scheme having connected geometric fibers. To prove the injectivity,
suppose x1, x2 ∈ X(F ) satisfy x1j = x2 for j ∈ J(L). Thus jθ(j−1) ∈ Jx1(L), where Jx1

denotes the stabilizer of x1. Representing x1 by w1 ∈ FW , we see that Jx1 = J ∩ w−1
1 P =

(J ∩ w−1
1 M)(J ∩ w−1

1 N). Once again Greenberg’s theorem implies that H1(〈θ〉, Jx1(L)) = 1
(see Lemma 2.9.1). Hence jθ(j−1) = j−1

1 θ(j1) for some j1 ∈ Jx1(L). But then x2 = x1(j1j)
and so x1 = x2 modulo J(F ), proving the injectivity.

This completes the proof of Lemma 4.5.2. �

4.7. Proof of Lemma 4.5.4.

4.7.1. Beginning of proof. Suppose σ is a θ-stable admissible representation of M(E). Write
IMθ : σ →̃ σθ for the given intertwiner. By [Rog], Lemma 2.1, it is enough to prove the lemma
in the case where σ is irreducible as an M(E)-representation, which we henceforth assume.
Without loss of generality, we may assume σ has I ∩ M -invariant vectors. Then we may
choose an unramified character ξ of T (E) such that σ is a subrepresentation of iMBM

(ξ).

Given an element ψ ∈ H(M(E)), we need to distinguish between its left action L(ψ) and
its right action R(ψ) on the space iMBM

(ξ) (and on σ). The right action R(ψ) is given simply

by Φ 7→ Φ ∗ψ (where ∗ is defined using a choice of Haar measure to be specified below). The
left action is defined by the operator identity L(ψ) = R(ιψ), where ι is the anti-involution of
the Hecke algebra defined by ιψ(m) = ψ(m−1). We need to prove

trace(L(ψ) ◦ IMθ ; σ) = 0

for all functions ψ of the form (w,θφ)(P ), where φ is central and w 6= θ(w). The notation on
the left stands for “the trace of the operator L(ψ) ◦ IMθ on the space of σ” (similar notation
is used below in (4.7.2) and (4.7.4)).

We have the following relations

ι(ψ(P )) = (ιψ)(P )(4.7.1)

ι(w,θφ) = θ(w),θ−1
ιφ,

where θ(w),θ−1
φ(g) := φ(θ(w)−1 g w). Since ι preserves centers of Hecke algebras, it will be

enough to establish the corresponding identity with respect to the right actions, which is
slightly more convenient. That is, we need to show that

(4.7.2) trace(R((w,θφ)(P )) ◦ IMθ−1 ; σ) = 0.

By the identity

(4.7.3) F ∗ (δH)(m) = δ(m) · (δ−1F ∗H)(m)

for a character δ and functions F,H on a group containing m, it is enough to prove that for
all σ we have

(4.7.4) trace(R(δ
1/2
P (w,θφ)(P )) ◦ IMθ−1; σ) = 0.
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Note that we essentially replaced σ with δ
1/2
P σ here. This is legitimate since the latter is still

θ-stable, as δP ◦ θ = δP .

To prove (4.7.4), we need to relate the operator R(δ
1/2
P (w,θφ)(P )) ◦ IMθ−1 on σ to a simpler

operator R(θ(w)w−1) ◦ IGθ−1 on the space iGP (δ
−1/2
P σ). Let us define this operator.

We define an intertwiner

(4.7.5) IGθ : iGP (δ
−1/2
P σ) →̃ iGP (δ

−1/2
P σ)θ

by setting (IGθ Φ̃)(g) = IMθ (Φ̃(θ−1g)), for Φ̃ ∈ iGP (δ
−1/2
P σ) and g ∈ G(E). We also define a

vector-space isomorphism

R(θ(w)w−1) : iGP (δ
−1/2
P σ) →̃ iGP (δ

−1/2
P σ)

by setting (R(θ(w)w−1)Φ̃)(g) = Φ̃(gθ(w)w−1), for Φ̃ ∈ iGP (δ
−1/2
P σ) and g ∈ G(E).

Next we define parahoric subgroups J ′ := θ(w)J in G(E) and J ′
M := J ′ ∩M in M(E),

respectively. Note that IGθ−1 takes J ′-invariants into wJ-invariants, and R(θ(w)w−1) sends

the latter back into the former (similar statements hold for IMθ−1 resp. R(δ
1/2
P (w,θφ)(P ))).

Note also that R(δ
1/2
P (w,θφ)(P )) ◦ IMθ−1 takes σJ

′
M into itself and vanishes identically on the

natural complement of σJ
′
M in σ consisting of those vectors whose integral over J ′

M vanishes.
Consider the natural surjective map

PJ ′ : iGP (δ
−1/2
P σ)J

′

։ σJ
′
M(4.7.6)

Φ̃ 7→ Φ̃(1).

There is a canonical section of PJ ′

sJ ′ : σJ
′
M →֒ iGP (δ

−1/2
P σ)J

′

v 7→ Φ̃
(v)
1 ,

where Φ̃
(v)
1 is the unique element supported on PJ ′ such that Φ̃

(v)
1 (1) = v. We will suppress

the subscript J ′ and write P resp. s for these operators (even though J ′ will vary in the
sequel). Note that

P ◦ IGθ−1 = IMθ−1 ◦ P(4.7.7)

s ◦ IMθ−1 = IGθ−1 ◦ s.

Let ξ1 := δ
−1/2
P ξ, an auxiliary character on T (E) attached to ξ. The key point in proving

(4.7.4) turns out to be the following lemma.

Lemma 4.7.1. Let the right action R(ψ) = − ∗ ψ on iMBM
(ξ) (and σ) be defined using the

Haar measure on M(E) which gives wJ ∩M volume 1. Then we have the following equality

of linear functions σJ
′
M → σJ

′
M

(4.7.8) chξ1(
wφ, wJ) · P ◦R(θ(w)w−1) ◦ IGθ−1 ◦ s = R(δ

1/2
P (w,θφ)(P )) ◦ IMθ−1 .

Before proving this, let us use it to complete the proof of Lemma 4.5.4. Suppose that
(4.7.4) does not hold. Fix a basis v1, . . . , vn for σJ

′
M . Then for some index i, the element

R(δ
1/2
P (w,θφ)(P )) ◦ IMθ−1(vi)
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has a non-zero vi-component. By Lemma 4.7.1

(4.7.9) R(θ(w)w−1) ◦ IGθ−1(Φ̃
(vi)
1 )

has a non-zero Φ̃
(vi)
1 -component. But this implies that the support of (4.7.9) meets PJ ′. (Use

the fact that ker(P) is spanned by the functions Φ̃τ ∈ iGP (δ
−1/2
P σ)J

′

supported on sets PτJ ′,

where τ ∈ EW (P, J ′) and τ 6= 1.) This in turn means that the support of IGθ−1Φ̃
(vi)
1 meets

Pθ(w)Jw−1. On the other hand, it is clear that

supp(IGθ−1Φ
(vi)
1 ) = PwJw−1.

Thus Pθ(w)J = PwJ . Since w and θ(w) are each in EW (P, J), we must have θ(w) = w, a
contradiction. This completes the proof of Lemma 4.5.4, modulo Lemma 4.7.1.

4.7.2. Proof of Lemma 4.7.1. In light of (4.7.7), it is enough to prove the equality

(4.7.10) chξ1(
wφ, wJ) · P ◦R(θ(w)w−1) ◦ s = R(δ

1/2
P (w,θφ)(P ))

of linear functions σ
wJ∩M → σJ

′
M .

Now the inclusion σ →֒ iMBM
(ξ) induces an inclusion iGP (δ

−1/2
P σ) →֒ iGP (δ

−1/2
P iMBM

(ξ)) ∼=

iGB(δ
−1/2
P ξ). The following diagram commutes

(4.7.11) iGP (δ
−1/2
P σ)

P

��

�

� // iGB(ξ1)

P ′

��
σ

s

TT

�

� // iMBM
(ξ),

s′

TT

where P ′ is the operator Φ̃ 7→ Φ̃|M(E). Let us make explicit s′ = s′wJ : given Φ ∈ iMBM
(ξ)

wJ∩M ,

s′Φ =: Φ̃ is the unique element in iGB(ξ1)
wJ which is supported on P wJ and which satisfies

Φ̃|M(E) = Φ.
It is therefore enough to prove (4.7.10) for P ′ resp. s′ in place of P resp. s. Thus, Lemma

4.7.1 will follow from the next lemma.

Lemma 4.7.2. Define the right action ∗ on iMBM
(ξ) using the measure which gives wJ ∩M

volume 1. Let Φ ∈ iMBM
(ξ)

wJ∩M . Let Φ̃ = s′Φ ∈ iGB(ξ1)
wJ , as defined above. Then for any

y ∈M(E), we have the identity

(4.7.12) chξ1(
wφ, wJ) · Φ̃(yθ(w)w−1) = Φ ∗ [δ

1/2
P (w,θφ)(P )](y).

Proof. We have

Φ ∗ [δ
1/2
P (w,θφ)(P )](y) =

∫

M(E)
Φ(m)δ

1/2
P (m−1y)(w,θφ)(P )(m−1y)dmw

=

∫

M(E)

∫

N(E)
Φ̃(mn)w,θφ((mn)−1y) dnw dmw

=

∫

M(E)

∫

N(E)

∫

J
Φ̃(mnwjw−1)w,θφ((mnwjw−1)−1y) dj dnw dmw,
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where voldj(J) = 1. On the other hand, since supp(Φ̃) ⊆ MN wJ , we can write this via the
substitution x = mnwjw−1 as∫

G(E)
Φ̃(x)w,θφ(x−1y) dx = Φ̃ ∗ (wφ)(yθ(w)w−1).

The result now follows from the fact that wφ ∈ Z(HwJ(G(E))). We have proved Lemma
4.7.2, and thus also Lemma 4.7.1. Thus, we have proved Lemma 4.5.4. �

4.8. Proof of Proposition 3.3.1. Consider (4.7.12) in the special case w = 1 and E = F .
Assume φ ∈ Z(HJ(G(F ))). In light of (4.7.3), equation (4.7.12) asserts that the function
φ(P ) := φ(P (F )) acts on the right on iMBM

(ξ1)
JM by the scalar chξ1(φ, J) := ξ−1

1 (B−1φ). Since

this holds for every unramified character ξ1, the function φ(P ) necessarily belongs to the
center Z(HJ∩M (M(F ))). Furthermore, we have

B−1(φ(P )) = B−1(φ)

as elements of RWM (F ). In other words, the diagram in Proposition 3.3.1 commutes. �

5. Various reductions

In this section we reduce the fundamental lemma to the special case where G = Gad and
γ is a strongly regular elliptic element, which is a norm. (Recall that we call a regular semi-
simple element γ ∈ G strongly regular if Gγ is a torus.) Further, we show that it is enough
to prove the required matching for a dense subset of such elements γ. We proceed using a
series of steps, most of which are very similar to the corresponding reductions in the case
of spherical Hecke algebras. We will summarize these steps, explaining in some detail those
which are substantially different from the spherical case. No claim of originality is made in
this section.

5.1. Definition of stable twisted orbital integral (Review). As usual G denotes an
unramified connected reductive F -group. Let δ ∈ G(E) be such that N δ ∈ G(F ) is semi-
simple. Recall that G◦

δθ denotes the identity component of the F -group Gδθ (the latter is
denoted by Isδ in [Ko82]). Let e(δ) := e(G◦

δθ) denote the sign attached by Kottwitz [Ko83]
to the connected reductive F -group G◦

δθ. Further, define a(δ) to be the cardinality of the set

(5.1.1) ker[H1(F,G◦
δθ) → H1(F,Gδθ)].

For any function φ ∈ C∞
c (G(E)), we define its stable twisted orbital integral by

(5.1.2) SOδθ(φ) =
∑

δ′

e(δ′) a(δ′)TOδ′θ(φ),

where TOδ′θ(φ) is defined as in (4.4.1). Here δ′ ranges over θ-conjugacy classes in G(E) which
are stably θ-conjugate to δ (cf. [Ko82]). The definition of SOγ(f) for a semi-simple element
γ ∈ G(F ) and f ∈ C∞

c (G(F )) can be recovered from the special case E = F (and so θ = id).

5.2. The case where γ is not a norm. As is now well-known, the vanishing statement
when γ is not a norm was justified incorrectly in [Cl90], using a global argument. Labesse
later gave a correct, purely local, argument in [Lab99], Prop. 3.7.2. Here, we simply adapt
Labesse’s reasoning to our setting of parahoric Hecke algebras.

Fix φ ∈ Z(HJ(G(E))). If γ is not a norm, then we must show that SOγ(bφ) = 0. First,
assume γ is elliptic. Then Labesse’s arguments from loc. cit. Prop. 2.5.3, Lemme 3.7.1, and
Prop. 3.7.2 apply to our situation (replacing HK(G(E)) with Z(HJ(G(E))) throughout) to
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show the following stronger vanishing statement: if γ′ ∈ G(F ) is stably conjugate to γ, then
bφ(g−1γ′g) = 0 for every g ∈ G(F ); thus obviously Oγ′(bφ) = 0.

Now if γ is non-elliptic, we can use our descent formula (4.4.6) to deduce that Oγ′(bφ) still
vanishes for any γ′ ∈ G(F ) which is stably conjugate to γ.

Thus, in the reductions to follow, we may assume whenever convenient that γ is a norm.

5.3. Lemmas needed to pass between G and certain z-extensions of G. Here we
follow closely the ideas in [Cl90], §6.1 and [Ko86b], §4, but we arrange things so that it is
clear everything works in our setting.

Choose a finite unramified extension F ′ ⊃ F which contains E and splits G. Consider a
z-extension of F -groups

1 // Z // H
p // G // 1,

where Z is a finite product of copies of RF ′/FGm. As usual, we are assuming Hder = Hsc.
Recall that p is surjective on E- and F -points. Choose an extension of θ to an element, still
denoted θ, in Gal(F ′/F ).

Let Z(E)1 := Z(E)∩Z(L)1, the maximal compact subgroup of Z(E). Endow Z(E) (resp.
Z(F )) with the Haar measure giving Z(E)1 (resp. Z(F )1) volume 1. The norm homomor-
phism N : Z(E) → Z(F ) is surjective and determines a measure-preserving isomorphism

N : Z(E) → Z(F )

where Z(E) := Z(E)/(1 − θ)(Z(E)). The surjectivity of N : Z(E) → Z(F ) follows from the
proof of [Ko82], Lemma 5.6 (our z-extension is adapted to E in the terminology of loc. cit.).
Also, here we give the compact subgroup (1 − θ)(Z(E)) = (1 − θ)(Z(E)1) the measure
with total volume 1, and in the sequel we use this and our chosen measure on Z(E) to

determine the quotient measure on Z(E). Of course N sends the maximal compact subgroup

Z(E)1/(1− θ)(Z(E)) of Z(E) isomorphically onto the maximal compact subgroup Z(F )1 of
Z(F ), and hence N : Z(E)1 ։ Z(F )1 is surjective.

Let χ : Z(F ) → C× denote an arbitrary smooth character. For f ∈ C∞
c (H(F )) define the

locally constant function fχ on h ∈ H(F ) with compact support modulo Z(F ) by

fχ(h) =

∫

Z(F )
f(hz)χ−1(z) dz.

For φ ∈ C∞
c (H(E)) define φχN analogously (here χN = χ ◦ N is a smooth character on

Z(E)). The (twisted) orbital integrals of fχ (resp. φχN ) exist at (θ)-semi-simple elements.

In the following lemma, write χ = 1 for the trivial character , and let φ resp. f denote the
function φ1 resp. f1 when it is viewed as an element in C∞

c (G(E)) resp. C∞
c (G(F )).

Lemma 5.3.1. Let φ ∈ C∞
c (H(E)) and f ∈ C∞

c (H(F )). Then:

(i) (φ, f) are associated if and only if (φχN , fχ) are associated for every χ;

(ii) suppose φ resp. f are bi-invariant under compact open subgroups K̃ resp. K which

satisfy N(K̃∩Z(E)) = K∩Z(F ) and K̃ ⊃ (1−θ)(Z(E)); then in (i) we need consider
only characters χ which are trivial on K ∩ Z(F );

(iii) let J denote a parahoric subgroup of H(F ); if φ ∈ HJ(H(E)) resp. f ∈ HJ(H), then
in (i) we need consider only unramified characters χ on Z(F );

(iv) (φ1, f1) are associated if and only if (φ, f) are associated.
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Proof. We change notation and suppose δ ∈ H(E) (resp. γ ∈ H(F )) and write δ := p(δ)
(resp. γ := p(γ)). We have the formulas holding for all χ:

∫

Z(E)
χ−1(Nv) SOH

vδθ(φ) dv = SOH
δθ(φχN )(5.3.1)

∫

Z(F )
χ−1(z) SOH

zγ(f) dz = SOH
γ (fχ).(5.3.2)

These imply (i) and (ii). For (ii), the point of the hypotheses on K̃ and K is to ensure that

N induces an isomorphism from Z(E) modulo K̃ ∩ Z(E)/(1 − θ)(Z(E)) onto Z(F ) modulo
K ∩ Z(F ).

Part (iii) follows from (ii), by taking K̃ = J(E) and K = J and noting that J(E) ∩ Z(E)
resp. J ∩ Z(F ) is the maximal compact subgroup of Z(E) resp. Z(F ).

For χ = 1 we have for γ = N δ

SOH
δθ(φ1) = SOG

δθ
(φ)(5.3.3)

SOH
γ (f1) = SOG

γ (f).(5.3.4)

Here we have used Hγ(F ) = p−1(G◦
γ(F )) and Z(E)Hδθ(F ) = p−1(G◦

δθ
(F )). These follow

from the surjectivity of Hγ(F ) → G◦
γ(F ) and Hδθ(F ) → G◦

δθ
(F ). Part (iv) follows. �

Remark. Recall that the factors a(δ′) resp. a(γ′) in (5.1.2) are needed precisely to make
the relation (5.3.3) resp. (5.3.4) hold. Indeed, p induces a surjective map from the set

{θ-conjugacy classes δ′ ∈ H(E) stably θ-conjugate to δ}

onto the set

{θ-conjugacy classes δ
′
∈ G(E) stably θ-conjugate to δ},

and the fiber over the class of δ
′
can be identified with the set

ker[H1(F,G◦
δ
′
θ
) → H1(F,G

δ
′
θ
)].

Denoting G̃ := ResE/F (GE), the key point here is that p induces a bijection

ker[H1(F,Hδθ) → H1(F, H̃)] −̃→ ker[H1(F,G◦
δθ

) → H1(F, G̃)],

and moreover the set of θ-conjugacy classes which are stably θ-conjugate to δ corresponds to
the image of

ker[H1(F,G◦
δθ

) → H1(F, G̃)]

in

ker[H1(F,Gδθ) → H1(F, G̃)].

See [Ko82], especially p. 804.

Lemma 5.3.2. Let J denote the parahoric subgroups in H and G corresponding to the facet
aJ . The map φ 7→ φ determines a surjective homomorphism Z(HJ(H(E))) → Z(HJ(G(E))).
This is compatible with the base change homomorphisms, in the sense that

(5.3.5) b(φ) = bφ.
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Proof. For g ∈ G(E) we write φ(g) = PZφ(g) :=
∫
Z(E) φ(hz) dz, where h ∈ H(E) is any

element with p(h) = g. By considering the actions on unramified principal series, one checks
that if φ ∈ Z(HJ(H(E))), then PZφ ∈ Z(HJ(G(E))) and the following formula holds (relative
to either E or F ):

B−1(PZφ) = p(B−1φ).

On the right hand side, p denotes the homomorphism C[X∗(A
E
H)] → C[X∗(A

E)] induced by

p : H → G, where AEH denotes a maximal E-split torus in H whose image under p is AE .
(There is an obvious variant of all this for E = F .) This easily implies both the surjectivity
of φ 7→ PZφ and the formula (5.3.5). �

Lemma 5.3.3. Assume Z = Z(H). Suppose that (φ, bφ) are associated for every φ ∈
Z(HJ(H(E))). Then (φ, bφ) are associated for every φ ∈ Z(HJ(H(E))).

Proof. We follow the argument of [Cl90], bottom of p. 284. Let π : H → H/Hder =: D denote
the projection of H onto its cocenter. The map π : Z(F ) → D(F ) is an isogeny, and thus
induces a surjection η 7→ ηπ from unramified characters of D(F ) to those of Z(F ). Note that
this surjection is not necessarily a bijection.

Now suppose χ is an unramified character on Z(F ). Let HJ,χN denote the algebra of
J(E)-bi-invariant functions onH(E) which are compactly supported modulo Z(E) and which
transform by χN under Z(E). The product of φ1, φ2 ∈ HJ,χN is a function whose value at
h ∈ H(E) is given by

φ1 ∗ φ2(h) =

∫

H(E)/Z(E)
φ1(y)φ2(y

−1h) dy

where dy is the Haar measure on G(E) = H(E)/Z(E) compatible with the usual one on
H(E) determined by J(E) and that on Z(E) fixed above.

Write χ = ηπ for some unramified character η on D(F ). For φ ∈ C∞(H(E)), define a
function φ⊗ ηN by

(φ⊗ ηN)(h) = φ(h) η(Nπ(h)), h ∈ H(E).

Then the map φ 7→ φ⊗ ηN determines an algebra isomorphism HJ,1N →̃ HJ,χN . Of course
over F we have similar definitions and statements, but we can drop the N from the notation.

We have the following three equalities:

SOH
δθ(ψ ⊗ ηN) = ηπ(Nδ) SOH

δθ(ψ), ψ ∈ C∞(H(E))(5.3.6)

(φ⊗ ηN)1 = φχ−1N ⊗ ηN, φ ∈ HJ(H(E))(5.3.7)

b(φ⊗ ηN) = bφ⊗ η, φ ∈ Z(HJ(H(E))).(5.3.8)

The first two equalities are immediate (for the first, we are assuming ψ is such that the
twisted orbital integrals of ψ exist!). For the third, assume φ ∈ Z(HJ(H(E))). Using (4.7.3)

we can compute the action of φ ⊗ ηN on unramified principal series i
H(E)
B(E) (ξ)

J(E). We find

it acts by the scalar by which φ acts on i
H(E)
B(E) (ξ · η

−1Nπ)J(E). Thus, φ ⊗ ηN belongs to

Z(HJ(H(E))). Now suppose ξ is an unramified character of T (F ) ⊂ H(F ). Then b(φ⊗ ηN)

acts on i
H(F )
B(F )(ξ)

J by the scalar by which φ⊗ ηN acts on i
H(E)
B(E) (ξN)J(E), in other words the

scalar by which φ acts on i
H(E)
B(E) (ξN · η−1Nπ)J(E). On the other hand, that is the scalar by

which bφ⊗ η acts on i
H(F )
B(F ) (ξ)

J . This proves the third equality.
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Now we can prove the lemma. By Lemmas 5.3.2 and 5.3.1 (iv), our hypothesis is that
(φ1, (bφ)1) are associated for all φ ∈ Z(HJ(H(E))). Now fix such a φ. Then for all η,
(φ ⊗ ηN)1 and b(φ ⊗ ηN)1 = (bφ ⊗ η)1 are associated (cf. (5.3.8)). Then using (5.3.7) and
(5.3.6) we deduce that (φη−1πN , (bφ)η−1π) are associated. Since this holds for all η and any
unramified character of Z(F ) is of the form ηπ, the lemma follows from Lemma 5.3.1 (iii). �

5.4. Summary of reduction steps. As noted above we may assume γ is a norm; write
γ = N δ.

(1) We may assume Gder = Gsc. Indeed, for given G take H to be a z-extension as above.
Then using Lemmas 5.3.1 and 5.3.2 we see that the fundamental lemma for H implies
the fundamental lemma for G.

(2) We may assume γ is elliptic. We work under assumption (1). If γ is non-elliptic, we
use Lemma 4.2.1 and the discussion after it to associate to γ a proper F -Levi subgroup
M containing Gγ . By induction on semi-simple ranks, the fundamental lemma is
known for M . We then use our descent formulas (4.4.4) and (4.4.6), which can be
compared (also in their stable incarnations) because of the lemmas of subsection 4.5.

(3) We may assume γ is regular. This is Clozel’s Proposition 7.2 in [Cl90]. Note that it
is explained there under assumptions (1) and (2).

(4) We may assume G is such that Gder = Gsc and Z(G) is an induced torus (of the
form considered above). We work under assumptions (1) and (3). Clozel proves this
reduction in [Cl90], §6.1(b), in the case of spherical Hecke algebras. Exactly the same
reasoning applies here, with the following minor modifications: where Clozel uses
the Satake isomorphism S, we use the inverse B−1 of the Bernstein isomorphism.
Where Clozel uses the characteristic functions of the sets G(OF )̟λG(OF ), we use
the Bernstein functions zλ. Further, where Clozel invokes the fundamental lemma for
the unit elements in spherical Hecke algebras, we invoke the analogous result for the
unit elements in parahoric Hecke algebras (also proved in [Ko86b]). Finally, where
Clozel uses a descent argument, we need to use our formula (4.4.5) with bφ replaced
by appropriate unit elements in parahoric Hecke algebras for G(F ).

(5) We may assume G is adjoint. We consider again our z-extension p : H → G, but
now we assume Z = Z(H), so that G = Had. By (4), it is now enough to verify
the fundamental lemma for groups having the properties enjoyed by H. But Lemma
5.3.3 shows that the fundamental lemma for G implies the fundamental lemma for
H. Hence it is enough to verify the fundamental lemma for adjoint groups.

(6) We may assume γ is strongly regular elliptic. Indeed, as explained in [Cl90], p.
292, it is now enough (by a continuity argument) to verify the matching of (twisted)
orbital integrals for any dense set of θ-regular θ-elliptic elements δ. Note: when
approximating a regular element in an adjoint group by strongly regular elements,
the presence of the factors a(δ′) in (5.1.2) complicates the reduction, since those
factors are trivial for strongly (θ-)regular elements. To get around this we may carry
out that approximation in an appropriate z-extension and then use formulas (5.3.3)
and (5.3.4).

Conclusion: We may assume G = Gad, and γ is a strongly regular elliptic element, which is
a norm. Moreover, it is enough to prove the required matching for any dense subset of such
elements γ.
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6. A compact trace identity and its inversion

A very useful theory of compact traces was worked out by Clozel in [Cl89]. In loc. cit. Prop. 1
Clozel gives an expression for the trace of a function f ∈ C∞

c (G(F )) in terms of the compact
traces on Jacquet modules of constant terms associated to f , the conjugation-average of f
over a good maximal compact open subgroup of G(F ). He also establishes an inversion of
this formula which expresses compact traces in terms of ordinary traces on Jacquet modules.

In our setting, we need a version of this which applies to central elements in parahoric
Hecke algebras HJ(G). Since the operation f 7→ f does not preserve J-bi-invariance, it is
necessary to establish a version of Clozel’s formula (more importantly its inversion) which
does not involve the average f . Our version of Clozel’s formula (resp. its inversion) is given
in Prop. 6.2.2 (resp. Prop. 6.3.1), and it holds for all smooth compactly-supported functions
on G(E). For functions in HJ(G(E)), this inversion formula can be simplified (Cor. 6.3.3);
for functions in the center Z(HJ(G(E))), further simplification is possible (subsection 6.4)
and this yields the statement, namely Prop. 6.4.2, which is actually used in the final step of
the proof in section 9.

The approach to compact traces which seemed easiest to adapt to our setting is contained
not in Clozel [Cl89], but rather in Kottwitz’ (unpublished) notes for his Chicago seminar talks
on Clozel’s work. I am grateful to Kottwitz for providing me with this very useful reference.

6.1. Notation. We denote Γ := Gal(F/F ) throughout this subsection. For the moment G
denotes an arbitrary connected reductive F -group, but later when the norm map N appears,
we will simplify things by assuming G is quasi-split over F .

For M an F -Levi subgroup of G, let AM denote the split component of the center of M .
Let aM = X∗(AM )R. If P = MN is an F -parabolic subgroup of G with Levi factor M , let
∆P denote the set of simple roots for the action of AM on Lie(N).

Suppose we have fixed a minimal F -parabolic P0 = M0N0
3, and consider only standard

F -parabolics P = MN , so that M ⊇ M0 and N ⊆ N0. Set ∆0 := ∆P0 and a0 = aM0 . We
have

aM ⊆ a0 and a0 → aM ,

where the map a0 → aM is given by averaging over the Weyl group WM of M . By duality
the resulting map a0/aG → aM/aG determines an inclusion of bases ∆P ⊂ ∆0.

We can then define τGP to be the characteristic function of the “acute cone” in a0

{H ∈ a0 | α(H) > 0, for all α ∈ ∆P}.

Similarly, we define the characteristic function τ̂GP for the “obtuse cone”

{H ∈ a0 | cα(H) > 0, for α ∈ ∆P},

where H =
∑

α∈∆0
cα(H)α∨ modulo aG.

We also have the Harish-Chandra functions HM : M(F ) → aM . Since aM is the R-vector
space dual of X∗(M)Γ ⊗ R, to define HM it is enough to specify the pairing

M(F ) ×X∗(M)Γ → R

which is done by mapping (m,λ) to logq|λ(m)|F , where q denotes the cardinality of the
residue field of F .

3In case G is unramified, assume P0 = B, the Borel subgroup specified in section 2.
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Now (for simplicity) assume G (hence also M) is quasi-split over F , so that the norm map
N on M(E) takes values in M(F ). Then we also define functions on M(E) by

χN (m) := τGP ◦HM(Nm)

χ̂N (m) := τ̂GP ◦HM(Nm).

Note that HM(Nm) is a well-defined and continuous function of m ∈ M(E). To see this
we pass to a z-extension M ′ of M , and use the fact that HM extends to a homomorphism
M(F ) → aM .

6.2. The compact trace identity. In this subsection we assume that G is an unramified
F -group. Recall that g ∈ G(F ) belongs to the subset G(F )c of compact elements if and only
if the eigenvalues χ of Ad(g) acting on Lie(G) satisfy |χ|F ≤ 1. If M is an F -Levi factor of
an F -parabolic subgroup P = MN of G, then we define

M(F )c,+ = {m ∈M(F )c | the eigenvalues χ for Ad(m) acting on Lie(N) satisfy |χ|F < 1}.

Recall also that G(E)θ−c consists of the θ-semi-simple elements g ∈ G(E) such that N g ∈
G(F )c (in case Gder = Gsc, this is equivalent to requiring that the concrete norm Ng belongs
to G(E)c). Moreover, we define

(6.2.1) Mθ−c,+ = M(E)θ−c,+ := {m ∈M(E) | Nm ∈M(F )c,+}.

Fix an F -Levi M in G. Consider the open subset of G(F )

G(F )M := {g−1mg | g ∈ G(F ), m ∈M(F )c,+}.

The following basic identity holds for f ∈ L1(G(F ), dg):

(6.2.2)

∫

G(F )M

f(g) dg =

∫

M(F )\G(F )

∫

Mc,+

δ−1
P (F )(m) f(g−1mg) dm

dg

dm
.

The same argument which leads to the above formula also proves the following twisted version.
Consider the open subset of G(E)

G(E)(Mθ−c,+) = {g−1mθg | g ∈ G(E), m ∈M(E)θ−c,+}.

Then for any f ∈ L1(G(E), dg), we have

(6.2.3)

∫

G(E)(Mθ−c,+)
f(g) dg =

∫

M(E)\G(E)

∫

Mθ−c,+

δ−1
P (F )(Nm) f(g−1mθg) dm

dg

dm
.

Now let P0 = M0N0 = TU be our fixed minimal F -parabolic, and consider only standard
F -parabolics P = MN . Summing (6.2.3) over all standard F -parabolics yields

Lemma 6.2.1. For all f ∈ L1(G(E), dg), we have

(6.2.4)

∫

G(E)
f(g) dg =

∑

P=MN

∫

M(E)\G(E)

∫

Mθ−c,+

δ−1
P (E)(m) f(g−1mθg) dm

dg

dm
.

On the other hand, we have the integration formula for ψ ∈ L1(M(E)\G(E), dgdm)

(6.2.5)

∫

M(E)\G(E)
ψ(g)

dg

dm
=

∑

w∈EW (P,J)

q−1
E,w

∫

N

∫

J
ψ(nwj) dj dn,
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a consequence of (4.3.2); in particular we are using the measures dj and dn from (4.3.2). Now
we define for any w ∈ EW (P, J), a function fP,J,w on M(E) by the formula

(6.2.6) fP,J,w(m) :=

∫

N

∫

J
f(j−1w−1mnθ(w) θj) dj dnw,

where dnw is the measure onN(E) such that voldnw(N∩ wJ) = 1. Consider the automorphism
of N(E) given by n 7→ n−1mθ(n)m−1 for m ∈Mθ−c,+. The absolute value of the Jacobian of
this map is identically 1. Substituting (6.2.5) and (6.2.6) into (6.2.4), and using this change
of variable, we derive the following equation

(6.2.7)

∫

G(E)
f(g) dg =

∑

P=MN

∑

w∈EW (P,J)

∫

Mθ−c,+

fP,J,w(m)dmw,

where dmw is the measure on M(E) such that voldmw(M ∩ wJ) = 1. Consider two functions
f1, f2 on G(E) whose product is integrable, and set

〈f1, f2〉 =

∫

G(E)
f1(g)f2(g) dg

〈f1, f2〉c =

∫

G(E)θ−c

f1(g)f2(g) dg.

Similar notation will apply to functions on M(E). Following Harish-Chandra, let ΘΠθ denote
the locally integrable function on G(E) representing the functional φ 7→ 〈trace ΠIθ, φ〉, for
φ ∈ C∞

c (G(E)). This means that

(6.2.8) 〈trace ΠIθ, φ〉 = 〈ΘΠθ, φ〉,

where the intertwiner Iθ : Π →̃ Πθ is understood to be fixed (and the representing function
ΘΠθ obviously depends on the choice of Iθ).

We may apply (6.2.7) to f(g) := ΘΠθ(g)φ(g), and in the above notation we get the following
compact trace identity.

Proposition 6.2.2. For every φ ∈ C∞
c (G(E)), we have

(6.2.9) 〈ΘΠθ, φ〉 =
∑

P=MN

∑

w∈EW (P,J)

〈ΘΠNθ , φP,J,w · χN 〉c,

where in the inner summand the Haar measure on M(E) used to form 〈ΘΠNθ , φP,J,w · χN 〉c
is dmw, i.e. the one giving wJ ∩M volume 1.

Proof. The identity
∫

G(E)
ΘΠθ(g)φ(g) dg =

∑

P=MN

∑

w∈EW (P,J)

∫

Mθ−c,+

ΘΠNθ(m)φP,J,w(m) dmw

follows easily using (6.2.4) and (6.2.7) together with the identities for g ∈ G(E) and m ∈
Mθ−c,+

(6.2.10) ΘΠθ(g
−1mθg) = ΘΠθ(m) = ΘΠNθ(m).

The second equality is the twisted version due to Rogawski [Rog] of a theorem of Casselman
[Cas77].

Finally, we use the well-known (and easy) fact that m ∈ M(E)θ−c belongs to Mθ−c,+ if
and only if χN (m) = 1. �



38 T. Haines

6.3. Inversion of the compact trace identity. Let aP := dim(aM ).

Proposition 6.3.1. For any φ ∈ C∞
c (G(E)), we have the formula

(6.3.1) 〈ΘΠθ , φ〉c =
∑

P=MN

(−1)aP −aG
∑

w∈EW (P,J)

〈ΘΠNθ , φP,J,w · χ̂N 〉,

where we use dmw to form 〈· , ·〉 in the inner summand on the right hand side.

Proof. We will apply Proposition 6.2.2 to each summand in the right hand side of (6.3.1).
Let Q = LR denote a standard F -parabolic contained in P , with Levi factor L and unipotent
radical R. We have L ⊆M , R ⊇ N , and Q ∩M = L(R ∩M) is a Levi decomposition of the
F -parabolic Q ∩M ⊆M .

For each w ∈ EW (P, J), consider the subset EW (Q ∩M, wJ ∩M) of WM (E), and let τ
denote an element of that subset. It is clear that τw ∈ (WL\W )min. Furthermore, we can
define the subset EW (Q,J) ⊂ W (E) in such a way that every element of EW (Q,J) can be
written in the form τw for unique elements w ∈ EW (P, J) and τ ∈ EW (Q ∩M, wJ ∩M).
Indeed, in light of Lemma 4.5.2 it suffices to observe that for the natural projection

Q\G/J → P\G/J,

the fiber over w ∈ P\G/J can be identified with Q ∩M\M/wJ ∩M . (Use Lemma 2.9.1,
part (b).)

Lemma 6.3.2. With the notation above, for φ ∈ C∞
c (G(E)), we have

(6.3.2) (φP,J,w)Q∩M,wJ∩M,τ = φQ,J,τw.

Proof. The left hand side is the function on L(E) which assigns to l ∈ L(E) the value

(6.3.3)

∫

N

∫

R∩M

∫

J

∫

wJ∩M
φ(j−1w−1j−1

0 τ−1 lr θτ θj0 n θ(w) θj) dj0 dj drw,τ dnw,

where j0 ∈ wJ ∩M , j ∈ J , r ∈ R ∩M , and n ∈ N . Further, drw,τ is the measure on R ∩M
giving volume 1 to τ (wJ ∩M) ∩R ∩M = τwJ ∩R ∩M .

The integrand can be rewritten as

φ(j−1 (w
−1
j0) (τw)−1 lr( θ(τj0)n) θ(τw) θ(w

−1
j0)θj).

Since w−1
j0 ∈ J , we may suppress the integral over wJ ∩M . Also, n 7→ θ(τj0)n is a measure-

preserving transformation of N(E), so we may suppress the superscript θ(τj0) above n.
Letting drτw denote the measure on R giving τwJ ∩ R volume 1, we have by Fubini’s

theorem the equality of measures on R = (R ∩M) ·N

drτw = drw,τ · dnw.

Indeed,

τwJ ∩R = ( τwJ ∩R ∩M) · ( τwJ ∩N)

= ( τwJ ∩R ∩M) · τ (wJ ∩N),

and conjugation by τ leaves dnw invariant. These remarks are enough to prove the lemma. �

Now we continue with the proof of the proposition. In the expressions below, w resp. τ
will be understood to range over EW (P, J) resp. EW (Q ∩M, wJ ∩M). Further, we will
abbreviate φP,J,w by φw and ψQ∩M,wJ∩M,τ by ψτ . Finally, we simply write τGP resp. τ̂GP in
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place of χN = τGP ◦HM ◦ N resp. χ̂N = τ̂GP ◦HM ◦ N . Then applying Proposition 6.2.2 to
each summand in (6.3.1), the right hand side becomes

∑

P=MN

(−1)aP −aG
∑

w

∑

Q=LR
P⊇Q

∑

τ

〈ΘΠRθ , (φw τ̂
G
P )τ · τ

P
Q 〉c

=
∑

Q=LR

〈ΘΠRθ ,
∑

P⊇Q

(−1)aP −aG
∑

w,τ

φτw τ̂
G
P τ

P
Q 〉c

=
∑

Q=LR

〈ΘΠRθ , [
∑

P⊇Q

(−1)aP −aG τ̂GP τ
P
Q ]

∑

y∈W (Q,J)

φy〉c

= 〈ΘΠθ , φ〉c.

The equality (φw)τ = φτw we used is Lemma 6.3.2. The final equality results from the
well-known result of Arthur ([Ar78], Lemma 6.1) that for fixed standard parabolic Q = LR,

∑

P⊇Q

(−1)aP −aG τ̂GP τ
P
Q =

{
1, if Q = G

0, if Q 6= G.

We also used implicitly the equality (τ̂GP ◦ HM ◦ NM )τ = τ̂GP ◦ HL ◦ NL (which was again

denoted simply by τ̂GP above). This is not hard, the main ingredients being the fact that the
following diagram commutes

L(E) //

HLNL

��

M(E)

HMNM

��
aL/aG // aM/aG,

where the lower horizontal map is the projection given by averaging over the Weyl group
WM , and the fact that the dual of that projection induces the inclusion of bases ∆P →֒ ∆Q.

This completes the proof of Proposition 6.3.1. �

Corollary 6.3.3. Assume φ ∈ HJ(G(E)). Then

(6.3.4) 〈ΘΠθ , φ〉c =
∑

P=MN

(−1)aP −aG
∑

w∈EW (P,J)

〈δ
−1/2
P (E)

ΘΠNθ , (w,θφ)(P ) · χ̂N 〉,

where (·)P (E) is formed using the measure dnw and 〈·, ·〉 is formed using the measure dmw.

6.4. Simplification of the inverted compact trace identity. In this section, we assume
w ∈ EW (P, J) and φ ∈ Z(HJ(G(E))), and we give a formula for the quantity

(6.4.1) 〈δ
−1/2
P (E)ΘΠNθ, (

w,θφ)(P )χ̂N 〉,

especially in the case where φ = zµ. The useful consequence will be the simple description of
the compact trace of a central element, given in Proposition 6.4.2 below.

6.4.1. A variant of Lemma 4.7.1. It will be enough for us to analyze (6.4.1) with ΠN re-
placed by a θ-stable admissible representation σ of M(E) (which is a subquotient of ΠN ).
Furthermore, by [Rog], Lemma 2.1, it is enough to consider the case where σ is irreducible
as an M(E)-representation, which we henceforth assume.
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Now given a representation Π with Iwahori-fixed vectors, we may choose an unramified
character ξ of T (E) such that Π is an irreducible subquotient of iGB(ξ). By Casselman’s the-
orem ([Cas], 6.3.4), the irreducible subquotients of the Jacquet module ΠN are subquotients
of ⊕

η∈(WM (E)\W (E))min

iMBM
( ηξ · δ

1/2
P ).

(Here we used implicitly the identity ηB ∩M = B ∩M ; see Lemma 4.5.2 (a).) Thus, there

exists an element η ∈W (E) such that our given σ is a subrepresentation of iMBM
( ηξδ

1/2
P ). We

fix η and denote ηξδ
1/2
P by ξ′. We set ξ′1 = ηξ.

By definition (6.4.1) is related to the left action of M(E) ⋊ 〈θ〉 on σ. In order to make
explicit computations, we need to pass to right actions, as we did in the proof of Lemma
4.5.4. Recall the anti-involution ι of the Hecke algebra, defined by ιf(x) = f(x−1).

We have the following identity for f ∈ C∞
c (M(E)) and a θ-stable σ:

(6.4.2) trace(L(f) ◦ Iθ; σ) = trace(R(ιf) ◦ Iθ; σ).

We apply this to f = δ
−1/2
P (w,θφ)(P )χ̂N and use (4.7.1) to get

(6.4.3) 〈δ
−1/2
P (E)Θσθ, (

w,θφ)(P )χ̂N 〉 = trace (R(δ
1/2
P ( θ(w),θ−1

ιφ)(P )ιχ̂N ) ◦ Iθ; σ).

We will find an explicit formula for the right hand side of (6.4.3).
Now for any parahoric J and φ ∈ Z(HJ(G(E))), any unramified character ξ of T (E), and

any standard F -parabolic P = MN , we define a scalar quantity

(6.4.4) ch ξ(φ, J,N) :=
∑

ν∈X∗(AE)

χ̂N (̟ν) ξ(̟ν)B−1(φ)(̟ν).

Define the morphisms IGθ , R(w θ(w)−1), P, and s as in the proof of Lemma 4.7.1. The
following variant of that lemma is the key ingredient in our simplification. We postpone its
proof to the next subsection.

Lemma 6.4.1. Suppose σ and ξ′ resp. ξ′1 are as above, so that σ ⊆ iMBM
(ξ′). Let w ∈

EW (P, J). Define the right action R(ψ) = −∗ψ on iMBM
(ξ′) (and σ) using the Haar measure

on M(E) which gives wJM := wJ∩M (or equivalently, J ′
M ) volume 1. Let φ ∈ Z(HJ(G(E))).

Then we have the following equality of linear functions σ
wJM → σ

wJM

(6.4.5) chξ′1(
θ(w)φ, θ(w)J,N) · P ◦R(w θ(w)−1) ◦ IGθ ◦ s = R(δ

1/2
P ( θ(w),θ−1

ιφ)(P ) ιχ̂N ) ◦ IMθ .

This easily yields via (6.4.3) the desired simplification of (6.4.1): it is a linear combination
of terms of the form chηξ(φ, J,N). Indeed, take the trace of both sides of (6.4.5) and note
that the left hand side is a scalar times a matrix which is independent of φ. An argument
like the one in subsection 4.7.1 (see also Lemma 6.4.4 below) shows that the trace of (6.4.5)
vanishes unless w = θ(w). In that case w ∈ W (F ), and the equality B−1(wφ) = B−1(φ)
from subsection 3.3.3 implies chξ′1(

wφ, wJ,N) = chξ′1(φ, J,N), as desired.
Together with Corollary 6.3.3 this yields the following important proposition. To state it

we first introduce some new notation by writing

〈ΘΠθ, φ〉c =: 〈trace ΠIθ, φ〉c =: 〈trace ΠIθ, φ〉θ−c

in anticipation of the argument in section 9 where various kinds of traces (usual, compact,
or θ-compact) need to be distinguished.
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Proposition 6.4.2. Let Π be an irreducible subquotient of iGB(ξ), where ξ is an unramified
character of T (E). Then the functional on φ ∈ Z(HJ(G(E))) given by

φ 7→ 〈trace ΠIθ, φ〉c

is a finite linear combination of functionals of the form

φ 7→
∑

ν∈X∗(AE)

χ̂N (̟ν) ηξ(̟ν)B−1(φ)(̟ν),

where P = MN ranges over standard F -parabolic subgroups, and η ranges over certain
elements of the Weyl group W (E). Restricting our attention to the Bernstein functions
φ = zµ, we see that the functional on µ ∈ X∗(A

E)) given by

µ 7→ 〈trace ΠIθ, zµ〉c

is a finite linear combination of functionals which send µ to

(6.4.6)
∑

λ∈W (E)µ

χ̂N (̟λ) ηξ(̟λ).

6.4.2. Proof of Lemma 6.4.1. We proceed as in the proof of Lemma 4.7.1. Since the analogue
of (4.7.7) holds, it is enough to prove the equality

(6.4.7) chξ′1(
θ(w)φ, θ(w)J,N) · P ◦R(w θ(w)−1) ◦ s = R(δ

1/2
P ( θ(w),θ−1

ιφ)(P )ιχ̂N )

of linear functions σJ
′
M → σ

wJM .
Also, we have a commutative diagram as in (4.7.11), except that ξ resp. ξ1 is replaced

with ξ′ resp. ξ′1. As before, it is therefore enough to prove (6.4.7) for P ′ resp. s′ replacing

P resp. s. Explicitly, for Φ ∈ iMBM
(ξ′)J

′
M , the element s′Φ =: Φ̃ ∈ iGB(ξ′1)

J ′

is the unique one

supported on PJ ′ and satisfying Φ̃|M(E) = Φ.

Since elements of iMBM
(ξ′)

wJM are determined by their values on EW (BM ,
wJM )wJM , it is

enough to prove the following analogue of Lemma 4.7.2.

Lemma 6.4.3. Define the right action ∗ on iMBM
(ξ′) using the measure which gives wJM

(equivalently, J ′
M ) volume 1. Let Φ ∈ iMBM

(ξ′)J
′
M . Let Φ̃ = s′Φ ∈ iGB(ξ′1)

J ′
, as defined above.

Then for any y ∈ τ0
wJM (τ0 ∈ EW (BM ,

wJM )), we have the identity

(6.4.8) chξ′1(
θ(w)φ, θ(w)J,N) · Φ̃(yw θ(w)−1) = Φ ∗ [δ

1/2
P ( θ(w),θ−1

ιφ)(P )ιχ̂N ](y).

Proof. First, we extend χ̂N to a function on M(E)N(E) θ(w)J ⊂ G(E), denoted by χ̃N , by
defining

χ̃N (mnθ(w)jθ(w)−1) = χ̂N (m),

for j ∈ J(E), n ∈ N(E), and m ∈ M(E). Note that χ̃N is well-defined, since HM is trivial
on compact subgroups of M(E).

Now as in the proof of Lemma 4.7.2, we have

Φ ∗ [δ
1/2
P ( θ(w),θ−1

ιφ)(P )ιχ̂N ](y)

=

∫

M(E)

∫

N(E)

∫

J ′

Φ̃(mnj′) ( θ(w),θ−1
ιφ)((mnj′)−1y) ιχ̃N ((mnj′)−1y) dnθ(w) dmθ(w) dj

′

=

∫

G(E)
(χ̃N Φ̃)(x)( θ(w)ιφ)(x−1y w θ(w)−1) dx

= (χ̃N Φ̃) ∗ ( θ(w)ιφ)(y w θ(w)−1).
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Here we have used y ∈ τ0
wJM (thus HM (y) = 0) to justify ιχ̃N (x−1y) = ιχ̃N (x−1) = χ̃N (x).

We have made use of the integration formula (4.3.3) for a function supported on P (E)J ′.

Recall that Φ̃ ∈ iGB(ξ′1)
J ′

is supported on

PJ ′ =
⋃

τ∈EW (BM ,J ′
M)

BτJ ′.

We may write

(6.4.9) Φ̃ =
∑

i∈I

ciΦ̃τi ,

for a finite set of non-zero scalars ci (i ∈ I) and basis elements Φ̃τi ∈ iGB(ξ′1)
J ′

supported on

BτiJ
′, where τi ∈ EW (BM , J

′
M ) ⊂WM (E). We normalize so that Φ̃τi(τi) = 1, for i ∈ I.

We need to prove, finally, that

(6.4.10) chξ′1(
θ(w)φ, θ(w)J,N) · Φ̃τi(yw θ(w)−1) = (χ̃N Φ̃τi) ∗ ( θ(w)ιφ)(y w θ(w)−1).

From now on fix i ∈ I and denote τi simply by τ . Since supp(Φ̃τ ) ⊂ Bτ θ(w)J , we
may consider the left Haar measure db = dtdu on B = TU and its variant dbτ,θ(w) which

is normalized such that the analogue of (4.3.3) holds for functions supported on Bτ θ(w)J .

Using the substitution x = tuτj′ for x ∈ Bτ θ(w)J , we have

(6.4.11)

(χ̃N Φ̃τ ) ∗ ( θ(w)ιφ)(y w θ(w)−1)

=

∫

T

∫

U

∫

J ′

χ̃N (tuτj′) Φ̃τ (tuτj
′) θ(w)ιφ((tuτj′)−1y w θ(w)−1) dj′ duτ,θ(w) dt

=
∑

ν∈X∗(AE)

χ̂N (̟ν) (δ
1/2
B ξ′1)(̟

ν)

∫

U

∫

J
Φ̃τ (τ)

θ(w)ιφ((̟νuτj′)−1y w θ(w)−1) dj′ duτ,θ(w).

In writing χ̃N (tuτj′) = χ̂N (̟ν) for t ∈ ̟ν(T (E) ∩ T (L)1) here we have used the definition
of χ̃N along with the fact that τ ∈ KM (E) (so that HM(τ) = 0).

Setting v̟ντ := 1U̟ντ θ(w)J , the double integral in the last line of (6.4.11) can be written
as

∫

U

∫

J
v̟ντ (̟

νuτj′) θ(w)ιφ((̟νuτj′)−1y w θ(w)−1) dj′ duτ,θ(w)

= (v̟ντ ∗
θ(w)ιφ)(y w θ(w)−1).

On the other hand, recalling (3.1.1-3.1.2), by the very definition of the Bernstein isomorphism

B : C[X∗(A
E)]W (E) →̃ Z(H θ(w)J(G(E))),

we have

v̟ντ ∗
θ(w)ιφ = B−1( θ(w)ιφ) · v̟ντ ,
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where the right hand side is defined by a normalized integration over AE(E), so that

(v̟ν
F τ

∗ θ(w)ιφ)(y w θ(w)−1)

=
∑

λ∈X∗(AE)

δ
1/2
B (̟λ)B−1( θ(w)ιφ)(̟λ) v̟ντ (̟

−λy w θ(w)−1)

= δ
1/2
B (̟−ν)B−1( θ(w)ιφ)(̟−ν) v̟ντ (̟

νy w θ(w)−1)

= δ
1/2
B (̟−ν)B−1( θ(w)φ)(̟ν) Φ̃τ (y w θ(w)−1).

(See the lemma below.) Substituting this into the last line of (6.4.11) above yields the desired
result. Modulo the following lemma, we have verified (6.4.10). This completes the proof of
Lemma 6.4.3 and thus of Lemma 6.4.1 as well. �

Lemma 6.4.4. Write y = τ0
wj, for j ∈ J such that wj ∈ wJ ∩M . Then

(6.4.12) v̟ντ (̟
−λyw θ(w)−1) = v̟ντ (̟

−λτ0wj θ(w)−1)

vanishes unless θ(w) = w, τ = τ0, and λ = −ν, in which case (6.4.12) is 1. Simi-

larly, Φ̃τ (yw θ(w)−1) vanishes unless θ(w) = w and τ = τ0, in which case we also have

Φ̃τ (yw θ(w)−1) = 1.

Proof. The quantity (6.4.12) does not vanish if and only if

̟−λτ0wjθ(w)−1 ∈ U̟ντ θ(w)J,

in other words, if and only if

̟−λτ0w ∈ U̟ντθ(w)J.

In that event, we deduce first that θ(w) = w, and then that τ0 = τ (see the beginning of the
proof of Proposition 6.3.1). Finally, these together imply that ̟−λ−ν belongs to τ0wJ , and
hence λ+ ν = 0. The rest is easy. �

6.5. Deformation of the parameter. In this subsection, we assume G = Gad. We assume

ξ ∈ ÂE is a parameter such that the full unramified principal series representation Π := Πξ =

i
G(E)
B(E)(ξ) is θ-stable. We claim that the compact trace 〈trace ΠIθ, φ〉θ−c depends only on the

unitary part ξu of the parameter ξ (and thus this compact trace remains unchanged if we
alter ξ by an R>0-valued character, so that we may assume, as we shall later on, that the
parameter ξ is non-unitary).

It is enough to give a suitable formula for ΘΠθ(g), where g belongs to the open dense
subset of G(E) consisting of θ-regular θ-semi-simple elements of G(E) (equivalently, N g is
regular semi-simple; see [Cl90], §2.2). We will then examine this formula in the special case
where g is also θ-compact (i.e. N g is compact). By assumption the W (E)-conjugacy class of
ξ is θ-stable. By replacing ξ with a suitable W (E)-conjugate, we may assume θ(ξ) = ξ (see
[Cl90], Lemma 4.7; this is where we need our assumption that G = Gad).

Now since θ(ξ) = ξ, we can describe ΘΠθ(g) using Clozel’s twisted Atiyah-Bott formula
([Cl84], Prop.6). Following Clozel, we use the canonical intertwining operator Iθ : Π →̃ Πθ,
which takes Φ ∈ iGB(ξ) to the function IθΦ defined by IθΦ(g) = Φ(θ−1(g)). Then Clozel’s
formula says that for g ∈ G(E) any θ-regular element we have

(6.5.1) ΘΠθ(g) =
∑

x∈Xgθ

(δ
1/2
B(E)ξ)(x

−1 g θ(x))

|det(1 − d(gθ)x)|F
.
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The notation is as in loc. cit., but let us remark here that X := G(E)/B(E), and x ranges
over the (necessarily finite) set of gθ-fixed points Xgθ in X. Further, ξ is viewed as an
unramified character on T (E) which has been inflated to B(E). Finally, the numerator is a
slight abuse of notation whose precise meaning is the following. If gθ(x) = x and y ∈ G(E)
represents x, then we have y−1gθ(y) ∈ B(E). We write this as y−1gθ(y) = tu, for t ∈ T (E)
and u ∈ U(E). Note that t is well-defined up to θ-conjugacy in T (E). By definition, we have

(δ
1/2
B(E)ξ)(x

−1gθ(x)) := (δ
1/2
B(E)ξ)(t).

It is clear that if g is θ-compact, then so is t: since N g is semi-simple, it is stably-conjugate

to N t. But now setting ξ′ = δ
1/2
B(E)ξ, we see that that since ξ′ ◦ θ = ξ′ and N t is a compact

element (contained, without loss of generality, in T (F ) 4), we have

(ξ′(t))r = ξ′(N t) = ξ′u(N t) = (ξ′u(t))
r.

It follows that ξ′(t) = ξ′u(t), and our claim is proved.

7. Clozel’s temperedness argument

We need the following variant of [Cl90], Lemma 5.5. Recall that the inclusion of Z(HJ(G(E)))
into CJ(G(E)) induces an injective homomorphism Z(HJ(G(E))) →֒ CJ(G(E))/ker.

Lemma 7.0.1. Let ti (i = 1, . . . , N) be distinct elements of ÂE/W (E). Consider the linear
form

(7.0.2) φ 7→
∑

i

ci φ̂(ti) (ci 6= 0)

on Z(HJ(G(E))). Suppose that this linear form is continuous with respect to the topology on
Z(HJ(G(E))) inherited from the Schwartz topology on CJ(G(E))/ker (or equivalently, from

that on CJ(G(E))). Then, for all i, we have ti ∈ ÂEu/W (E).

Proof. Since CJ(G(E))/ker is topologically isomorphic to C∞[ÂEu]
W (E) (Proposition 3.5.1),

Clozel’s proof goes over almost word-for-word to the present situation. Indeed, we consider
the following diagram in place of the one in loc.cit.:

Z(HJ(G(E))) ∼

φ 7→bφ //

��

C[ÂE ]W (E)

��

CJ(G(E))/ker ∼

φ 7→bφ // C∞[ÂEu]
W (E).

We make only the following additional remark. At the end of Clozel’s proof, he makes use of
the family of spherical functions (indexed by dominant coweights λ0) whose Satake transforms
are the functions

∑
λ∈W (E)λ0

tλ. In our context, we may use instead the Bernstein functions

zJλ0
, which have the analogous property with respect to the Bernstein isomorphism. �

4To see this, it helps to use the concrete norm N in place of N . This is legitimate, after passing to a
z-extension of G.
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Remark 7.0.2. In Lemma 5.5 of [Cl90], Clozel assumes that the linear form in question
extends to the Schwartz space. We do not make the analogous assumption that our linear
form extends from Z(HJ(G(E))) to CJ(G(E))/ker. In fact the assumption is unnecessary:
only the continuity of the form on its original domain is used in Clozel’s proof. This is
fortunate, since in our application of this lemma (see section 9) it is quite unclear whether
one could extend the linear form we are working with to CJ(G(E))/ker, or even to CJ(G(E))!

8. The global trace formula and existence of local data

8.1. The global set-up. In this subsection we will summarize a global argument of Clozel
relying on the (twisted) Deligne-Kazhdan trace formula and Kottwitz’ stabilization of its
geometric side, which plays a crucial role in the proof of Theorem 1.0.3 for strongly regular
elliptic elements.

We assume G is adjoint (this is necessary, mainly because it is essential for subsection 6.5).
Clozel’s argument is stated for certain groups G with Gder = Gsc. Our goal here is to show
how it goes over almost unchanged for adjoint groups, as long as the elements in question
are always strongly (θ-) regular, as we can and shall assume.

The first step is to embed the local situation into an appropriate global one. We may
assume G is split over an unramified extension K/F such that E ⊂ K. We choose a degree
[K : F ] cyclic extension of (totally complex) number fields K/F and a finite place v0 of F
over p such that Kv0 is a field and Kv0/F v0

∼= K/F . There is then a degree r = [E : F ]
cyclic extension E/F with E ⊂ K and Ev0/F v0

∼= E/F .
Using the Tchebotarev density theorem (e.g. [Ser], I-2.2), we find a place v1 of F ,

v1 6= v0, such that the corresponding prime ideal remains prime in K, and Gal(Kv1/F v1) =

Gal(K/F ).5 In addition we fix two more auxiliary finite places v2 and v3 of F where E/F
splits completely. We can assume v0 /∈ {v1, v2, v3}.

There is a quasi-split group G over F with the property that G ×F F v0
∼= G. We set

G̃ = ResE/FGE. Let θ denote the F -linear automorphism of G̃ coming from θ ∈ Gal(E/F ) ∼=
Gal(E/F ).

The groups G and G̃ are adjoint, and we may assume they are split over K. Further,
they satisfy the Hasse principle for H1, e.g. ker1(F ,G) = 1 (see [Cl90], p. 293; the Hasse
principle is used in the stabilization of the geometric side of the (twisted) trace formula; see
§6 of [Cl90], and subsection 8.4 below). We have for i = 2, 3 an identification

G(Evi
) = G(F vi

) × · · · ×G(F vi
)

(r factors), the Galois group acting by cyclic permutations. By construction E/F also splits
at every archimedean place v of F , and so G(Ev) decomposes similarly.

As in [Cl90], p. 295, we may assume we have (simultaneous) weak approximation for

G̃ at the places v0, v1, v2, v3. This is used in the proof of Proposition 8.3.1, wherein it is

necessary to choose a strongly θ-regular δ ∈ G̃(F ) which is θ-elliptic at v1, v2, v3, close to a
given (strongly θ-regular) element δ0 ∈ G(E) at v0, and close to 1 at v2.

5This contrasts with Clozel’s assumption that v1 splits completely in K. Our argument in subsection 8.4
requires that v1 remain inert (we need the equality Gal(K/F ) = Gal(Kv1

/F v1
) there), and this explains

why we use different “stabilizing” functions than Clozel – see item (b) in the next subsection. This all seems
necessary because we need to work with adjoint groups rather than groups with simply connected derived
group.
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We will write φ = φv0 ⊗ φv0 = ⊗vφv for a pure tensor element of C∞
c (G(AE)). Similarly

we will write f = f v0 ⊗ fv0 = ⊗vfv for a pure tensor element of C∞
c (G(AF )). We will write

φ for φv0 and f for fv0.
We will always use S3 to denote a finite set of finite places of F such that v3 ∈ S3 and

v1, v2 /∈ S3. We will consider triples (φv0 , f v0 , S3) satisfying the following conditions.

(a) At any finite place v /∈ S3 ∪ {v1, v2}, the group G ×F F v and the extension Ev/F v are
unramified.

(b) fv1 resp. φv1 is (up to a scalar) a (generalized) Kottwitz function on G(F v1) resp. G̃(F v1),
in the sense of Labesse [Lab99], §3.9. We shall discuss their properties below.

(c) f ′v2 is a coefficient of a supercuspidal representation, φv2 = f ′v2 ⊗ · · · ⊗ f ′v2 , and fv2 =
f ′v2 ∗ · · · ∗ f ′v2. Thus (φv2 , fv2) are associated ([Lan], §8), and have non-vanishing (twisted)
orbital integrals at (θ-)elliptic strongly (θ-)regular elements which are close to the identity.

(d) For any v ∈ S3, fv (resp. φv) is supported on the set of strongly regular elements (resp.
elements with strongly regular norms), and (φv , fv) are associated. Moreover, at v3, the
function fv3 (resp. φv3) is supported on the set of elliptic elements (resp. elements with
elliptic norms).

(e) For any finite place v /∈ S3 ∪ {v0, v1, v2}, the function fv (resp. φv) is the unit element of
the spherical Hecke algebra of G(F v) (resp. G(Ev)). Then (φv , fv) are associated by [Ko86b].

(f) At every place v of F where E/F splits, we have φv = f ′v ⊗ · · · ⊗ f ′v and fv = f ′v ∗ · · · ∗ f
′
v,

for an appropriate function f ′v (so that as in (c), (φv, fv) are associated).

Note: at all places v 6= v0, the functions fv and φv are assumed to be associated.

8.2. (Generalized) Kottwitz functions. Suppose again G is adjoint (more generally we
require G to have F -anisotropic center). In [Ko88], Kottwitz introduced the Euler Poincaré
functions fEP on G(F ), compactly-supported functions whose orbital integrals are non-zero
only on elliptic semi-simple elements and are constant on stable conjugacy classes in G(F ).
One can introduce θ-twisted analogues φEP of these on G(E), and Kottwitz’ proof goes over
without difficulty (cf. [Lab99], Prop. 3.9.1) to show that their twisted orbital integrals are
non-zero only on θ-elliptic θ-semi-simple elements and are constant on stable θ-conjugacy
classes.

Labesse [Lab99] calls both fEP and the twisted variants φEP Kottwitz functions (the φEP
are called Lefschetz functions in [Cl93]).

One can use Kottwitz functions to construct associated “stabilizing” functions at the (inert)
place v1. The following theorem of Labesse ([Lab99], Prop. 3.9.2) explains how to define the
functions φv1 and fv1 in 8.1, item (b).

From now on, write E/F in place of Ev1/F v1 . We adapt slightly the notation of loc. cit.,

letting ξ =
∑
χ denote the sum of characters of H0

ab(F,G) which are trivial on the norms from
E, and putting fξ(x) = f(x)ξ(x). If f is a Kottwitz function, Labesse calls fξ a generalized
Kottwitz function.

Proposition 8.2.1 (Labesse). Let φ ∈ C∞
c (G(E)) and f ∈ C∞

c (G(F )) be Kottwitz functions.
Let h = h1/h0, where h0 denotes the number of characters χ appearing in ξ, and h1 :=

|ker[H1(F,G) → H1(F, G̃)]|. Then φ and hfξ are associated functions.

8.3. Continuing the global argument. The very simple trace formula of Deligne-Kazhdan
(see [DKV] §A.1) asserts that if f satisfies conditions (c) and (d) above, then convolution by f
has image in the cuspidal spectrum. A similar assertion holds for φ. Moreover, the geometric
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side of this very simple (twisted) trace formula involves only (θ-)elliptic strongly (θ-)regular
terms. Since we have also imposed condition (b), the geometric side is automatically “stable”:
there are no (twisted) κ-orbital integrals for κ 6= 1. Indeed, it is not hard to adapt the proof
of Lemma 6.5 of [Cl90] to adjoint groups. A few small differences do appear, which we explain
in subsection 8.4.

Let r(f) denote the action of f on the cuspidal spectrum L2
cusp(G(F )\G(AF )). Similarly,

let R(φ) denote the action of φ on L2
cusp(G(E)\G(AE)). Let Iθ denote the intertwining

operator on the same space given by the action of θ, that is, Iθ(ψ)(x) = ψ(θ−1(x)) for
ψ ∈ L2

cusp(G(E)\G(AE)) and x ∈ G(AE).
The following result of Clozel ([Cl90], §6.3) gives a crucial relation between a family of

global character identities and the property that fv0 and φv0 are associated at strongly regular
norms. We say that fv0 and φv0 are associated at strongly regular (elliptic) norms if the
condition in Definition 1.0.1 holds for every strongly regular (elliptic) semi-simple norm γ =
N δ in G(F ).

Proposition 8.3.1 (Clozel). There is a constant c 6= 0 (depending only on (G,E/F )) with
the following property: the functions fv0 and φv0 are associated at strongly regular norms if
and only if we have the equality of traces

(8.3.1) trace (R(φv0 ⊗ φv0)Iθ) = c trace r(f v0 ⊗ fv0),

for every triple (φv0 , f v0 , S3) satisfying conditions (a)-(f) above.

Remark 8.3.2. For G = Gad, the constant c is given by

c =
|Z(Ĝ)Γ|

|ImZ(
̂̃
G)Γ|

,

in the notation of subsection 8.4. The constant c = c1c(D) appearing in [Cl90] has

c(D) =
|π0(D̂

Γ)|

|Imπ0(
̂̃
D

Γ

)|

,

where D resp. D̃ denotes the cocenter of G resp. G̃.

The details appear on p. 295 of [Cl90]. The idea for the “if” statement is as follows. If
γ0 = N δ0 is given at the place v0, we approximate δ0 by δv0 for an appropriate global element

δ ∈ G̃(F ); we require δvi to be θ-elliptic and strongly θ-regular at vi = v1, v2, v3 and close
to 1 at v2. Thus δ is θ-elliptic and strongly θ-regular. Then we may choose the set S3 and
the associated functions fS3 and φS3 such that the geometric sides (of the very simple trace
formulas) corresponding to (8.3.1) – which thanks to 8.4 below take the stabilized form of
equations (6.20) resp. (6.22) of [Cl90] – involve only the term indexed by γ := N δ. The sum of
adelic (twisted) orbital integrals remaining (on either side) can be written as a single product
over all places of local stable (twisted) orbital integrals, and at all places except possibly
v0, these are non-zero (we may arrange) and matching. The character identities (8.3.1) thus
force the matching at v0, namely SOδv0θ

(φv0) = SOγv0
(fv0). A continuity argument then

forces the desired identity SOδ0θ(φv0) = SOγ0(fv0).

8.4. Vanishing of certain κ-orbital integrals (G adjoint). As stated above, we need to
justify how our choice of functions in (b) at the place v1 ensures that there are no (twisted)
κ-orbital integrals for κ 6= 1. We need to alter the argument of Clozel [Cl90], Lemma 6.5, so
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that it works for adjoint groups. However, we temporarily assume G is only connected and
reductive.

Let us switch (mostly) to Clozel’s notation, writing K resp. E resp. F for our K resp. E
resp. F , and Fv1 for F v1 , etc. Set Γ = Gal(F/F ) and Γ1 = Gal(F v1/Fv1). Also, we write G

resp. G̃ in place of G resp. G̃.
Now assume T is an F -subtorus of G of the form T = Gγ for a strongly regular element

γ ∈ G(F ). We have an inclusion

(8.4.1) T →֒ G →֒ G̃,

where the second inclusion is the diagonal F -embedding which identifies G with the group G̃θ

of elements in G̃ invariant under the F -automorphism θ (cyclic permutation of coordinates).
Dually, this yields Γ-equivariant maps

(8.4.2) Z(
̂̃
G) ։ Z(Ĝ) →֒ T̂ .

We can identify Z(Ĝ) canonically with Z(
̂̃
G)θ, and then with Z(

̂̃
G)θ using the isomorphism

N : Z(
̂̃
G)θ →̃ Z(

̂̃
G)θ

given by the norm relative to θ(t1, . . . , tr) = (t2, . . . , tr, t1). When this is done, the first map

in (8.4.2) is identified with the norm map from Z(
̂̃
G) to itself.

Now it makes sense to define the finite abelian groups

A(T/F ) = π0(T̂
Γ)/Imπ0(Z(

̂̃
G)Γ)(8.4.3)

A(T/Fv1) = π0(T̂
Γ1)/Im π0(Z(

̂̃
G)Γ1).

(Compare with [Cl90], Definition 6.3.)

Suppose that δ = (δv)v ∈ G̃(AF ) is such that N δv = γ for all places v of F . Using the

Hasse principle for G̃ as in [Cl90], §6.2, we associate to δ an element

(8.4.4) obs(δ) ∈ H1(AF /F, T )

which vanishes if and only if δ is θ-conjugate in G̃(AF ) to an element of G̃(F ).
We claim that obs(δ) has trivial image under the composition (see [Ko86a])

H1(AF/F, T ) →̃ π0(T̂
Γ)D → π0(Z(

̂̃
G)Γ)D

(notation as in loc. cit.). To check this we may pass to a z-extension of G, adapted to
E/F in the sense of [Ko82], and reduce to the case Gder = Gsc. Let D = G/Gder and set

D̃ = ResE/FDE resp. T̃ = ResE/FTE . The following diagram commutes

H1(AF /F, T ) //

��

π0(T̂
Γ)D

�� &&M

M

M

M

M

M

M

M

M

M

M

H1(AF /F, D̃) //
π0(

̂̃
D

Γ

)D π0(Z(
̂̃
G)Γ)D.

∼oo

By construction obs(δ) is the image in H1(AF/F, T ) of a T (AF )T̃ (F )-valued 1-cocycle which

becomes a 1-coboundary in G̃(AF ). Therefore obs(δ) has trivial image in H1(AF/F, D̃), and
then the diagram yields the claim.
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Therefore for κ ∈ A(T/F ) we may define the pairing 〈obs(δ), κ〉 ∈ C. It is clear that

obs(δ) = 1 if and only if 〈obs(δ), κ〉 = 1 for all κ ∈ A(T/F ).

This means that A(T/F ) is the group coming into the stabilization of the twisted trace
formula, and elements κ ∈ A(T/F ) are used to define the twisted κ-orbital integrals. Consider
the sum

(8.4.5)
∑

δ

〈obs(δ), κ〉TOδθ(φ),

where δ ranges over elements in G(AE) such that N δ = γ, taken up to θ-conjugacy under
G(AE). (See [Cl90], equation (6.15).)

At this point, we once again assume G is an adjoint group. Finally we have reached the
goal of this subsection, which is to check that (8.4.5) vanishes for κ 6= 1, whenever φv1 is a
Kottwitz function as in 8.2. (The analogue for fv1 is similar, but easier.)

Since Kottwitz functions have non-zero twisted orbital integrals only on θ-elliptic elements,
and are constant over stable θ-conjugacy classes, the proof works exactly as in [Cl90], Lemma
6.5, modulo the following ingredient.

Lemma 8.4.1. Suppose T is a maximal F -torus in G which is elliptic at v1, the place fixed
in subsection 8.1. Then the canonical map

(8.4.6) A(T/F ) → A(T/Fv1)

is injective.

Proof. Since T is anisotropic over Fv1 (resp. G̃ is semi-simple) the groups T̂Γ and T̂Γ1 (resp.

Z(
̂̃
G)Γ and Z(

̂̃
G)Γ1) are finite. Write Γ for the group Gal(K/F ) = Gal(Kv1/Fv1). Since G̃

splits over K, we have

Z(
̂̃
G)Γ = Z(

̂̃
G)Γ = Z(

̂̃
G)Γ1 .

Then (8.4.6) becomes the canonical map

T̂Γ/N(Z(
̂̃
G)Γ) → T̂Γ1/N(Z(

̂̃
G)Γ),

where N is the norm homomorphism (the first arrow in (8.4.2)). This is clearly injective. �

We remark that the proof does not require that G be adjoint, but only semi-simple. The
idea of using an injectivity statement like the one in this lemma goes back to Kottwitz [Ko88].

8.5. Existence of local data. Again we assume G = Gad we let F denote our p-adic field.
Let γ denote a strongly regular element of G(F ), and φ an element of Z(HJ(G(E))). For an
element δ ∈ G(E), define

∆(γ, δ) =

{
1, if N δ = γ

0, if N δ 6= γ.

Also, define

Λ(γ, φ) :=
∑

δ

∆(γ, δ)SOδθ(φ) − SOγ(bφ),

where the sum ranges over stable θ-conjugacy classes of elements δ ∈ G(E). The fundamental
lemma is then equivalent to

Λ(γ, φ) = 0

holding for all strongly regular γ (see section 5).
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Following Hales [Ha95], we define local data for G(E), G(F ) to consist of the data (a),(b),
and (c), subject to conditions (1) and (2) below. Let IrrI(G) (resp. IrrθI(G(E))) denote the
set of irreducible (resp. irreducible θ-stable) admissible representations of G(F ) (resp. G(E))
having non-zero Iwahori-fixed vectors.

(a) An indexing set I (possibly infinite);
(b) A collection of complex numbers ai(π) for i ∈ I and π ∈ IrrI(G);
(c) A collection of complex numbers bi(Π) for i ∈ I and Π ∈ IrrθI(G(E)).

(1) For i fixed, the constants ai(π) and bi(Π) are zero for all but finitely many π and Π.
(2) For every function φ ∈ Z(HJ(G(E))), the following are equivalent:

(A) For all i, we have
∑

π ai(π)〈trace π, bφ〉 +
∑

Π bi(Π)〈trace ΠIθ, φ〉 = 0;
(B) For all strongly regular γ, we have Λ(γ, φ) = 0.

The existence of local data for G(E), G(F ) follows from Proposition 8.3.1. Indeed, varying
the functions φv, fv at the archimedean places shows that the identity (8.3.1) is equivalent to
a family of identities, indexed by the archimedean components π∞ of the representations of
G(AF ). Fixing the functions at the places other than v0, for each π∞ we get an identity of
the form ∑

πv0

aπ∞(πv0)〈trace πv0 , fv0〉 +
∑

Πv0

bπ∞(Πv0)〈trace Πv0Iθ, φv0〉 = 0.

Assuming fv0 and φv0 range only over functions bi-invariant under a fixed Iwahori subgroup,
these sums involve only a fixed finite number of terms (the archimedean components and the
level at all finite places being fixed – use Harish-Chandra’s finiteness theorem for cusp forms,
[BJ]). In other words, the finiteness conditions in the definition of local data are satisfied.
Finally, Proposition 8.3.1 says that the functions φv0 = φ and fv0 = bφ are associated at all
strongly regular norms if and only if these identities hold. Since we may as well assume in
(B) that γ is a norm (section 5), we have verified the equivalence of (A) and (B) in condition
(2) of the definition of local data.

9. Proof of the theorem in the strongly regular elliptic case

In this section we assume G = Gad. Let γ denote a strongly regular element of G(F ). We
use the symbol φ to denote an element in Z(HJ(G(E))).

Recall that the fundamental lemma for (γ, φ) is equivalent to

(9.0.1) Λ(γ, φ) = 0.

By the existence of local data, it is enough to show that for every i, the sum of traces in (A)
above vanishes. Fixing i and dropping it from our notation, we need to show

(9.0.2)
∑

π

a(π)〈trace π, bφ〉 +
∑

Π

b(Π)〈trace ΠIθ, φ〉 = 0,

when this is viewed as a distribution on φ ∈ Z(HJ(G(E))). Roughly, our plan is to prove the
vanishing of the left hand side of (9.0.2) by writing it in two different ways, which can represent
the same quantity only if the left hand side of (9.0.2) is identically zero as a distribution on
Z(HJ(G(E))). Our argument is parallel to that in [Cl90], end of §6. At certain key points,
we use minor variations on the arguments of Hales in [Ha95].

Let us first make a preliminary remark on (9.0.2). By descent and our induction hypothesis
that the fundamental lemma holds for groups with smaller semi-simple rank, we know that
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(9.0.2) holds provided that Λ(γ, φ) = 0 for all regular elliptic elements γ (see sections 4, 5).
In particular, if we had

(a) Oγ(bφ) = 0, for all regular elliptic elements γ, and
(b) TOδθ(φ) = 0, for all θ-regular θ-elliptic elements δ,

then (9.0.2) would hold. (Note that if γ is (regular) elliptic, then of course any δ appearing
in Λ(γ, φ) is (θ-regular) θ-elliptic.) Now by Howe’s conjecture and its twisted version (see
[Cl85], Prop. 1, and [Cl90], Thm. 2.8), there exist finite sequences γ1, · · · , γr and δ1, · · · , δs
of regular elliptic resp. θ-regular θ-elliptic elements of G(F ) resp. G(E) such that (a) and
(b) above are equivalent to

(a’) Oγi(bφ) = 0, for all i = 1, · · · , r, and
(b’) TOδjθ(φ) = 0, for all j = 1, · · · , s.

Thus, by linear algebra, the distribution in (9.0.2) can be written as

(9.0.3)
∑

i

aiOγi(bφ) +
∑

j

bj TOδjθ(φ),

for certain scalars ai, bj ∈ C.

Next note that since φ resp. bφ acts by a scalar on the J-fixed vectors in Π resp. π, we

can express the traces in terms of the Fourier transform φ̂. In particular, we can write the
distribution in (9.0.2) as a sum

(9.0.4)
∑

i

ci φ̂(ti),

for scalars ci ∈ C and pairwise distinct parameters ti ∈ ÂE/W (E), where i = 1, . . . ,N .

The first way to express the left hand side of (9.0.2) is a consequence of Clozel’s tem-
peredness argument (section 7). Let us consider the distribution φ 7→

∑
i aiOγi(bφ) on

φ ∈ Z(HJ(G(E))), where Z(HJ(G(E))) is given the Schwartz topology it inherits from
CJ(G(E)) (cf. Cor. 3.5.3). This distribution is Schwartz-continuous, since b is (Cor. 3.5.3)
and since orbital integrals at regular semi-simple elements are tempered distributions. Fur-
thermore, twisted orbital integrals at θ-regular elements are also tempered distributions
([Cl90], Prop. 5.2). Thus the distribution

φ 7→
∑

j

bj TOδjθ(φ)

on HJ(G(E)) is also Schwartz-continuous. Thus we conclude that (9.0.3) hence (9.0.4) is a
Schwartz-continuous linear form on Z(HJ(G(E))). Applying Clozel’s temperedness argument
(Lemma 7.0.1) to (9.0.4) yields:

in (9.0.4), each ti ∈ ÂEu/W (E).

Therefore the left hand side of (9.0.2) for φ = zµ is a sum of the form

(9.0.5)

N∑

i=1

∑

λ∈W (E)µ

ci λ(ti),

where the ti are pairwise distinct elements in ÂEu/W (E). (The scalars ci here differ from
those in (9.0.4) by an overall non-zero scalar.)
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The second way of expressing the left hand side of (9.0.2) comes from the inverted compact
trace identity of section 6. First we claim that the distribution (9.0.3) can be expressed as a
finite linear combination of compact traces of φ and bφ on certain tempered representations.
This assertion is a consequence of Howe’s conjecture, the Kazhdan density theorem, their
twisted analogues, and the fact that the (θ-)regular (θ-)elliptic elements γi (resp. δj) are (θ-

)compact (see the proof of [Ha93], Cor.1.3). Thus there exist parameters si ∈ Â and Sj ∈ ÂE

along with scalars a′i, b
′
j ∈ C (1 ≤ i ≤ m, 1 ≤ j ≤M) such that (9.0.2) can be written as

(9.0.6)
∑

i

a′i 〈trace πi, bφ〉c +
∑

j

b′j 〈trace ΠjIθ, φ〉θ−c,

where πi resp. Πj is an irreducible constituent of πsi resp. ΠSj .
In case si resp. Sj is unitary, then the result of Keys [Keys] implies that πi resp. Πj is a

full unramified principal series, i.e., that πi = πsi resp. Πj = ΠSj . But then by subsection
6.5, its compact trace is the same as that for a principal series induced from a non-unitary
parameter. Therefore we may assume in the expression above that all the parameters si and
Sj are non-unitary.

We now write (9.0.6) more explicitly, using Proposition 6.4.2 (along with its non-twisted
antecedent). We can write (9.0.6) for φ = zµ in the form

(9.0.7)
∑

P

∑

jP

∑

λ∈W (E)µ

c′jP χ̂N (̟λ)λ(t′jP ),

where P = MN ranges over standard F -parabolics, and jP ranges over a finite index set

depending on P . Also, the parameters t′jP ∈ ÂE/W (E) are all non-unitary.

Now following [Ha95], p. 986, there exists a finite collection of hyperplanes {Hi}
l
i=1 through

the origin in X∗(A
E)R such that χ̂N (̟wλ) = χ̂N (̟wλ′), for all N and all w ∈W (E), as long

as λ and λ′ belong to the same component of X∗(A
E)R\(H1∪· · ·∪Hl). (As in loc.cit., we take

the collection consisting of all root hyperplanes and all W (E)-conjugates of the walls of all
obtuse Weyl chambers supp(τ̂GP ).) Fix one component C, on which for each P the function

λ 7→ χ̂N (̟λ) takes the value 1. There is a subset W ′(P ) ⊂ W (E), depending on C and P ,
with the property that for µ any element of C ∩X∗(A

E), we have

χ̂N (̟wµ) =

{
1, if w ∈W ′(P )

0, if w /∈W ′(P ).

Using this we can rewrite (9.0.7) for µ ∈ C, and we can compare the result with (9.0.5). We
get an equation of the form

(9.0.8)
N∑

i=1

∑

w∈W (E)

ci
wµ(ti) =

∑

P

∑

jP

∑

w′∈W ′(P )

c′jP
w′

µ(t′jP ).

The parameters ti are unitary, and the parameters t′jP are non-unitary. By an independence

of characters argument each side must be identically zero as a function of µ ∈ C ∩X∗(A
E).

Since X∗(A
E) is generated as an abelian group by C ∩X∗(A

E), it follows that the left hand
side of (9.0.8) vanishes for all µ ∈ X∗(A

E). Consequently, the distribution (9.0.4) hence the
left hand side of (9.0.2) vanishes identically on Z(HJ(G(E))). This completes the proof of
Theorem 1.0.3. �
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