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Abstract. This paper studies affine Deligne-Lusztig varieties in the affine flag

manifold of a split group. Among other things, it proves emptiness for certain

of these varieties, relates some of them to those for Levi subgroups, extends

previous conjectures concerning their dimensions, and generalizes the superset

method.

1. Introduction

This paper, a continuation of [GHKR], investigates affine Deligne-Lusztig vari-
eties Xx(b) in the affine flag manifold X = G(L)/I of a split group G. To provide
some context we begin by discussing affine Deligne-Lusztig varieties Xµ(b) in the
affine Grassmannian G(L)/G(o).

It is known that Xµ(b) is non-empty if and only if Mazur’s inequality is satisfied,
that is to say, if and only if the σ-conjugacy class [b] of b is less than or equal to [εµ]
in the natural partial order on the set B(G) of σ-conjugacy classes in G(L). This
was proved in two steps: the problem was reduced [KR] to one on root systems,
which was then solved for classical split groups by C. Lucarelli [Lu] and now for all
split groups by Q. Gashi [Ga].

A conjectural formula for dim Xµ(b) was put forward by Rapoport [Ra], who
pointed out its similarity to a conjecture of Chai’s [Ch] on dimensions of New-
ton strata in Shimura varieties. In [GHKR] Rapoport’s dimension conjecture was
reduced to the superbasic case, which was then solved by Viehmann [V1].

Now we return to affine Deligne-Lusztig varieties Xx(b) in the affine flag man-

ifold. Here x denotes an element in the extended affine Weyl group W̃ of G. For
some years now a challenging problem has been to “explain” the emptiness pattern
one sees in the figures in [Re2] and [GHKR]. In other words, for a given b, one wants

to understand the set of x ∈ W̃ for which Xx(b) is empty. Let us begin by discussing
the simplest case, that in which b = 1 and x is shrunken, by which we mean that it
lies in the union of the shrunken Weyl chambers (see [GHKR]). Then Reuman [Re2]
observed that a simple rule explained the emptiness pattern in types A1, A2, and
C2 and conjectured that the same might be true in general. Computer calculations
[GHKR] provided further evidence for the truth of Reuman’s conjecture. However
emptiness in the non-shrunken case remained quite mysterious.
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In this paper, among other things, we give a precise conjecture (namely Conjec-
ture 9.3.2) describing the whole emptiness pattern for any basic b. This is more
general in two ways: we no longer require that b = 1 (though we do require that b
be basic), and we no longer restrict attention to shrunken x. Computer calculations
support this conjecture, and for shrunken x we show (see Proposition 9.4.5) that
the new conjecture reduces to Reuman’s. We prove (see Corollary 9.3.1) one direc-
tion of this new conjecture, namely that emptiness does occur when predicted; it
remains a challenging problem to prove that non-emptiness occurs when predicted.

In fact Proposition 9.2.1 proves the emptiness of certain Xx(b) even when b is
not basic. However, in the non-basic case, there is a second cause for emptiness,
stemming from Mazur’s inequality. One might hope that these are the only two
causes for emptiness. This is slightly too naive. Mazur’s inequality works perfectly
for G(o)-double cosets, but not for Iwahori double cosets, and would have to be
improved slightly (in the Iwahori case) before it could be applied to give an optimal
emptiness criterion. Although we do not yet know how to formulate Mazur’s in-
equalities in the Iwahori case, in section 12 we are able to describe the information
they should carry, whatever they end up being.

We now turn to the dimensions of non-empty affine Deligne-Lusztig varieties in
the affine flag manifold. In [GHKR] we formulated two conjectures of this kind,
and here we will extend both of them (in a way that is supported by computer
evidence).

Conjecture 9.4.1(a) extends Conjecture 7.2.2 of [GHKR] from b = 1 to all basic
b. This conjecture predicts the dimension of Xx(b) for all shrunken x for which
Xx(b) is expected to be non-empty.

Conjecture 9.4.1(b) extends Conjecture 7.5.1 of [GHKR] from translation ele-
ments b = εν to all b. For this we need the following notation: bb will denote a
representative of the unique basic σ-conjugacy class whose image in ΛG is the same
as that of b. (Equivalently, [bb] is at the bottom of the connected component of [b]
in the poset B(G).) In this second conjecture, it is the difference of the dimensions
of Xx(b) and Xx(bb) that is predicted. It is not required that x be shrunken, but
Xx(b) and Xx(bb) are required to be non-empty, and the length of x is required to
be big enough. In the conjecture we phrase this last condition rather crudely as
`(x) ≥ Nb for some (unspecified) constant Nb that depends on b. However the evi-
dence of computer calculations suggests that for fixed b, having x such that Xx(b)
and Xx(bb) are both non-empty is almost (but not quite!) enough to make our
prediction valid for x. It would be very interesting to understand this phenome-
non better, though some insight into it is already provided by Beazley’s work on
Newton strata for SL(3) [Be]. In addition, when `(x) ≥ Nb, we conjecture that the
non-emptiness of Xx(b) is equivalent to that of Xx(bb).

The main result of this paper is Theorem 2.1.2, from which all our results on
emptiness follow. This theorem states that for any semistandard parabolic subgroup
P = MN and any P -alcove (see Definition 2.1.1) xa, every element of IxI is σ-
conjugate under I to an element of IMxIM .

We also use Theorem 2.1.2 to prove an “Iwahori version” of the Hodge-Newton
decomposition (see Theorem 2.1.4), in the form of a bijection

JM
b \XM

x (b) →̃ JG
b \XG

x (b),
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valid when xa is a P -alcove (so that in particular x ∈ W̃M ) and b ∈ M(L). It is
striking that the notion of P -alcove, discovered in the attempt to understand the
entire emptiness pattern for the Xx(b) when b is basic, is also precisely the notion
needed for our Hodge-Newton decomposition.

For computer calculations, and perhaps also for theoretical reasons, it is useful
to extend Reuman’s superset method [Re2] from b = 1 to general b. To that end
we introduce (see Definition 13.1.1) the notion of fundamental alcove ya. We show
that for each σ-conjugacy class [b] there exists a fundamental alcove ya such that
the whole double coset IyI is contained in [b]. We then explain why this allows one
to use a superset method to analyze the emptiness of Xx(b) for any x.

In addition we introduce a generalization of the superset method. The superset
method is based on I-orbits in the affine flag manifold X. Now [GHKR] used
orbits of U(L), where U is the unipotent radical of a Borel subgroup containing
our standard split maximal torus A. The generalized superset method interpolates
between these two extremes, being based on orbits of IMN(L) on X, where P =
MN is a standard parabolic subgroup of G. Theorem 11.2.1 and the discussion
preceding it explain how the generalized superset method can be used to study
dimensions of affine Deligne-Lusztig varieties.

Finally, for any standard parabolic subgroup P = MN and any basic b ∈ M(L)
Proposition 12.0.6 gives a formula for the dimension of Xx(b) in terms of dimensions
of affine Deligne-Lusztig varieties for M as well as intersections of I-orbits and
N ′(L)-orbits for certain Weyl group conjugates N ′ of N . This generalizes Theorem
6.3.1 of [GHKR] and is also analogous to Proposition 5.6.1 of [GHKR], but with
the affine Grassmannian replaced by the affine flag manifold.

The first and second named authors thank the American Institute of Mathemat-
ics for the invitation to the workshop on Buildings and Combinatorial Represen-
tation Theory which provided an opportunity to work on questions related to this
paper. The second and third named authors thank the University of Bonn and the
Max-Planck-Institut für Mathematik Bonn for providing other, equally valuable
opportunities of this kind.

We are very grateful to Eva Viehmann for her helpful remarks on the manuscript.

Notation. We follow the notation of [GHKR], for the most part. Let k be a finite
field with q elements, and let k be an algebraic closure of k. We consider the field
L := k((ε)) and its subfield F := k((ε)). We write σ : x 7→ xq for the Frobenius
automorphism of k/k, and we also regard σ as an automorphism of L/F in the
usual way, so that σ(

∑
anεn) =

∑
σ(an)εn. We write o for the valuation ring k[[ε]]

of L.
Let G be a split connected reductive group over k, and let A be a split maximal

torus of G. Write R for the set of roots of A in G. Put a := X∗(A)R. Write W
for the Weyl group of A in G. Fix a Borel subgroup B = AU containing A with
unipotent radical U , and write R+ for the corresponding set of positive roots, that
is, those occurring in U . We denote by ρ the half-sum of the positive roots. For
λ ∈ X∗(A) we write ελ for the element of A(F ) obtained as the image of ε ∈ Gm(F )
under the homomorphism λ : Gm → A.

Let C0 denote the dominant Weyl chamber, which by definition is the set of
x ∈ a such that 〈α, x〉 > 0 for all α ∈ R+. We denote by a the unique alcove
in the dominant Weyl chamber whose closure contains the origin, and call it the
base alcove. As Iwahori subgroup I we choose the one fixing the base alcove a; I
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is then the inverse image of the opposite Borel group of B under the projection
K := G(o) −→ G(k). The opposite Borel arises here due to our convention that ελ

acts on the standard apartment a by translation by λ (rather than by translation
by the negative of λ), so that the stabilizer in G(L) of λ ∈ X∗(A) ⊂ a is ελKε−λ.
With this convention the Lie algebra of the Iwahori subgroup stabilizing an alcove
b in the standard apartment is made up of affine root spaces εjgα for all pairs (α, j)
such that α− j ≤ 0 on b (with gα denoting the root subspace corresponding to α).

We will often think of alcoves in a slightly different way. Let ΛG denote the
quotient of X∗(A) by the coroot lattice. The apartment A corresponding to our
fixed maximal torus A can be decomposed as a product A = Ader × VG, where
VG := ΛG ⊗R and where Ader is the apartment corresponding to Ader := Gder ∩A
in the building for Gder. By an extended alcove we mean a subset of the apartment
A of the form b × c, where b is an alcove in Ader and c ∈ ΛG. Clearly each
extended alcove determines a unique alcove in the usual sense, but not conversely.
However, in the sequel we will often use the terms interchangeably, leaving context
to determine what is meant. In particular, we often write a in place of a × 0.

We denote by W̃ the extended affine Weyl group X∗(A) o W of G. Then W̃
acts transitively on the set of all alcoves in a, and simply transitively on the set
of all extended alcoves. Let Ω = Ωa denote the stabilizer of a when it is viewed
as an alcove in the usual (non-extended) sense. We can write an extended (resp.

non-extended) alcove in the form xa for a unique element x ∈ W̃ (resp. x ∈ W̃/Ω).
Of course, this is just another way of saying that we can think of extended alcoves

simply as elements of W̃ .
As usual a standard parabolic subgroup is one containing B, and a semistandard

parabolic subgroup is one containing A. Similarly, a semistandard Levi subgroup
is one containing A, and a standard Levi subgroup is the unique semistandard Levi
component of a standard parabolic subgroup. Given a semistandard Levi subgroup
M of G we write P(M) for the set of parabolic subgroups of G admitting M as
Levi component. For P ∈ P(M) we denote by P = MN ∈ P(M) the parabolic
subgroup opposite to P . We write RN for the set of roots of A in N . We denote
by IM , IN , IN the intersections of I with M , N , N respectively; one then has the
Iwahori decomposition I = INIMIN .

Recall that for x ∈ W̃ and b ∈ G(L) the affine Deligne-Lusztig variety Xx(b) is
defined by

Xx(b) := {g ∈ G(L)/I : g−1bσ(g) ∈ IxI}.

In the sequel we often abuse notation and use the symbols G,P,M,N to denote
the corresponding objects over L.

Let b ∈ G(L). We denote by [b] the σ-conjugacy class of b inside G(L):

[b] = {g−1bσ(g); g ∈ G(L)},

and for a subgroup H ⊆ G(L) we write

[b]H := {h−1bσ(h); h ∈ H} ⊆ G(L)

for the σ-conjugacy class of b under H. Further notation relevant to B(G) such as
ηG will be explained in section 7.

Finally we note that xI will be used as an abbreviation for xIx−1. We use
the symbols ⊂ and ⊆ interchangeably with the meaning “not necessarily strict
inclusion”.
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2. Statement of the main Theorem

2.1. Let α ∈ R. We identify the root group Uα with the additive group Ga over k,
which then allows us to identify Uα(L)∩K with o. The root α induces a partial order
≥α on the set of (extended) alcoves in the standard apartment as follows: given an

alcove b, write it as xa for x ∈ W̃ . Let k(α,b) ∈ Z such that Uα(L)∩ xI = εk(α,b)o.
In other words, k(α,b) is the unique integer k such that b lies in the region between
the affine root hyperplanes Hα,k = {x ∈ X∗(A)R; 〈α, x〉 = k} and Hα,k−1. This
description shows immediately that k(α,b)+ k(−α,b) = 1. (For instance, we have
k(α,a) = 1 if α > 0 and k(α,a) = 0 if α < 0. This reflects the fact that the fixer I of
a is the inverse image of the opposite Borel B under the projection G(o) → G(k).)
We define

b1 ≥α b2 :⇐⇒ k(α,b1) ≥ k(α,b2).

This is a partial order in the weak sense: b1 ≥α b2 and b2 ≥α b1 does not imply
that b1 = b2. We also define

b1 >α b2 :⇐⇒ k(α,b1) > k(α,b2).

Definition 2.1.1. Let P = MN be a semistandard parabolic subgroup. Let x ∈ W̃ .
We say xa is a P -alcove, if

(1) x ∈ W̃M , and
(2) ∀α ∈ RN , xa ≥α a.

We say xa is a strict P -alcove if instead of (2) we have

(2′) ∀α ∈ RN , xa >α a.

Note that condition (2) depends only on the image of x in W̃/Ω; however,
condition (1) depends on x itself.

By the definition of the partial order ≥α, the condition (2) is equivalent to

(2.1.1) ∀α ∈ RN , Uα ∩ xI ⊆ Uα ∩ I,

or, likewise, to

(2.1.2) ∀α ∈ RN , U−α ∩ xI ⊇ U−α ∩ I

and under our assumption that x ∈ W̃M , these in turn are equivalent to the condi-
tions

(2.1.3) x(N ∩ I) ⊆ N ∩ I ⇐⇒ x(N ∩ I) ⊇ N ∩ I.

(And condition (2′) is equivalent to (2.1.1) with the inclusions replaced by strict
inclusions.) Indeed, noting that conjugation by x = ελw permutes the subgroups
Uα with α ∈ RN , it is easy to see from the (Iwahori) factorization

(2.1.4) N ∩ I =
∏

α∈RN

Uα ∩ I,

that (2.1.1) is equivalent to (2.1.3). For a fixed semistandard parabolic subgroup
P = MN , the set of alcoves xa which satisfy (2.1.1) forms a union of “acute cones
of alcoves” in the sense of [HN]. We shall explain this in section 3 below.

Our main theorem concerns the map

φ : I × IMxIM → IxI

(i,m) 7→ imσ(i)−1.
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There is a left action of IM on I×IMxIM given by iM (i,m) = (ii−1
M , iMmσ(iM )−1),

for iM ∈ IM , i ∈ I and m ∈ IMxIM . Let us denote by I ×IM IMxIM the quotient
of I × IMxIM by this action of IM . Denote by [i,m] the equivalence class of
(i,m) ∈ I × IMxIM . The map φ obviously factors through I ×IM IMxIM . We can
now state the main theorem.

Theorem 2.1.2. Suppose P = MN is a semistandard parabolic subgroup, and xa

is a P -alcove. Then the map

φ : I ×IM IMxIM → IxI

induced by (i,m) 7→ imσ(i)−1, is surjective. If xa is a strict P -alcove, then φ is
injective. In general, φ is not injective, but if [i,m] and [i′,m′] belong to the same
fiber of φ, the elements m and m′ are σ-conjugate by an element of IM .

This theorem was partially inspired by Labesse’s study of the “elementary func-
tions” he introduced in [La].

Let us mention a few consequences. First, consider the quotient IxI/σ I, where
the action of I on IxI is given by σ-conjugation. We also can form in a parallel man-
ner the quotient IMxIM/σ IM . Further, let B(G)x denote the set of σ-conjugacy
classes [b] in G(L) which meet IxI. We note that for G = SL3 all of the sets B(G)x

have been determined explicitly by Beazley [Be].

Corollary 2.1.3. Suppose P = MN is semistandard, and xa is a P -alcove. Then
the following statements hold.

(a) The inclusion IMxIM ↪→ IxI induces a bijection

IMxIM/σ IM →̃ IxI/σ I.

(b) The canonical map ι : B(M)x → B(G)x is bijective.

Part (a) follows directly from Theorem 2.1.2. Indeed, the surjectivity of φ implies
the surjectivity of IMxIM/σ IM → IxI/σ I. As for the injectivity of the latter, note
that if i ∈ I and m,m′ ∈ IMxIM satisfy imσ(i)−1 = m′, then [i,m] and [1,m′]
belong to the same fiber of φ. As for part (b), we will derive it from part (a) in
section 8. (In fact the surjectivity in part (b) follows easily from the surjectivity in
Theorem 2.1.2.)

Another consequence is a version of the Hodge-Newton decomposition, given in
Theorem 2.1.4 below. For affine Deligne-Lusztig varieties in the affine Grassman-
nian of a split group, the analogous Hodge-Newton decomposition was proved under
unnecessarily strict hypotheses in [K3] and in the general case by Viehmann [V2,
Theorem 1] (see also Mantovan-Viehmann [MV] for the case of unramified groups).
To state this we need to fix a standard parabolic subgroup P = MN and an element
b ∈ M(L). Let KM = M ∩K, where K, as usual, denotes G(o). For a G-dominant
coweight µ ∈ X∗(A), the σ-centralizer JG

b := {g ∈ G(L) : g−1bσ(g) = b} of b acts
naturally on the affine Deligne-Lusztig variety XG

µ (b) ⊂ G(L)/K defined to be

XG
µ (b) := {gK ∈ G(L)/K | g−1bσ(g) ∈ KεµK}.

Also, JM
b acts on XM

µ (b) ⊂ M(L)/KM . Now the Hodge-Newton decomposition un-

der discussion asserts the following: suppose that the Newton point νM
b ∈ X∗(A)R

is G-dominant, and that ηM (b) = µ in ΛM . Then the canonical closed immersion
XM

µ (b) ↪→ XG
µ (b) induces a bijection

JM
b \XM

µ (b) →̃ JG
b \XG

µ (b).
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Of course if we impose the stricter condition that 〈α, νM
b 〉 > 0 for all α ∈ RN , then

JM
b = JG

b and so we get the stronger conclusion XM
µ (b) ∼= XG

µ (b), yielding what
is normally known as the Hodge-Newton decomposition in this context. The ver-
sion with the weaker condition is essentially a result of Viehmann, who formulates
it somewhat differently [V2, Theorem 2], in a way that brings out a dichotomy
occurring when G is simple.

In the affine flag variety, it still makes sense to ask how XG
x (b) and XM

x (b) are

related, for x ∈ W̃M and b ∈ M(L). Our Hodge-Newton decomposition below
provides some information in this direction.

Theorem 2.1.4. Suppose P = MN is semistandard and xa is a P -alcove.

(a) If XG
x (b) 6= ∅, then [b] meets M(L).

(b) Suppose b ∈ M(L). Then the canonical closed immersion XM
x (b) ↪→ XG

x (b)
induces a bijection

JM
b \XM

x (b) →̃ JG
b \XG

x (b).

Note that part (b) implies that if xa is a P -alcove, then for every b ∈ M(L), we
have XG

x (b) = ∅ if and only if XM
x (b) = ∅. We will prove Theorem 2.1.4 in section

8 and then derive some further consequences relating to emptiness/non-emptiness
of XG

x (b), in section 9.

3. P -alcoves and acute cones of alcoves

Let P = MN be a fixed semistandard parabolic subgroup. The aim of this
section is to help the reader visualize the set of P -alcoves. Let P denote the set of
alcoves xa which satisfy the inequalities xa ≥α a for all α ∈ RN .

For each element w ∈ W , we recall the notion of acute cone of alcoves C(a, w),
following [HN]. Given an affine hyperplane H = Hα,k = H−α,−k, we assume α has
the sign such that α ∈ w(R+), i. e. such that α is a positive root with respect to
wB. Then define the w-positive half space

Hw+ = {v ∈ X∗(A)R : 〈α, v〉 > k}.

Let Hw− denote the other half-space.
Then the acute cone of alcoves C(a, w) is defined to be the set of alcoves xa such

that some (equivalently, every) minimal gallery joining a to xa is in the w-direction.
By definition, a gallery a1, . . . ,al is in the w-direction if for each crossing ai−1|Hai,
the alcove ai−1 belongs to Hw− and ai belongs to Hw+. By loc. cit. Lemma 5.8,
the acute cone C(a, w) is an intersection of half-spaces:

C(a, w) =
⋂

a⊂Hw+

Hw+.

Proposition 3.0.5. The set of alcoves P is the following union of acute cones of
alcoves

(3.0.5) P =
⋃

w : P⊇ wB

C(a, w).

Proof. For any root α ∈ R and k ∈ Z, let H+
α,k denote the unique half-space for

Hα,k which contains the base alcove a. Note that for any α ∈ R and w ∈ W , we
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Figure 1. The figure illustrates the notion of P -alcove for G of
type C2. On the left, P = w0B, where w0 is the longest element in
W . On the right, P = s1s2s1P ′ where P ′ is the standard parabolic
B ∪ Bs2B. In both cases, the black alcove is the base alcove, the
region P is in light grey, and the P -alcoves are shown in dark grey.

Figure 2. This figure shows P -alcoves for G of type G2. On the
left, P = s2s1s2(B ∪ Bs1B), on the right, P = s2s1s2s1B.

have

(3.0.6) H+
α,k(α,a)−1 =

{
Hw+

α,k(α,a)−1, if α ∈ w(R+)

Hw−
α,k(α,a)−1, if α ∈ w(R−).



AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES 9

Now suppose w ∈ W satisfies P ⊇ wB, or in other words N ⊆ wU , or equiva-
lently, RN ⊆ w(R+). Then we see using (3.0.6) that

C(a, w) =
⋂

α∈w(R+)

Hw+
α,k(α,a)−1 =

⋂

α∈w(R+)

H+
α,k(α,a)−1,

so the union on the right hand side of (3.0.5) is

(3.0.7)
⋃

w : RN⊆w(R+)

⋂

α∈w(R+)

H+
α,k(α,a)−1

and in particular is contained in
⋂

α∈RN
H+

α,k(α,a)−1 = P.

For the opposite inclusion, we set

U =
⋃

w : RN⊆w(R+)

C(a, w).

We will prove the implication

(3.0.8) xa /∈ U =⇒ xa /∈ P

by induction on the length ` of a minimal gallery a = a0,a1, . . . ,a` = xa. If ` = 0,
there is nothing to show, so we assume that ` > 0 and that the implication holds
for ya := a`−1.

Assume xa /∈ U . There are two cases to consider. If ya /∈ U , then by induction
ya /∈ P. This means that ya and a are on opposite sides of a hyperplane Hα,k(α,a)−1

for some α ∈ RN . The same then holds for xa, which shows that xa /∈ P.
Otherwise, ya ∈ U , so that ya belongs to some C(a, w) with RN ⊆ w(R+). Let

H = Hβ,m be the wall separating ya and xa. Since xa /∈ C(a, w) and sβ,mxa ∈
C(a, w), we have that m ∈ {0,±1}, and xa ∈ C(a, sβw). Now, if sβ ∈ WM , then
RN ⊆ sβw(R+) and xa ∈ U , a contradiction. Thus β ∈ ±RN , and without loss
of generality we may assume β ∈ RN . Now in passing from ya to xa, we crossed
H in the β-opposite direction, where by definition this means for any point a in
the interior of a, x(a) − y(a) ∈ R<0β

∨. Indeed, if not then since β ∈ w(R+) the
crossing ya|Hxa is in the w-direction; in that case xa belongs to C(a, w) (since ya
does), a contradiction.

To conclude, we observe that if a = a0, . . . ,a` is a minimal gallery and crosses
some Hβ,m with β ∈ RN in the β-opposite direction, then the terminal alcove
a` must actually lie outside of P (since such a gallery must cross the hyperplane
Hβ,k(β,a)−1). ¤

4. Reformulation of Theorem 2.1.2

In the following reformulation of Theorem 2.1.2, we assume P = MN is semis-
tandard and xa is a P -alcove. As in Beazley’s work [Be], it is easier to work with
single cosets xI than with double cosets IxI, and the next result allows us to do
just that.

Lemma 4.0.6. Theorem 2.1.2 is equivalent to the following statement: the map

φ : (xI ∩ I) ×
xIM∩IM xIM → xI

given by (i,m) 7→ imσ(i)−1 is surjective. Moreover, it is bijective if xa is a strict
P -alcove. In general, if [i, xj] and [i′, xj′] belong to the same fiber of φ, then xj
and xj′ are σ-conjugate by an element of xIM ∩ IM .
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Proof. It is straightforward to verify that the following diagram with vertical in-
clusion maps is Cartesian:

(xI ∩ I) ×
xIM∩IM xIM

²²

φ
// xI

²²

I ×IM IMxIM

φ
// IxI.

The lemma is now clear by appealing to I-equivariance: each element of IxI is
σ-conjugate under I to an element of xI, and φ is I-equivariant with respect to
the action by σ-conjugation on IxI and the action on I ×IM IMxIM given by
i′[i,m] := [i′i,m] for i′ ∈ I and [i,m] ∈ I ×IM IMxIM . ¤

We can now prove the portion of Theorem 2.1.2 relating to the fibers of φ.
Suppose that [i1, xj1], [i2, xj2] ∈ (xI ∩ I) ×

xIM∩IM xIM satisfy i1xj1σ(i1)
−1 =

i2xj2σ(i2)
−1. Letting i := i−1

2 i1, we see that

(4.0.9) x−1ix = j2σ(i)j−1
1 .

We have the Iwahori decompositions I = IN IMIN and xI = xIN
xIM

xIN , where

IN := N ∩ I and IN := N ∩ I. Using our assumption that xa is a P -alcove, we
deduce

(4.0.10) xI ∩ I = IN ( xIM ∩ IM ) xIN .

Write i = i− i0 i+, with i− ∈ IN , i0 ∈ xIM ∩ IM , and i+ ∈ xIN . Using (4.0.9) we
get

(4.0.11) x−1

i− · x−1

i0 ·
x−1

i+ = j2σ(i−) · j2σ(i0)j
−1
1 · j1σ(i+).

By the uniqueness of the factorization of elements in N · M · N , we get

x−1

i− = j2σ(i−)(4.0.12)

x−1

i0 = j2σ(i0)j
−1
1(4.0.13)

x−1

i+ = j1σ(i+).(4.0.14)

From (4.0.13), we deduce that xj1 is σ-conjugate to xj2 by an element in xIM ∩
IM . This proves the main assertion regarding the fibers of φ.

It remains to prove that φ is injective when xa is a strict P -alcove. In that case
conjugation by x is strictly expanding (resp. contracting) on IN (resp. on IN ).
In other words, the condition (2.1.1) hence also (2.1.3) holds with the inclusions
replaced by strict inclusions. But then (4.0.12) (resp. (4.0.14)) can hold only if
i− = 1 (resp. i+ = 1). Thus, in that case we have i = i0 ∈ xIM ∩IM , and it follows
that [i1, xj1] = [i2, xj2]. This proves the desired injectivity of φ. ¤

5. A variant of Lang’s theorem for vector groups

As before, let k denote a finite field with q elements, and let k denote an algebraic
closure of k. We write σ for the Frobenius automorphism x 7→ xq of k. In this
section we will be concerned with an automorphism τ of k, which is required to
be either σ or σ−1. By a τ -space (V,Φ) we mean a finite dimensional vector space
V over k together with a τ -linear map Φ : V → V . We do not require that Φ be
bijective. The category of τ -spaces is abelian and every object in it has finite length.
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Let (V,Φ) be a simple object in this category. We claim that V is 1-dimensional
(cf. the proof of Lemma 1.3 in [KR]). Since ker Φ is a subobject of V , we must
have either kerΦ = V or kerΦ = 0. In the first case Φ = 0, every subspace is a
subobject, and therefore simplicity forces V to be 1-dimensional. In the second case
Φ is bijective, and a subspace W is a subobject ⇐⇒ ΦW = W ⇐⇒ Φ−1W = W .
Therefore we may as well assume that τ = σ (since Φ−1 is σ-linear if Φ is σ−1-
linear). Then by Lang’s theorem for general linear groups over k, our τ -space is a
direct sum of copies of (k, σ), hence due to simplicity is 1-dimensional.

Lemma 5.0.7. Let (V,Φ) be a τ -space. Then the k-linear map v 7→ v −Φ(v) from
V to V is surjective.

Proof. Filter (V,Φ) so that each successive quotient is 1-dimensional. Since the
desired surjectivity follows from surjectivity of the induced map on the associated
graded object, we just need to prove surjectivity when V is 1-dimensional. This
amounts to the solvability of the equations x−axq = b and x−ax1/q = b. Solvability
of the first equation is obvious, and so too is that of the second after the change of
variables x = yq, which leads to the equivalent equation yq − ay = b. ¤

Corollary 5.0.8. Let V0 be a finite dimensional k-vector space, let V = V0 ⊗k k,
and let M : V → V be a linear map. Then

(1) for every w ∈ V there exists v ∈ V such that σv − Mv = w, and
(2) for every w ∈ V there exists v ∈ V such that v − Mσv = w.

Proof. The second statement follows from the lemma (with τ = σ), and the first
follows from the lemma (with τ = σ−1) after making the change of variables v =
σ−1v′. ¤

Remark 5.0.9. We note that the second statement of the corollary can also be
proved in the same way as Lang’s theorem. However this method does not handle
the first statement of the corollary in the case when M is not bijective.

6. Proof of surjectivity in Theorem 2.1.2

6.1. The method of successive approximations. Again assume that xa is a
P -alcove. Recall that by Lemma 4.0.6, we need to prove the surjectivity of the map

(xI ∩ I) × xIM → xI

given by (i,m) 7→ imσ(i)−1. In other words, given an element of xI, we can
σ-conjugate it by an element of xI ∩ I into the set xIM .

Define the normal subgroup In ⊂ I, n = 0, 1, 2, . . . , to be the n-th principal
congruence subgroup of I. More precisely, let G denote the Bruhat-Tits parahoric
o-group scheme corresponding to I, so that G(o) = I. For n ≥ 0, let In denote the
kernel of G(o)³ G(o/εno).

Define the normal subgroups Nn ⊂ N(o)∩I, Nn ⊂ N(o)∩I and Mn ⊂ M(o)∩I
to be the intersections In ∩N resp. In ∩N resp. In ∩M . For each n ≥ 0, we have
the Iwahori factorization

In = MnNnNn = NnNnMn.

Conjugating by x the decomposition I = IMININ yields xI = xIM
xIN

xIN . By
our assumptions on x, we have

xI ∩ I = ( xIM ∩ IM ) xIN IN .
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Similarly, for each n ≥ 0, we have
xIn ∩ In = ( xMn ∩ Mn) xNn Nn.

Here we have used the relations
xNn ⊆ Nn(6.1.1)

xNn ⊇ Nn.

For the case n = 0 each of these relations follows from our assumption that xa is a
P -alcove. In case n > 0, the relations can be proved the same way, again using the
assumption that xa is a P -alcove.

The next lemma is a key ingredient in the proof of Theorem 2.1.2. Here and in the
remainder of this section we use the following notation: for h ∈ G(L), a superscript
h− stands for conjugation by h, and a superscript σ− means application of σ, so in
particular, for g, h ∈ G(L), the symbol hσg will stand for hσ(g)h−1, and σhg will
stand for σ(h)σ(g)σ(h−1).

Lemma 6.1.1. Fix an element m ∈ IM and an integer n ≥ 0.

(i) Given i− ∈ Nn, there exists b− ∈ Nn such that (xm)−1

b−i−
σb−1

− ∈ Nn+1.

(ii) Given i+ ∈ Nn, there exists b+ ∈ Nn such that b+i+
mxσb−1

+ ∈ Nn+1.

Proof. Borrowing the notation of [GHKR], §5.3, the group N possesses a finite
separating filtration by normal subgroups

N = N [1] ⊃ N [2] ⊃ · · ·

defined as follows. Choose a Borel subgroup B ′ containing A and contained in
P ; use B′ to determine a notion of (simple) positive root for A acting on Lie(G).
Let δ′N be the cocharacter in X∗(A/Z) (where Z denotes the center of G) which
is the sum of the B′-fundamental coweights $α, where α ranges over the simple
B′-positive roots for A appearing in Lie(N). Then let N [i] be the product of
the root groups Uβ ⊂ N for β satisfying 〈β, δ′N 〉 ≥ i. The subgroups N [i] are
stable under conjugation by any element in M (as one can check using the Bruhat
decomposition of M with respect to the Borel subgroup B ′ ∩ M). The successive
quotients N〈i〉 := N [i]/N [i + 1] are abelian (see loc. cit.).

We define Nn[i] := Nn ∩ N [i], and Nn〈i〉 := Nn[i]/Nn[i + 1]. We define the
groups N [i], N〈i〉, Nn[i], and Nn〈i〉 in an analogous manner.

Now we are ready to prove statement (i). Note that the successive quotients
Nn〈i〉 are abelian, and moreover Nn+1〈i〉 is a subgroup of Nn〈i〉, and the quotient

Nn〈i〉/Nn+1〈i〉

is a vector group over the residue field of o. Conjugation by m−1 ∈ IM or x−1

preserves Nn as well as each Nn[i] and Nn〈i〉 (for x−1, we use (6.1.1) above).

Hence the map b− 7→ (xm)−1

b−
σb−1

− induces on each vector group Nn〈i〉/Nn+1〈i〉
a map like that considered in Corollary 5.0.8 (1). Using that lemma repeatedly on
these quotients in a suitable order, we may find b− ∈ Nn such that

(xm)−1

b−i−
σb−1

− ∈ Nn+1,

thus verifying part (i).
Now for part (ii) we use a very similar argument. Conjugation by mx preserves

Nn (for x we use (6.1.1) above), as well as each Nn[i] and Nn〈i〉. Hence the map
b+ 7→ b+

mxσb−1
+ induces on each vector group Nn〈i〉/Nn+1〈i〉 a map like that
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considered in Corollary 5.0.8 (2). We conclude as in part (i) above. This completes
the proof of the lemma.

¤

Now we continue with the proof of Theorem 2.1.2. The Iwahori subgroup I has
the filtration I ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . by principal congruence subgroups. We want
to refine this filtration to a filtration I = I[0] ⊃ I[1] ⊃ I[2] ⊃ I[3] ⊃ . . . satisfying
the following conditions:

(1) Each I[r] is normal in I.
(2) Each I[r] is a semidirect product I〈r〉I[r +1], where I〈r〉 is either an affine

root subgroup (hence one-dimensional over our ground field k) or else con-
tained in A(o).

One can construct such filtrations directly by inserting suitable terms into the
filtration by principal congruence subgroups, or one can just take a generic Moy-
Prasad filtration (see below for a discussion of these). In any case, we fix one
such filtration (which need not have any special properties relative to our chosen
P = MN).

We start with a P -alcove xa and an element y ∈ xI. We want to find an
element g ∈ xI ∩ I such that gy σ(g)−1 ∈ xIM . As usual we do this by successive
approximations, first σ-conjugating y into xIMI[1], then into xIMI[2], and so on.
We have to take care that the elements doing the σ-conjugating approach 1 as
r → ∞. Assuming we can do this, if h(r) ∈ xI ∩ I is used to σ-conjugate the
appropriate element of xIMI[r] into xIMI[r + 1], then the convergent product

g := · · ·h(2)h(1)h(0)

has the desired property.
So we need to show that any element xiM i[r] ∈ xIMI[r] is σ-conjugate under

xI ∩ I to an element of xIMI[r +1] (and that the σ-conjugators can be taken to be
small when r is large). Use item (2) to decompose i[r] as i〈r〉i[r+1]. There are two
cases. If I〈r〉 ⊂ A(o), then we can absorb i〈r〉 into iM , showing that our element
already lies in xIMI[r + 1].

Otherwise i〈r〉 lies in one of the affine root subgroups of I; write α for the
ordinary root obtained as the vector part of our affine root. If α is a root in M ,
then again we absorb i〈r〉 into iM and do not need to σ-conjugate. Otherwise α is
a root in N or N , and in either case we may use the Lang theorem variant (i.e. the
appropriate statement in Lemma 6.1.1) to produce an element h ∈ xI ∩ I (suitably
small when r is large) such that

hxiM i〈r〉σ(h)−1 = xiM i′,

for some i′ ∈ I[r + 1]. (For example, if i〈r〉 ∈ Nn take h := xb+, where b+ is the
element produced in Lemma 6.1.1 (ii) for m := iM and i+ := mi〈r〉m−1.) Then

hxiM i〈r〉i[r + 1]σ(h)−1 = xiM i′ (σ(h)i[r + 1]σ(h)−1) ∈ xIMI[r + 1],

as desired. (We used here that I[r + 1] is normal in I.) Lemma 6.1.1 produces
elements h which are suitably small when r is large, so that we are done, modulo
the information on Moy-Prasad filtrations which follows.
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6.2. Moy-Prasad filtrations. Our reference for Moy-Prasad filtrations is [MP].
Recall that Moy-Prasad filtrations on I are obtained from points x in the base
alcove a. On the Lie algebra this works as follows. The vector space g⊗k k[ε, ε−1] is
graded by the group X∗(A)⊕Z (since g is graded by X∗(A) and k[ε, ε−1] is graded
by Z). (For the moment k is any field.) The pair (x, 1) gives a homomorphism
X∗(A) ⊕ Z → R, which we use to obtain an R-grading on g ⊗k k[ε, ε−1], as well as
an associated R-filtration. We also obtain an R-filtration on the completion g(F )
of g ⊗k k[ε, ε−1]. Thus, for r ∈ R the subspace g(F )≥r is the completion of the
direct sum of the affine weight spaces of weight (with respect to (x, 1)) greater than
or equal to r, which for the affine weight space εna means that n ≥ r, and for an
affine weight space εngα (α being an ordinary root) means that α(x) + n ≥ r. Of
course g(F )≥0 is the Iwahori subalgebra obtained as the Lie algebra of I 1. It is
clear that [g(F )≥r, g(F )≥s] ⊂ g(F )≥r+s, from which it follows that g(F )≥r is an
ideal in g(F )≥0 whenever r is non-negative.

When r is non-negative, the Moy-Prasad subgroups G(F )≥r of G(F ) are by
definition the subgroups generated by suitable subgroups of A(o) and of the various
root subgroups, in such a way that the Lie algebra of G(F )≥r ends up being g(F )≥r.
In characteristic 0 the fact that g(F )≥r is an ideal in g(F )≥0 implies that G(F )≥r is
normal in I = G(F )≥0. Moy and Prasad prove normality in the general case from
other considerations. In our present situation, where G is split, it is straightforward
to prove the normality using commutator relations for the various affine root groups
Uα+n in G(F ).

What does it mean for x to be a generic element in the base alcove? For an
arbitrary point x in the standard apartment it may accidentally happen that the
homomorphism (x, 1) : X∗(A)⊕ Z → R sends two distinct affine weights occurring
in g⊗k k[ε, ε−1] to the same real number. When such an accident never occurs, we
say that x is generic. The set of non-generic points in the standard apartment is a
locally finite union of affine hyperplanes, including all the affine root hyperplanes,
but also those obtained by setting any difference of roots equal to an integer. In the
case of SL(2), all points in the base alcove but its midpoint are generic. In general
one can at least say that the set of generic points in the base alcove is non-empty
and open. When x is generic, then going down the Moy-Prasad filtration strips
away affine weight spaces, one-by-one, just as we want.

6.3. A refinement. It is clear that in case xIM = IM , we can do better: we can σ-
conjugate xIM to x using an element of IM . To see this we adapt the proof of Lang’s
theorem to prove the surjectivity of the map IM → IM given by h 7→ h−1 xσh.
Indeed, IM has a filtration by normal subgroups which are stabilized by Ad(x),
such that our map induces on the successive quotients a finite étale surjective map
(take the Moy-Prasad filtration on IM corresponding to the barycenter of the alcove
in the reduced building for M(L) corresponding to IM ). Using the surjectivity just
proved, given i ∈ IM we find an h ∈ IM solving the equation xix−1 = h−1 xσh. We
then have h(xi)σ(h)−1 = x. Thus, we have proved the following proposition.

1Warning: This description is incompatible with the normalization of the correspondence
between alcoves and Iwahori subgroups we are using in this paper: it turns out G(F )≥0 is really

“opposite” to our Iwahori I. To get our I, we should instead define g(F )≥r
to be the completion

of the sum of the affine weight spaces of weight (with respect to (x,−1)) less than or equal to −r.
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Proposition 6.3.1. Suppose x ∈ W̃M is such that there exists a semistandard
parabolic subgroup P = MN having the property that xIN ⊆ IN , i. e. such that
xa is a P -alcove. Then any element of xI is σ-conjugate to an element of xIM

using an element of xI ∩ I. If moreover, xIM = IM , then we may σ-conjugate any
element of xI to x, using an element of xI ∩ I.

Given an element x ∈ W̃M such that xIM = IM , in general there is no parabolic

P = MN such that xIN ⊆ IN and x−1

IN ⊆ IN (see also the discussion after
Definition 7.2.3 below). However, when M is adapted to I in the sense of Definition
13.2.1, such P does exist, as is shown in Proposition 13.2.2.

7. Review of σ-conjugacy classes

7.1. Classification of σ-conjugacy classes. We recall the description of the set
B(G) of σ-conjugacy classes in G(L); for details see [K1], [K2] 5.1, and [K4] 1.3.
We denote by ΛG the quotient of X∗(A) by the coroot lattice; this is the algebraic
fundamental group of G. We can identify ΛG with the group of connected com-
ponents of the loop group G(L). Let ηG : G(L) −→ ΛG be the natural surjective
homomorphism, as constructed in [K2], §7 and denoted there by ωG; it is sometimes
called the Kottwitz map. Analogously, we denote by ΛM the quotient of X∗(A) by
the coroot lattice for M , and by ηM the corresponding homomorphism.

If P = MN is a standard parabolic subgroup of G with unipotent radical N and
M the unique Levi containing A, then the set ∆ of simple roots for G decomposes
as the disjoint union of ∆M and ∆N , where ∆M is the set of simple roots of M ,
and ∆N is the set of those simple roots for G which occur in the Lie algebra of N .
We write AP (or AM ) for the connected component of the center of M , and we
let aP denote the real vector space X∗(AP ) ⊗ R. As usual, P determines an open
chamber a+

P in aP defined by

a+
P = {v ∈ aP : 〈α, v〉 > 0, for all α ∈ ∆N}.

The composition X∗(AP ) ↪→ X∗(A)³ ΛM , when tensored with R, yields a canoni-
cal isomorphism aP

∼= ΛM ⊗R. Let Λ+
M denote the subset of elements in ΛM whose

image under ΛM ⊗ R ∼= aP lies in a+
P .

Let D be the diagonalizable group over F with character group Q. As in [K1],
an element b ∈ G(L) determines a homomorphism νb : D → G over L, whose
G(L)-conjugacy class depends only on the σ-conjugacy class [b] ∈ B(G). We can
assume this homomorphism factors through our torus A, and that the corresponding
element νb ∈ X∗(A)Q is dominant. Then b 7→ νb is called the Newton map (relative
to the group G). Recall that b ∈ G(L) is called basic if νb factors through the center
Z(G) of G.

We shall use some properties of the Newton map. We can identify the quotient
X∗(A)Q/W with the closed dominant chamber X∗(A)+Q . The map

B(G) → X∗(A)+Q × ΛG(7.1.1)

b 7→ (νb, ηG(b))

is injective ([K2], 4.13).
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The Newton map is functorial, such that we have a commutative diagram

(7.1.2) B(M) //

²²

B(G)

²²

X∗(A)Q/WM × ΛG
// X∗(A)Q/W × ΛG

and moreover the vertical arrows, given by “(Newton point, Kottwitz point)”, are
injections. Indeed, the right vertical arrow is the injection (7.1.1). To show the left
vertical arrow is injective, it is enough to prove that if b1, b2 ∈ M(L) have the same
Newton point and the same image under ηG, then they have the same image under

ηM . We may assume that b1, b2 ∈ W̃M (see Corollary 7.2.2 below); for i = 1, 2 write
bi = ελiwi for λi ∈ X∗(A) and wi ∈ WM . Let Q∨ (resp. Q∨

M ) denote the lattice
generated by the coroots of G (resp. M) in X∗(A). The equality ηG(b1) = ηG(b2)
means that λ1 − λ2 ∈ Q∨. The equality νb1 = νb2 implies that λ1 − λ2 ∈ Q∨

M ⊗ R.
It follows that λ1 − λ2 ∈ Q∨

M , and this is what we wanted to prove.
The following lemma is a direct consequence of the commutativity of the diagram

above.

Lemma 7.1.1. Let M ⊂ G be a Levi subgroup containing A. If [b′]M ⊂ [b] for
some b′ ∈ M(L), then νb = νb′,G−dom as elements of X∗(A)+Q .

Here νb′ is the Newton point of b′ (viewed as an element of M(L)) and νb′,G−dom

denotes the unique G-dominant element of X∗(A)Q in its W -orbit.

Next we define the following subsets of X∗(A)+Q : the subset NG consists of all

Newton points νb for b ∈ B(G), and N+
M consists of the images of elements of Λ+

M ,
under the map ΛM → X∗(AM )Q ↪→ X∗(A)Q. We have the equality

(7.1.3) NG =
∐

P=MN

N+
M ,

the union ranging over all standard parabolic subgroups of G.
This equality results from two facts. First, we are taking the Newton points

associated to elements of B(G) and making use of the decomposition of B(G)

B(G) =
∐

P

B(G)P ,

where P ranges over standard parabolic subgroups and B(G)P is the set of elements
[b] ∈ B(G) such that νb ∈ a+

P (see [K1, K2]); note that elements in B(G)P can be
represented by basic elements in M(L) ([K2], 5.1.2). Second, for b a basic element
in M(L) (representing e. g. an element in B(G)P ) its Newton point νb is the image
of ηM (b) ∈ ΛM under the canonical map

(7.1.4) ΛM = X∗(Z(M̂)) → X∗(Z(M̂))R = X∗(Z(M))R ↪→ X∗(A)R.

This follows from the characterization of νb in [K1], 4.3 (applied to M in place of
G), together with (7.1.2).

Remark 7.1.2. The right hand side in (7.1.3) is easy to enumerate for any given
group (with the aid of a computer). This fact makes feasible our computer-aided
verifications of our conjectures relating to the non-emptiness of Xx(b), see section
9. Moreover, the injectivity of (7.1.1) together with (7.1.3) gives a concrete way to
check whether two elements in G(L) are σ-conjugate.
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7.2. Construction of standard representatives for B(G). Here we will define
the standard representatives of σ-conjugacy classes in the extended affine Weyl

group. First note that the map G(L) → B(G) induces a map W̃ → B(G). Our

goal is to find special elements in W̃ which parametrize the elements of B(G).

Denote by ΩG ⊂ W̃ (G) the subgroup of elements of length 0. Let G(L)b resp.
B(G)b denote the set of basic elements resp. basic σ-conjugacy classes in G(L). In
the following lemma we recollect some standard facts relating the Newton map to
the homomorphism ηG : G(L)³ ΛG. The connection between the two stems from
fact that if b ∈ G(L) is basic, then the Newton point νb ∈ X∗(Z(G))R is the image

of ηG(b) ∈ ΛG under the canonical map ΛG = X∗(Z(Ĝ)) → X∗(Z(G))R ↪→ X∗(A)R

(see (7.1.4)).

Lemma 7.2.1. (i) The map ηG induces a bijection B(G)b →̃ ΛG.
(ii) Elements in ΩG ⊂ G(L) are basic, and the map ηG induces a bijection

ΩG →̃ ΛG.
(iii) The canonical map ΩG → B(G)b is a bijection.

Proof. First suppose b ∈ ΩG. For sufficiently divisible N > 1, the element bN is a
translation element which preserves the base alcove, hence belongs to X∗(Z(G)).
The characterization of νb in [K1], 4.3, then shows that b is basic, proving the
first statement in (ii). For part (i), recall that an isomorphism is constructed in
loc. cit. 5.6, and this is shown to be induced by ηG in [K2], 7.5. Since ηG is trivial
on I and Waff ⊂ Gsc(L), (i) and the Bruhat-Tits decomposition

G(L) =
∐

wτ∈WaffoΩG

IwτI

imply that the composition

ΩG
// G(L)b

ηG
// ΛG

is surjective. Since this composition is easily seen to be injective, (ii) holds. Part
(iii) follows using (i-ii). ¤

Here is a slightly different point of view of the lemma: The basic conjugacy classes
are in bijection with ΛG, the group of connected components of the ind-scheme G(L)
(or the affine flag variety), and the bijection is given by just mapping each basic
σ-conjugacy class to the connected component it lies in. The key point here is that
the Kottwitz homomorphism agrees with the natural map G(L) → π0(G(L)) = ΛG;
see [K1], [PR] §5.

As a consequence of the lemma (applied to G and its standard Levi subgroups),
we have the following corollary.

Corollary 7.2.2. The map W̃ → B(G) is surjective.

Definition 7.2.3. For [b] ∈ B(G)P ⊂ B(G), we call the representative in ΩM ⊆

W̃ which we get from Lemma 7.2.1 (iii) the standard representative of [b]. Here
standard refers back to our particular choice B of Borel subgroup. If we made a
different choice of Borel subgroup containing A, we would get a different standard
representative; all such representatives will be referred to as semistandard.

The standard representative b = ενv hence satisfies

(1) b ∈ W̃M , i. e. v ∈ WM ,
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(2) bIMb−1 = IM .

Remark 7.2.4. Let x ∈ ΩG and write x = ελw with λ ∈ X∗(A) and w ∈ W . Then
λ is the (unique) dominant minuscule coweight whose image in ΛG coincides with
that of x. Indeed, since x preserves the base alcove a, the transform of the origin
by x, namely λ, lies in the closure of the base alcove. This is what it means to be
dominant and minuscule.

Now consider standard (semistandard is not enough) P = MN and x ∈ ΩM .
Write x = ελwM with λ ∈ X∗(A) and wM ∈ WM . We know that λ is M -dominant
and M -minuscule. We claim that xa is a P -alcove iff λ is dominant. Indeed, xa

is a P -alcove iff xINx−1 ⊂ IN . Now wMINw−1
M = IN , because P was assumed

standard. So xa is a P -alcove iff ελIN ε−λ ⊂ IN iff α(λ) ≥ 0 for all α ∈ RN iff
α(λ) ≥ 0 for all α > 0.

Example 7.2.5. Let G = GLn, let A be the diagonal torus, and let B be the
Borel group of upper triangular matrices. In this case, the Newton map is injective.
See [K4], in particular the last paragraph of section 1.3. We can view the Newton
vector ν of a σ-conjugacy class [b] as a descending sequence a1 ≥ · · · ≥ an of rational
numbers, satisfying an integrality condition. The standard parabolic subgroup P =
MN is given by the partition n = n1 + · · · + nr of n such that the ai in each
corresponding batch are equal to each other, and such that the ai in different batches
are different. The standard representative is (represented by) the block diagonal
matrix with r blocks, one for each batch of entries, where the i-th block is

(
0 εki+1Ik′

i

εkiIni−k′

i
0

)
∈ GLni

(F ).

Here we write the entry an1+···+ni−1+1 = · · · = an1+···+ni
of the i-th batch as

ki +
k′

i

ni
with ki, k

′
i ∈ Z, 0 ≤ k′

i < ni, which is possible by the integrality condition,
and I` denotes the ` × ` unit matrix. It follows from the definitions that ki ≥
ki+1 for all i = 1, . . . , r − 1. We see that the standard representative x of [b] has
dominant translation part if and only if for all i with k′

i+1 6= 0 we have ki > ki+1.
Furthermore, this is equivalent to xa being a P -alcove. If these conditions are
satisfied, then xa is a fundamental P -alcove in the sense of Definition 13.1.2.

8. Proofs of Corollary 2.1.3(b) and Theorem 2.1.4

Assume P = MN is semistandard and xa is a P -alcove. There is a commutative
diagram

(8.0.1) IMxIM/σ IM
∼

//

∼=
²²

IxI/σ I

∼=
²²∐

[b′]∈B(M)x

JM
b′ \X

M
x (b′) //

∐
[b]∈B(G)x

JG
b \XG

x (b).

Here, for [b′] ∈ B(M)x we choose once and for all a representative b′ ∈ M(L); for
[b] ∈ B(G)x we also choose once and for all a representative b ∈ G(L). If under
B(M)x → B(G)x, [b′] 7→ [b], then choose once and for all c ∈ G(L) such that
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c−1bσ(c) = b′. In that case our choices yield the map

JM
b′ \X

M
x (b′) → JG

b \XG
x (b)

m 7→ cm.

We have now defined the bottom horizontal arrow.
Next we define the right vertical arrow. Let an element of IxI/σ I be represented

by y ∈ IxI. There is a unique [b] ∈ B(G)x such that y ∈ [b]. Write y = g−1bσ(g)
for some g ∈ G(L). Then the right vertical map associates to [y] = [g−1bσ(g)] the
JG

b -orbit of gI ∈ XG
x (b). The left vertical arrow is defined similarly. It is easy

to check that both vertical arrows are bijective. It is also clear that the diagram
commutes. The bijectivity of the top horizontal arrow (Corollary 2.1.3(a)) thus
implies the surjectivity of the map B(M)x → B(G)x (in Corollary 2.1.3(b)).

We now prove that B(M)x → B(G)x is also injective. Given b ∈ M(L), regard
its Newton point νM

b as an element in X∗(A)+Q , which denotes here the set of M -

dominant elements of X∗(A)Q. The map

B(M) → X∗(A)+Q × ΛM

b 7→ (νM
b , ηM (b))

is injective, see (7.1.1). Now suppose b1, b2 ∈ B(M)x have the same image in
B(G)x. Since ηM (b1) = ηM (x) = ηM (b2), by the preceding remark it is enough to
show that νM

b1
= νM

b2
. We claim that our assumption on x forces each νM

bi
to be

not only M -dominant, but G-dominant. Indeed, bi is σ-conjugate in M(L) to an
element in IMxIM , and since x(N ∩ I) ⊆ N ∩ I, it follows that the isocrystal

(Lie N(L),Ad(bi) ◦ σ)

comes from a crystal (i.e., there is some o-lattice in Lie N(L) carried into itself
by the σ-linear map Ad(bi) ◦ σ; in fact, when bi itself lies in IMxIM , the lattice
Lie N(L)∩I does the job). The slopes of any crystal are non-negative, which means
in this situation that 〈α, νM

bi
〉 ≥ 0 for all α ∈ RN . This proves our claim. Now

since νM
b1

and νM
b2

are conjugate under W (cf. (7.1.2)) they are in fact equal. This
completes the proof of Corollary 2.1.3(b).

In light of the diagram (8.0.1), Theorem 2.1.4 follows from Corollary 2.1.3. ¤

9. Consequences for affine Deligne-Lusztig varieties

In this section we present various consequences of Theorem 2.1.4, and also some
conjectures, relating to the non-emptiness and dimension of XG

x (b). We prove
some parts of our conjectures. Our conjectures have been corroborated by ample
computer evidence. The computer calculations were done using the “generalized
superset method”, that is, the algorithm implicit in Theorem 11.2.1. This will be
discussed in section 11.

9.1. Translation elements x = ελ. Let us examine the non-emptiness of Xx(b)
in a very special case.

Corollary 9.1.1. Suppose x = ελ. Then Xx(b) 6= ∅ if and only if [b] = [ελ] in
B(G).

Proof. There is a choice of Borel B′ = AU ′ such that xa is a B′-alcove (λ is B′-
dominant for an appropriate choice of B′). Thus, by Theorem 2.1.4 with M = A,
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we see XG
x (b) 6= ∅ if and only if b is σ-conjugate to a translation εν for ν ∈ X∗(A),

and XA
x (εν) 6= ∅. But the latter inequation holds if and only if λ = ν. ¤

Remark 9.1.2. As G. Lusztig pointed out, the Corollary has a simple direct proof
in the special case where G is simply-connected and b = 1. Let x = ελ and suppose
λ belongs to the coroot lattice. Suppose g−1σ(g) ∈ IxI. Since the affine flag variety
is of ind-finite type, the Iwahori subgroup gI is fixed by σr for some r > 0. Thus,
g−1σr(g) ∈ I. On the other hand, g−1σr(g) ∈ IxI · · · IxI (product of r copies of
IxI), which since the lengths add is just IεrλI. This intersects I only if λ = 0.

9.2. A necessary condition for the non-emptiness of Xx(b).

Proposition 9.2.1. Fix a σ-conjugacy class [b] in G with Newton vector νb, and

an element x ∈ W̃ . If XG
x (b) 6= ∅, then the following holds: if P = MN is a

semistandard parabolic subgroup such that xa is a P -alcove, then ηG(x) = ηG(b)
and

(9.2.1) ηM (x) ∈ ηM (Wνb ∩NM ),

where NM denotes the image of B(M) in X∗(A)+Q under the Newton map.

Proof. It is clear that XG
x (b) can be non-empty only if ηG(x) = ηG(b). What is the

meaning of our second condition (9.2.1)? The set Wνb∩NM consists of the finite set
of Newton points νM

b′ , for b′ ∈ M(L), which are W -conjugate to νb. Our condition
(9.2.1) means that x has the same value under ηM as an element b′ ∈ M(L) with
νM

b′ ∈ Wνb. By the injectivity of the left vertical arrow of (7.1.2), for a fixed [b]
there are only finitely many σ-conjugacy classes [b′] ∈ B(M) such that νM

b′ ∈ Wνb

and ηG(b′) = ηG(b). Thus the condition that ηM (x) = ηM (b′) for some such b′ is a
condition which we can check with a computer.

That said, the condition (9.2.1) is a direct consequence of Theorem 2.1.4. Indeed,
we know from part (a) of that theorem that [b] = [b′] for some b′ ∈ M(L), and that
XM

x (b′) 6= ∅, which implies in turn that ηM (x) = ηM (b′). Lemma 7.1.1 then shows
that νM

b′ ∈ Wνb, as desired. ¤

Note that Proposition 9.2.1 implies that for fixed b and proper parabolic subgroup
P , there are only finitely many x such that xa is a P -alcove and for which Xx(b)
can be non-empty.

If b is basic, then the statement of Proposition 9.2.1 simplifies. We will consider
the basic case in the next subsection.

Proposition 9.2.1 provides an obstruction to the non-emptiness of affine Deligne-
Lusztig varieties: (9.2.1) must hold whenever xa is a P -alcove. In the case where
[b] is basic, it seems reasonable to expect that this is the only obstruction; see
Conjecture 9.3.2 below. In the general case, it is clear that there are additional
obstructions. If b is a translation element, then from Theorem 6.3.1 in [GHKR]
we see that whenever Xx(b) 6= ∅, there exists w ∈ W such that x ≥ wb in the
Bruhat order. (For general b, one can obtain a similar criterion by passing to a
totally ramified extension of L where b splits.) This condition implies in particular
that for all projections to affine Grassmannians, the corresponding affine Deligne-
Lusztig variety is non-empty, but is stronger than that. However, as the following
example shows, there are still more elements x which give rise to an empty affine
Deligne-Lusztig variety.
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Example 9.2.2. Let G = SL3, b = ελ where λ = (2, 0,−2). Let x = s01210120120 =
ε(3,1,−4)s121 (we write s12 for s1s2 etc.). Then x ≥ b (a reduced expression for b is
s01210121), and xa is not a P -alcove for any proper parabolic subgroup P . However,
Xx(b) = ∅. (Cf. Figure 3.24 in [Re1] which shows the situation for this b.)

9.3. Non-emptiness of Xx(b) for b basic. In this subsection, let b be basic in
G(L). In that case Lemma 7.1.1 and the injectivity of the left vertical arrow of
(7.1.2) imply the following: if [b]∩M(L) 6= ∅ for some semistandard Levi subgroup
M ⊆ G, then Lemma 7.1.1 shows that [b] ∩ M(L) is a single σ-conjugacy class
inside M with the same Newton vector as the Newton vector of [b] with respect
to G. (On the other hand, the standard representative of [b] with respect to G is
not necessarily an element of M , and in particular is in general different from the
standard representative with respect to M .)

Applying Proposition 9.2.1 to the basic case, we get

Corollary 9.3.1. Let [b] be basic. Suppose P = MN is a semistandard parabolic
subgroup such that xa is a P -alcove. Then Xx(b) = ∅, unless [b] meets M(L) and
ηM (x) = ηM (νb).

Let us once again emphasize that ηM (νb) is really an abbreviation; here it stands
for the value under ηM for the unique σ-conjugacy class [b′] ∈ B(M) which satisfies
ηG(b′) = ηG(b) and νM

b′ = νb.

Conjecture 9.3.2. In the corollary, the opposite implication holds as well. In other
words, when b is basic, Xx(b) is empty if and only if there exists a semistandard
P = MN such that xa is a P -alcove, and ηM (x) 6= ηM (νb).

This conjecture can be checked in the rank 2 cases “by hand”, and in higher
rank cases, computer experiments provide further support for the conjecture: it
has been confirmed for the simply connected groups (i. e. for b = 1) of type A3 and
x of length ≤ 27, of type A4 and x of length ≤ 17 and of type C3 and x of length
≤ 23, and in several cases with b basic, but different from 1.

In the remainder of this subsection we discuss some sufficient conditions for the
non-emptiness of Xx(b), when b is basic.

Lemma 9.3.3. Let x = ελw ∈ W̃ be an element which is not contained in any Levi
subgroup. Then

Xx(b) 6= ∅ ⇐⇒ ηG(x) = ηG(b).

Here by not contained in any Levi subgroup, we mean that no representative
of x in NG(A)(L) is contained in a Levi subgroup of G associated with a proper
semistandard parabolic subgroup of G. Since we consider only Levi subgroups
containing the fixed maximal torus A, their (extended affine) Weyl groups are
subgroups of the (extended affine) Weyl group of G. In terms of Weyl groups we
can state the condition as: the finite part w of x is not contained in any conjugate
of a proper parabolic subgroup of W .

If w belongs to the Coxeter conjugacy class of W , then the condition is satisfied.
For the symmetric groups, i. e. if G is of type An, the converse is also true, as one
sees using disjoint cycle decompositions. For all other types, however, there exist
other conjugacy classes which do not meet any (standard) parabolic subgroup of
W (see for instance [GP], where these conjugacy classes are called cuspidal; some
authors call them elliptic).
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Before beginning the proof we note that similar considerations can be found in
[KR, Proposition 4.1] and [Re1, §3.3.4].

Proof. As before, it is clear that Xx(b) 6= ∅ implies ηG(x) = ηG(b). On the other
hand, given the latter condition, we will show that x is itself σ-conjugate to b, in
other words that the Newton vector of x is νb. Our assumption ensures that x is
in the right connected component of G(L), so that we only need to prove that x is
basic.

In order to show that x is basic, we prove that the Newton vector of x, νx =
1
N

∑N−1
i=0 wiλ ∈ X∗(A)Q is W -invariant. (Here N denotes the order of w in W .)

The point νx lies in (the closure of) some Weyl chamber, and hence its stabilizer is
generated by a subset of the set of simple reflections for this chamber, and hence
is the Weyl group of some Levi subgroup (or of all of G). On the other hand, w
is contained in this stabilizer, and so our assumption gives us that the stabilizer of
νx is in fact W . ¤

As the proof shows, if G is semi-simple the elements x ∈ W̃ which are not

contained in any Levi have finite order in W̃ . Cf. [GHKR] Prop. 7.3.1.

Now let x ∈ W̃ . If x is not contained in any Levi, then we understand whether
Xx(b) = ∅ by the lemma. In general, there is a minimal semistandard Levi subgroup
M− containing x, and a minimal semistandard Levi subgroup M+ ⊇ M− such that
xa is a P+-alcove for some semistandard parabolic subgroup P+ with Levi part
M+. Both of these statements follow from [Bo], Prop. 14.22, which says that for
(semistandard) parabolic subgroups P1, P2, the subgroup (P1 ∩ P2)RuP1 is again
a (semistandard) parabolic subgroup; it has Levi part M1 ∩ M2. There may be
more than one parabolic P+ with Levi part M+ for which xa is a P+-alcove, and
of course, we may have M+ = P+ = G.

We then have, by Theorem 2.1.4, (and assuming that [b] meets M+, because
otherwise XG

x (b) = ∅, again by Theorem 2.1.4),

XG
x (b) 6= ∅ ⇐⇒ XM+

x (b) 6= ∅ =⇒ ηM+
(x) = ηM+

(νb).

Further, the lemma gives us (assuming that [b] meets M−)

(XM+

x (b) 6= ∅ ⇐=)XM−

x (b) 6= ∅ ⇐⇒ ηM−
(x) = ηM−

(νb).

The condition ηM−
(x) = ηM−

(νb) is quite restrictive; and it becomes more restric-
tive the smaller M− is.

So, in terms of proving Conjecture 9.3.2, the case which remains to consider is
the case of x which satisfy the following two conditions: (i) either [b] does not meet

M− or it does and X
M−

x (b) = ∅, and (ii) [b] meets M+ and ηM+
(x) = ηM+

(νb). The

conjecture predicts that in this case X
M+
x (b) 6= ∅.

9.4. Relation with Reuman’s conjecture. In this section, we will formulate a
generalization of Reuman’s conjecture, and prove part of it, as a consequence of
the results obtained above. To formulate the conjecture, we consider the following

maps from W̃ to W . The map η1 is just the projection from W̃ = W n X∗(A) to
W . It is a group homomorphism. To describe the second map, we identify W with

the set of Weyl chambers. The map η2 : W̃ → W keeps track of the finite Weyl
chamber whose closure contains the alcove xa. We define η2(x) = w, where w is
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the unique element in W such that w−1xa is contained in the dominant chamber

(so that the identity element of W̃ maps to the identity element of W ).

We say that x ∈ W̃ lies in the shrunken Weyl chambers, if k(α, xa) 6= k(α,a)
for all roots α, or equivalently, if Uα ∩ xI 6= Uα ∩ I for all α. For T a subset of the
set S of simple reflections in W , let WT ⊂ W denote the subgroup generated by T .

Let `(w) denote the length of an element w ∈ W̃ . Finally, recall that we define the
defect defG(b) of an element b ∈ G(L) to be the F -rank of G minus the F -rank of
Jb (cf. [GHKR]).

Conjecture 9.4.1. a) Let [b] be a basic σ-conjugacy class. Suppose x ∈ W̃ lies in
the shrunken Weyl chambers. Then Xx(b) 6= ∅ if and only if

η2(x)−1η1(x)η2(x) ∈ W \
⋃

T(S

WT ,

and in this case

dim Xx(b) =
1

2

(
`(x) + `(η2(x)−1η1(x)η2(x)) − defG(b)

)
.

b) Let [b] be an arbitrary σ-conjugacy class, and let [bb] be the unique basic σ-
conjugacy class with ηG(b) = ηG(bb). Then there exists Nb ∈ Z≥0, such that for all

x ∈ W̃ of length `(x) ≥ Nb, we have

Xx(b) 6= ∅ ⇐⇒ Xx(bb) 6= ∅,

and in this case

dim Xx(b) = dim Xx(bb) −
1

2

(
〈2ρ, ν〉 + defG(b) − defG(bb)

)
,

where ν denotes the Newton point of b.

Part (b) of this conjecture generalizes Conjecture 7.5.1 of [GHKR]. It fits well
with Beazley’s Conjecture 1.0.1 and the qualitative picture of B(G)x that is sug-
gested by her results on SL(3) (see [Be]). The term 〈2ρ, ν〉 appearing here can also
be interpreted (see section 13) as the length of a suitable semistandard representa-

tive of [b] in W̃ .
Using the algorithms discussed in [GHKR] and in this article, we obtained ample

numerical evidence for this conjecture. We made computations for root systems of
type A2, A3, A4, C2, C3, G2, and for a number of choices of b, including cases
where b is split, basic, or neither of the two, and both cases where ηG(b) = 0 and
6= 0.

The following remark shows that this conjecture is compatible with what we
already know about affine Deligne-Lusztig varieties in the affine Grassmannian (cf.
[GHKR],[V2]).

Remark 9.4.2. Conjecture 9.4.1 implies Rapoport’s dimension formula for affine
Deligne-Lusztig varieties Xµ(b) in the affine Grassmannian for b basic (and µ ∈
X∗(A) dominant). Indeed, if w0 ∈ W is the longest element, then we have

dim Xµ(b) + `(w0) = sup{dim Xx(b); x ∈ WεµW}.

Now for the longest element x ∈ WεµW , we have η1(x) = η2(x) = w0, so

η2(x)−1η1(x)η2(x) = w0 ∈ W \
⋃

T(S

WT ,
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and by the dimension formula given in the conjecture, the supremum above is equal
to

1

2
(sup{`(x); x ∈ WεµW} + `(w0) − defG(b)) .

Let Xµ denote the G(o)-orbit of εµG(o) in the affine Grassmannian. Since

sup{`(x); x ∈ WεµW} = dim Xµ + `(w0) = 〈2ρ, µ〉 + `(w0),

altogether we obtain

dim Xµ(b) = 〈ρ, µ〉 −
1

2
defG(b),

which is the desired result.

Let us relate this conjecture to the results of the previous subsection. The
relation relies on the following lemma (which also follows easily from Proposition
3.0.5).

Lemma 9.4.3. Let x ∈ W̃ , and write w = η2(x) ∈ W .

a) If P = MN ⊃ wB is a parabolic subgroup with x ∈ W̃M , then xa is a P -alcove.
b) If x is an element of the shrunken Weyl chambers which is a P -alcove for a

semistandard parabolic subgroup P , then P ⊃ wB.

Proof. First note that by assumption w−1xa lies in the dominant chamber. This

means precisely that w−1xI ∩U ⊆ I ∩U (where U denotes the unipotent radical of
our Borel B), so we obtain

xI ∩ N ⊆ xI ∩ wU ⊆ w(I ∩ U) ⊆ I.

This inclusion is what we needed to show for part a).
Now let us prove b). Assume xa is a P -alcove and write P = MN for the Levi

decomposition of P . We need to show that N ⊆ wU . Let α ∈ RN . Then we have
xI ∩ Uα ( I ∩ Uα.

(We get ( rather than just ⊆ because x is in the shrunken Weyl chambers.) This
implies however that

xI ∩ U−α ) I ∩ U−α.

On the other hand, by what we have seen above,
xI ∩ wU ⊆ wI ∩ wU ⊆ wU(εo).

This shows that U−α 6⊆ wU , hence Uα ⊆ wU , as we wanted to show. ¤

From this lemma, we obtain the following strengthening of the “only if” direction
of part a) of Conjecture 9.4.1 above.

Proposition 9.4.4. Let b be basic. Let x ∈ W̃ , and write x = ελv, v ∈ W . Assume
that λ 6= νb and that η2(x)−1η1(x)η2(x) ∈

⋃
T(S WT . Then Xx(b) = ∅.

Proof. Write w := η2(x) ∈ W . By the lemma and our hypothesis, xa is a P -alcove
for a parabolic subgroup P = MN ⊃ wB of G. The only thing we need to check

in order to apply Corollary 9.3.1 is that ηM ′(w−1

x) 6= ηM ′(νb), where M ′ = w−1

M .
(Recall that the precise meaning of ηM ′(νb) is described after Cor. 9.3.1.) But if
we had equality here, then w−1λ − νb would be a linear combination of coroots of
M ′. On the other hand, w−1λ is dominant, and since M ′ is the Levi component
of a proper standard parabolic subgroup, we obtain λ = νb, which is excluded by
assumption. ¤
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Why does this imply the “only if” direction of part a) of Conjecture 9.4.1?
Write x = ελv. We claim that if xa belongs to the shrunken Weyl chambers and
η2(x)−1η1(x)η2(x) belongs to a proper parabolic subgroup of W , then λ 6= νb.
Suppose instead that λ = νb. Then ελ belongs to the center of G and xa = va.
This alcove belongs to the shrunken Weyl chambers only if η1(x) = v = w0. But in
that case η2(x)−1η1(x)η2(x) cannot belong to a proper parabolic subgroup of W .

We conclude this subsection by showing that our Conjecture 9.3.2 implies the
validity of the “if” direction of part a) of Conjecture 9.4.1.

Proposition 9.4.5. Assume that Conjecture 9.3.2 holds. Let x ∈ W̃ be an element
of the shrunken Weyl chambers with ηG(x) = ηG(b) and

η2(x)−1η1(x)η2(x) ∈ W \
⋃

T(S

WT .

Then Xx(b) 6= ∅.

Proof. It is enough to show that xa is not a P -alcove for any proper parabolic
subgroup P = MN ⊂ G. By the lemma above, if it were we would have P ⊃ η2(x)B.

But the assumption says precisely that x does not lie in W̃M for such P . ¤

10. Dimension theory for the groups IMN

In this section we lay some conceptual foundations for studying the dimensions of
affine Deligne-Lusztig varieties Xx(b), where [b] ∈ B(G) is an arbitrary σ-conjugacy
class. In the case where b = εν for some ν ∈ X∗(A), such a study was carried out
in [GHKR], section 6. The result was a finite algorithm to compute dimensions (a
special case of our Theorem 11.2.1 below). Underlying this study was the notion
of (ind-)admissible subset of U(L). In this paragraph, we introduce a suitable
framework that works for general elements b.

Let J be an Iwahori subgroup which is the fixer of an alcove in the standard
apartment, and let P = MN ⊃ A be any parabolic subgroup of G. Let JP = JMN
(where JM := J∩M). We want to establish a “dimension theory” for ind-admissible
subsets of JP , similar to the theory in [GHKR].

Fix any semistandard Borel subgroup contained in P and use it to define the sets
of simple roots ∆M and ∆N . We fix a coweight λ0 with 〈α, λ0〉 = 0 for α ∈ ∆M ,
and 〈α, λ0〉 > 0 for α ∈ ∆N , and consider the subgroups

N(m) := εmλ0(N ∩ J)ε−mλ0 , m ∈ Z,

cf. loc. cit. 5.2; our choice of λ0 is a little different, but this clearly does not affect
the validity of the dimension theory for N as in loc. cit. Furthermore, we choose
a separated descending filtration (JM (m))m∈Z of JM by normal subgroups, such
that JM (m) = JM for m ≤ 0, and such that all the quotients JM (m)/JM (m′) are
finite-dimensional over k. (For example, we could use a Moy-Prasad filtration.)
Finally, we set JP (m) := JM (m)N(m), and we obtain a separated and exhaustive
filtration

JP ⊃ · · · JP (−1) ⊃ JP (0) ⊃ JP (1) ⊃ JP (2) ⊃ · · · .

The quotients JP (m)/JP (m′), m ≤ m′ are finite-dimensional varieties over k in
a natural way (more precisely, they coincide, in a natural way, with the set of k-
valued points of a k-variety). Since JM normalizes each N(m), JP (m)/JP (m′) is a
fiber bundle over JM (m)/JM (m′) with fibers N(m)/N(m′). We say that a subset
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Y ⊆ JP is admissible, if there are m ≤ m′ such that it is contained in JP (m) and
is the full inverse image under the projection JP (m) → JP (m)/JP (m′) of a locally
closed subset of JP (m)/JP (m′). We say that Y ⊆ JP is ind-admissible, if for all
m, Y ∩ JP (m) is an admissible subset of JP . Obviously, admissible subsets are in
particular ind-admissible.

As in [GHKR], for an admissible subset Y ⊂ JP (m), we can define a notion of
dimension

dim Y := dim(Y/JP (m)) − dim(JP (0)/JP (m));

note this is always an element of Z, unless Y is empty. For an ind-admissible subset
Y ⊂ JP , we define

dim Y := sup{dim(Y ∩ JP (−m)) : m ≥ 0}.

We may sometimes have dim Y = +∞ (for example for Y = JP ). Of course in
making these definitions we made a choice, namely we normalized things so that
dim(JP (0)) = 0. But as before differences

dim Y1 − dim Y2

for admissible subsets Y1, Y2 are independent of any such choice.

11. The generalized superset method

11.1. The retractions ρP . Fix a standard parabolic P = MN . Write IP =
IMN = (I ∩ M(L))N(L).

Lemma 11.1.1. Let w ∈ W̃ , and JP = w−1

IP . The projection NGA(L) →
JP \G(L)/I induces a bijection

W̃ ∼= JP \G(L)/I.

Proof. Because we can conjugate the situation by w−1, we may as well assume that
w = 1. Since the set P\G(L)/K has only one element, we can identify the double

quotient P\G(L)/I with WM\W ∼= W̃M\W̃ . We obtain a commutative diagram

W̃
//

q

²²

IP \G(L)/I

p

²²

W̃M\W̃
∼=

// P\G(L)/I.

Now for v ∈ W̃ , we have

q−1(W̃Mv) = W̃Mv ∼= IM\M/(vI)M
∼= IP \P/(vI ∩ P ) ∼= p−1(PvI).

This proves the lemma. ¤

Denote by MW the set of minimal length representatives in W of the cosets in
WM\W .

Lemma 11.1.2. Let λ ∈ X∗(A) be such that 〈α, λ〉 = 0 for all roots α in M , and
let v ∈ MW .

(1) All elements of IM fix the alcove ελva.
(2) If n ∈ N , and if λ satisfies ε−λnελ ∈ vI ∩ N (which is true whenever λ is

sufficiently antidominant with respect to the roots in LieN), then n fixes
the alcove ελva.
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Proof. To prove (1), we first note that (vI)M = IM , because v is the minimal length
representative in its WM -coset. This shows that

IM = ελv(I ∩ v−1

M) ⊆ ελvI.

Similarly, under the assumption on n made in (2), we obtain that n ∈ ελvI. ¤

Denote by A the standard apartment of G with respect to our fixed torus A.
Let ρP be the retraction from the Bruhat-Tits building of G(L) to A, defined as
follows. For each alcove b in the building, all retractions of b with respect to an
alcove of the form ελva, λ, v as in part (2) of the lemma, have the same image,
say c. Here we must stipulate that λ is sufficiently anti-dominant (depending on
b) with respect to the roots in Lie N . We set

ρP (b) = c.

(In fact, we get the same retraction if we retract with respect to any alcove which lies
between the root hyperplanes Hα and Hα,1 for all roots α of M , and is sufficiently
antidominant for all roots of G lying in N . Compare also Rousseau’s notion of
cheminée, [Ro] §9.)

Lemma 11.1.3. For g ∈ IP , ρP |gA = g−1.

Proof. Clearly, g−1 maps gA to A, and g−1 fixes the alcoves tλva for λ sufficiently
anti-dominant. This implies the lemma. ¤

Proposition 11.1.4. Let y ∈ W̃ .

(1) We have

IP yI/I = ρ−1
P (ya).

In other words: we can identify ρP (as a map from the set of alcoves in
the building to the set of alcoves in the standard apartment) with the map

G(L)/I → IP \G(L)/I ∼= W̃ obtained from Lemma 11.1.1.

(2) More generally, let w ∈ W̃ , and let JP = w−1

IP . Consider the map

ρP,w : G(L)/I → W̃ , g 7→ w−1ρP (wg).

Then

JP yI = ρ−1
P,w(ya).

Proof. Part (1) follows from the previous lemma, cf. [BT], Remarque 7.4.22 which
deals with the case P = G. To prove part (2), combine part (1) with the following
commutative diagram:

G(L)
proj

//

w−1·−

²²

ρP

%%
IP \G(L)/I

∼=
//

w−1·−

²²

W̃

w−1·−

²²

G(L)
proj

// JP \G(L)/I
∼=

//
W̃

¤
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In the extreme cases, we get the following: If P = G, then ρG is just the usual
retraction ρa with respect to the base alcove. If P = B, then we get as ρB the
retraction with respect to “a point at infinity in the B-antidominant chamber”.
Note that the maps ρP,w are retractions to the standard apartment just like the
ρP , but for a different choice of base alcove.

11.2. An algorithm for computing dim Xx(b). In this subsection, we give a
formula for the dimensions

dim Xx(b) ∩ IP wa,

for any w ∈ W̃ . This gives us the dimension of Xx(b), because we have

(11.2.1) dim Xx(b) = sup
w∈fW

dim(Xx(b) ∩ IP wa).

To show this, observe that

dim Xx(b) = sup
v∈fW

dim(Xx(b) ∩ Iva),

where · indicates the closure. Now every Iva is contained in a finite union of
IP -orbits, in fact

Iva ⊆
⋃

w∈Sv

IP wa

where Sv := {w ∈ W̃ : w ≤ v}. Thus

dim(Xx(b) ∩ Iva) = sup
w∈Sv

dim(Xx(b) ∩ Iva ∩ IP wa) ≤ sup
w∈fW

dim(Xx(b) ∩ IP wa)

which shows that in (11.2.1), ≤ holds. Since the inequality ≥ is obviously true, the
desired equality follows. Also note that we know a priori that dim Xx(b) is finite,
for example by using the finite-dimensionality of affine Deligne-Lusztig varieties in
the the affine Grassmannian, established in [GHKR] and [V1].

Our result in Theorem 11.2.1 is not a “closed formula”, even for fixed w, because

it involves the dimensions of intersections of I- and w−1

IP -orbits. However, these
dimensions can be computed (at least by a computer) for fixed w. (Here we make
use of the interpretation of IP -orbits in terms of “foldings”, see Proposition 11.1.4.)

Throughout this subsection, we fix a σ-conjugacy class, say [b] ∈ B(G)P ⊂ B(G),
letting M denote the Levi component of a standard parabolic P = MN . Denote by

b ∈ W̃M the standard representative of [b] (see Definition 7.2.3). Write IP = IMN .
We have bIP b−1 = IP . Denote by ν ∈ X∗(A)Q the Newton vector for b (where b is
considered as an element of M(L)). Since b is M -basic, ν is “central in M” (and in
particular M -dominant). Let νdom denote the unique G-dominant element in the
W -orbit of ν.

For any y ∈ W̃ , we write ay := ya. Let ρ ∈ X∗(A)Q denote the half-sum of the
positive roots of A in G.

Theorem 11.2.1. Let w ∈ W̃ . Then writing b̃ = w−1bw, and denoting by ν the
Newton vector of b, we have

dim(Xx(b) ∩ IP wa) = dim(Iax ∩ w−1

IP ab̃) − 〈ρ, ν + νdom〉.

Proof. Fix a representative of w in NGA(L) fixed by σ, and again denote it by w.
Then multiplication by w−1 defines a bijection

Xx(b) ∩ IP aw
∼= Xx(w−1bw) ∩ w−1

IP a,
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which preserves the dimensions. Note that w−1

IP := w−1

(IP ) here.

We write b̃ = w−1bw, and consider the map

fb̃ : w−1

IP −→ w−1

IP ,

g 7→ g−1b̃σ(g)b̃−1.

Let

X̃x(b̃) = {g ∈ G(L); g−1b̃σg ∈ IxI}.

Then X̃x(b̃) ∩ w−1

IP = f−1

b̃
(IxIb̃−1 ∩ w−1

IP ), so

Xx(b̃) ∩ w−1

IP a = f−1

b̃
(IxIb̃−1 ∩ w−1

IP )/(I ∩ w−1

IP ).

Lemma 11.2.2. We have the equality

dim f−1

b̃
(IxIb̃−1 ∩ w−1

IP ) − dim(IxIb̃−1 ∩ w−1

IP ) = 〈ρ, ν − νdom〉.

Proof of Lemma. To ease the notation, let us write JP := w−1

(IP ) = (w−1

I)w−1P ,

and JM := (w−1

I)wM . It is easy to see that IxIb̃−1 ∩ JP is an admissible subset of
JP . It will follow from our proof below that its preimage under fb̃ is ind-admissible,
so that we can define the dimensions of these subsets using the theory from section
10. The left hand side of the equality is therefore well-defined. We can even make
a very convenient choice of filtration on JM , one which is stable under Ad(b̃): take
the Moy-Prasad filtration JM (•) on JM associated to the barycenter of the alcove
in the reduced building of M(L) which corresponds to JM .

A straightforward calculation shows that we can write the map fb̃ as follows

(here i ∈ JM , n ∈ w−1

N):

g = in 7→ g−1b̃σ(g)b̃−1 = i−1 b̃σ(i) · ĩn−1 b̃σ(n),

with ĩ := b̃σ(i)−1i.
The projection JP → JM is an “ind-admissible fiber bundle”, in a sense which the

reader will have no trouble making precise (see section 10). The above description
of fb̃ indicates how it behaves on the base and on the fibers. Let us analyze the
relative dimension of fb̃ by studying the base and the fibers in turn.

First, we consider the base JM . Since b̃ normalizes JM , the map JM → JM ,

i 7→ i−1 b̃σ(i) is surjective, and has relative dimension zero. The proof is an
adaptation of the proof of Lang’s theorem. Indeed, JM has a filtration by normal
subgroups (the JM (m) for m ≥ 0 in the Moy-Prasad filtration described above)

which are stabilized by Ad(b̃), such that on the finite-dimensional quotients our
map JM → JM induces a Lang map, which is finite étale and surjective.

Second, we study the relative dimension of fb̃ “on the fibers” of JP → JM . That

is, we fix ĩ ∈ JM as above, and study the fibers of the map w−1

N(L) → w−1

N(L)

given by n 7→ ĩn−1 b̃σ(n). Fortunately, most of the necessary work was already done
in [GHKR], Prop. 5.3.2. In fact, that proposition implies that the fiber dimension
is (using the notation of loc. cit.)

d(̃i, b̃) := d(n(L),Adn(̃i)−1 Adn(b̃)σ) + val det Adn(̃i).

Here n denotes the Lie algebra of w−1

N . Since ĩ ∈ JM , the second summand van-
ishes. Moreover, Adn(̃i)−1 Adn(b̃) = Adn(i−1b̃σ(i)). Since σ-conjugation induces
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an isomorphism of F -spaces, we obtain

d(̃i, b̃) = d(1, b̃) = 〈ρ, ν − νdom〉,

cf. loc. cit. Prop. 5.3.1.
It is clear that we should be able to put these two pieces of information together

(and obtain the stated result that the relative dimension of fb̃ is 〈ρ, ν − νdom〉) by
looking at the corresponding finite-dimensional situation. However, to make this
vague idea convincing it seems easiest to follow the argument of loc. cit. Prop. 5.3.1.
First, we correct for the inconvenient fact that fb̃ need not preserve JP (0). Let

P ′ := w−1

P , M ′ := w−1

M , N ′ := w−1

N , and I ′ := w−1

I. For any m1,m2 ∈ M ′(L)
which normalize JP = I ′P ′ , define

fm1,m2
: JP −→ JP ,

g 7→ m1g
−1m−1

1 · m2σ(g)m−1
2 .

Note that fb̃ = f1,b̃. Fix λ0 ∈ X∗(Z(M ′)) such that 〈α, λ0〉 > 0 for all α ∈ RN ′ .
Then we may replace fb̃ = f1,b̃ with f := fεtλ0 ,εtλ0 b̃ for a suitably large integer t,

chosen such that f preserves JP (0) = I ′
M ′ ·N ′ ∩ I ′. Note that f then automatically

preserves JP (m) for each integer m ≥ 0 (we shall not need this fact). Denote by
f0 : JP (0) → JP (0) the restriction of f to JP (0). As in loc. cit., our goal is now to
prove the following

Claim: Let m1 = εtλ0 and m2 = εtλ0 b̃ and set f := fm1,m2
. If Y ⊂ JP is

admissible, then f−1Y is ind-admissible and

dim f−1Y − dim Y = d(m1,m2).

Continuing to follow the strategy of the proof of Prop. 5.3.2 of loc. cit., we can
use the proof of loc. cit. Claim 1 to find an a := εt1λ0 for a large integer t1 such that

caJP (0) ⊆ fJP (0),

where ca denotes the conjugation map g 7→ aga−1 for g ∈ JP . Fix this element a
once and for all. Next we prove the following

Subclaim: Suppose that Y is an admissible subset of caJP (0). Then f−1
0 (Y ) is

admissible, and

dim f−1
0 Y − dim Y = d(m1,m2).

Proof of Subclaim: At this point we have to replace the filtration {JP (m)}m≥0 of
JP (0) with one which is better behaved with respect to the morphism f0. So, for
m ≥ 0 let I ′

m ⊂ I ′ denote the m-th principal congruence subgroup of the Iwahori
subgroup I ′; by convention I ′

0 = I ′. Let JM,m := I ′m ∩M ′ and N ′
m := I ′m ∩N ′. Let

JP,m = JM,mN ′
m = I ′m ∩ P ′. It is clear that JM normalizes each N ′

m, so that we
have a fiber bundle for each 0 ≤ m1 ≤ m2

π : JP,m1
/JP,m2

→ JM,m1
/JM,m2

with fiber Nm1
/Nm2

. Also, using our specific choices of m1,m2 above, it is clear
that f0 preserves JP,m and in fact f0 induces a well-defined map on the quotients

f : JP,0/JP,m → JP,0/JP,m

for any m ≥ 0. Here, we used that m1 and m2 and JP,0 each normalize JP,m, for
all m ≥ 0. (See (6.1.1).)
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Now choose a large positive integer m such that Y comes from a locally closed
subset Y of JP,0/JP,m. Consider the following commutative diagram

JP,0

p

²²

f0
// JP,0

p

²²

JP,0/JP,m

π

²²

f
// JP,0/JP,m

π

²²

JM,0/JM,m
f

M
// JM,0/JM,m,

where p is the canonical projection, π is the fiber bundle described above, and f

and fM are the morphisms induced by f0. Note that f−1
0 Y = p−1f

−1
Y , showing

that f−1
0 Y is admissible. Note also that since Y ⊆ caJP (0) ⊆ fJP (0), the subset

Y is contained in the image of f , and our dimension formula is a consequence of
the identity

dim f
−1

Y − dim Y = d(m1,m2).

But the latter equality now follows easily from our earlier considerations of the base
and fiber of the fiber bundle π: the map fM is surjective of relative dimension zero,
and the relative dimension of f on locally closed subsets of the fibers of π over π(Y )
is given by d(m1,m2); see the proof of loc. cit. Claim 3. This proves our subclaim.

As in loc. cit., our claim follows from the subclaim. Write d(m1,m2) =: d. If Y ⊂
JP is any admissible subset, then we have proved that f−1Y ∩a1

−1JP (0)a1 is admis-
sible of dimension dim Y +d for any a1 ∈ Z(M ′)(F ) such that a1Y a−1

1 ⊆ aJP (0)a−1.
Let t0 be sufficiently large so that at := εtλ0 satisfies atY a−1

t ⊆ aJP (0)a−1 for all
t ≥ t0. For all such t we have proved that f−1Y ∩ a−1

t JP (0)at is admissible of
dimension dim Y +d. This is enough to prove the claim, hence also the lemma. ¤

Remark 11.2.3. The proof of Lemma 11.2.2 shows that fb̃ : JP → JP is surjective.

Now let

d(x, b̃, w−1

IP ) := dim(Iax ∩ w−1

IP ab̃).

We have a dimension-preserving bijection

Iax ∩ w−1

IP ab̃
∼= (IxIb̃−1 ∩ w−1

IP )/(w−1

IP ∩ b̃I)

given by right multiplication by b̃−1, so that

d(x, b̃, w−1

IP ) = dim IxIb̃−1 ∩ w−1

IP − dim w−1

IP ∩ b̃I.

Let ρN ∈ X∗(A)Q denote the half-sum of the roots in RN .

Lemma 11.2.4. Consider cb̃ : w−1

IP → w−1

IP , g 7→ b̃gb̃−1. Then

w−1

IP ∩ b̃I = cb̃(
w−1

IP ∩ I),

hence

dim(w−1

IP ∩ I) − dim(w−1

IP ∩ b̃I) = 〈2ρN , ν〉.

Proof. As the previous lemma, this can be proved by looking at the projection
JP → JM and then separately computing the contribution from the base JM (which
is 0) and that from the fibers (which is 〈2ρN , ν〉, see [GHKR]). ¤
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Altogether we have now

dim Xx(b) ∩ IP aw

= dim f−1

b̃
(IxIb̃−1 ∩ w−1

IP ) − dim I ∩ w−1

IP

= dim IxIb̃−1 ∩ w−1

IP − dim I ∩ w−1

IP + 〈ρ, ν − νdom〉

= d(x, b̃, w−1

IP ) + dim w−1

IP ∩ b̃I − dim I ∩ w−1

IP + 〈ρ, ν − νdom〉

= d(x, b̃, w−1

IP ) + 〈ρ, ν − νdom〉 − 〈2ρN , ν〉

= d(x, b̃, w−1

IP ) − 〈ρ, ν + νdom〉,

where in the final step we have used the equality 〈ρ, ν〉 = 〈ρN , ν〉. This is what we
wanted to show. ¤

Together with the description (Proposition 11.1.4) of w−1

IP -orbits in G(L)/I as
fibers of a certain retraction of the building, Theorem 11.2.1 gives us an algorithm
to compute whether for a given w the intersection Xx(b) ∩ IP wa is empty or non-
empty. If this information were available for all w, we could conclude whether
Xx(b) is non-empty (and compute its dimension from the dimensions of all these
intersections). As noted above, it is clear that all affine Deligne-Lusztig varieties
are finite-dimensional, so that the supremum of dim(Xx(b) ∩ IP wa) is attained for
some w. It does not seem easy to give a bound for the length of w depending on x
and b.

As examples, let us consider the extreme cases:

(1) P = B. Then IP = A(o)U , and b = εν ∈ B(G)B where ν ∈ X∗(A) is a
regular dominant translation element. This case was considered in [GHKR].
The above formula is the same as in loc. cit., equations (6.3.3), (6.3.4).

(2) P = G. Then IP = I, and b ∈ ΩG is a basic σ-conjugacy class. In this
case, the dimension formula reads

dim Xx(b) ∩ Iwa = dim Iax ∩ w−1

Iaw−1bw

(since ν is central in G). This case is the case analyzed by Reuman in [Re2]
for the case b = 1, and low-rank groups. So let b = 1 (the case of other
basic b’s is analogous). We have that

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : IxI ∩ w−1

I 6= ∅

⇐⇒ ∃w ∈ W̃ : ρ−1
G (x) ∩ ρ−1

G,w(1) 6= ∅.

There are two ways to reformulate this. The algorithmic description in the
spirit of the above amounts to

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : 1 ∈ ρG,w(IxI)

On the other hand, we also obtain

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : x ∈ ρG(Iw−1IwI).

which leads to the “folding method” used by Reuman, since Iw−1IwI/I,
as a set of alcoves in the building, is exactly the set of alcoves which can
be reached by a gallery of type ir, . . . , i1, i1, . . . , ir (for a fixed reduced
expression w = si1 · · · sir

). See also section 13.



AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES 33

Remark 11.2.5. The dimension formula in example (2) can be interpreted in
terms of structure constants for the affine Hecke algebra. Let H denote the affine

Hecke algebra over Z[v, v−1] corresponding to the extended affine Weyl group W̃

and let Tx ∈ H denote the standard basis element corresponding to x ∈ W̃ . Define
the parameter q := v2, and consider the structure constants C(x, y, z) ∈ Z[q] for

x, y, z ∈ W̃ defined by the equality in H

TxTy =
∑

z

C(x, y, z)Tz.

Then it is straightforward to check that

dim Iax ∩ w−1

Iaw−1bw = degqC(x,w−1b−1, w−1).

(By convention, we set degq0 := −∞ = dim ∅.) Determining the structure con-

stants C(x,w−1b−1, w−1) is also a “folding algorithm”, so this does not give an
essentially different way to compute dimensions of affine Deligne-Lusztig varieties.
But it does give some insight on the inherent complexity of the algorithm.

12. On reduction to the basic case and a finite algorithm

One drawback of Theorem 11.2.1 is that it does not produce a finite algorithm
to compute the non-emptiness or dimension of XG

x (b). In this section, we explain
how we can at least find a finite algorithm which reduces the non-emptiness and
dimension of XG

x (b) to that of a finite number of related varieties XM ′

y (b̃), where

for all the latter b̃ is basic in M ′.
Using Theorem 11.2.1, we will usually have to check an infinite number of orbit

intersections to determine whether a given Xx(b) is empty or not. However, for
b basic, we have proved the emptiness predicted by Conjecture 9.3.2 in Corollary
9.3.1. Why are we confident that Conjecture 9.3.2 also correctly predicts non-
emptiness? In order to confirm the non-emptiness of Xx(b) in a case it is expected,
it is sufficient for the computer to detect a single non-empty intersection Iax ∩
w−1

Iaw−1bw for some w, and in practice the computer also detects one (as far as we
have checked). In other words, concerning the non-emptiness question for b basic,
in practice the algorithm always terminates in finitely many steps, and in this way
we are able to generate a complete emptiness/non-emptiness picture, at least when
`(x) is small enough for the computer to handle.

Let P = MN denote a standard parabolic subgroup. Suppose b ∈ ΩM ⊂ M(L)
is the standard representative of a basic σ-conjugacy class in M(L), and let ν = νM

b

denote its Newton vector.
Recall that MW denotes the set of minimal length representatives of the cosets

in WM\W . Note that P\G(L)/I ∼= MW .

From now on, we fix an element w ∈ MW . Write M ′ = w−1

M , N ′ = w−1

N ,

and P ′ = w−1

P . Let us denote b̃ := w−1

b ∈ ΩM ′ . Note that IM ′ = w−1

(M ∩ wI) =
w−1

(M ∩I) is an Iwahori subgroup of M ′. Let e0 denote the base point of the affine
flag variety G(L)/I and let e′0 denote the base point in M ′(L)/IM ′ .

We consider the map

αw : Pwe0 → M ′(L)/IM ′

mnwe0 7→ w−1

me′0,
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which is easily seen to be well-defined and surjective. Fix m ∈ M(L) and write

m′ := w−1

m ∈ M ′(L). The map mnwe0 7→ w−1

n determines a bijection

(12.0.2) α−1
w (m′e′0) = N ′/N ′ ∩ I.

We warn the reader that αw is not a morphism of ind-schemes; however its restric-
tion to the inverse image of any connected component of M ′(L)/IM ′ is a morphism
of ind-schemes.

Now for x ∈ W̃ , and w, b as above, define the finite set

SP (x,w) := {y ∈ W̃M ′ : N ′ay ∩ Iax 6= ∅}.

Note that N ′ay ∩ Iax 6= ∅ ⇔ IP ′ay ∩ Iax 6= ∅. For a given x, there are only finitely
many y such that the latter holds; see Proposition 11.1.4.

The following proposition is an analogue of part of [GHKR], Prop. 5.6.1.

Proposition 12.0.6. (1) The map αw restricts to give a surjective map

(12.0.3) βw : XG
x (b) ∩ Pwe0 −→

⋃

y∈SP (x,w)

XM ′

y (b̃).

(2) Assume XG
x (b) ∩ Pwe0 6= ∅. For a fixed m′ ∈ M ′(L) such that m′e′0 ∈

XM ′

y (b̃), set b′ := m′−1b̃σ(m′) ∈ IM ′yIM ′ . Then the fiber β−1
w (m′e′0) is a

locally finite-type algebraic variety having dimension

dim β−1
w (m′e′0) = dim(Iax ∩ N ′ay) − 〈ρ, ν + νdom〉,

a number which depends on y but not on m′e′0.
(3) We have

dim XG
x (b) = sup

w,y : y∈SP (x,w)

{dim(Iax∩
w−1

Nay)+dim(X
w

−1
M

y ( w−1

b))}−〈ρ, ν+νdom〉.

The proposition implies that, modulo knowledge of certain basic cases (i.e., the

XM ′

y (b̃)), there is a finite algorithm to determine the non-emptiness and dimen-

sion of XG
x (b). Conjecture 9.3.2 predicts a finite algorithm to determine the non-

emptiness of each XM ′

y (b̃). Thus, in effect it predicts a finite algorithm for the

non-emptiness of XG
x (b) itself.

Corollary 12.0.7. We have XG
x (b) 6= ∅ if and only if there exist w ∈ MW and

y ∈ SP (x,w) with XM ′

y (b̃) 6= ∅.

Proof of Proposition: It is clear that αw sends the left hand side of (12.0.3) into

the right hand side. If m′e′0 ∈ XM ′

y (b̃), then the isomorphism (12.0.2) restricts to
give an isomorphism

(12.0.4) β−1
w (m′e′0) = f−1

b′ (IxIb′−1 ∩ N ′)/N ′ ∩ I,

where b′ := m′−1b̃σ(m′) and where we define

fb′ : N ′ −→ N ′

n′ −→ n′−1b′σ(n′)b′−1.

Since fb′ is surjective (see Remark 11.2.3) and IxI ∩ N ′b′ 6= ∅, we see that βw is
surjective, proving (1). Also, the fibers of βw are algebraic varieties locally of finite
type, and their dimension can be computed from (12.0.4) using the method of the
proof of Theorem 11.2.1. This proves (2). Finally, (3) follows from (1) and (2). ¤
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Remark 12.0.8. For affine Deligne-Lusztig varieties in the affine Grassmannian,
it is known that XG

µ (b) 6= ∅ if and only if [b] ∈ B(G,µ) (cf. [KR],[K3],[Lu],[Ga]).
The condition [b] ∈ B(G,µ) means that ηG(b) = µ in ΛG and νb ≤ µ (“Mazur’s
inequality”). For XG

x (b), where as before we take b ∈ ΩM , one might ask for the
analogues of “Mazur’s inequalities,” where by this we mean a family of congruence
conditions and inequalities imposed on x,b and νb which hold if and only if XG

x (b)
is non-empty. In light of the above proposition, we see that, whatever Mazur’s
inequalities end up being, they should hold if and only if there exists w ∈ MW such

that for some y ∈ W̃ w−1M , we have

• w−1

Ny ∩ IxI 6= ∅ and

• X
w

−1
M

y ( w−1

b) 6= ∅.

In view of Conjecture 9.3.2, the second item should be understood as a family of
congruence conditions. The first item should correspond to a family of inequalities

and congruence conditions between x, y ∈ W̃ . Taken together the inequalities will

be somewhat stronger than the condition y ≤ x in the Bruhat order on W̃ .

13. Fundamental alcoves and the superset method

13.1. Fundamental alcoves. We now single out some alcoves that will be used
to generalize Reuman’s superset method [Re2] to all σ-conjugacy classes in G(L).

Definition 13.1.1. For x ∈ W̃ we say that xa is a fundamental alcove if every
element of IxI is σ-conjugate under I to x.

Equivalently, the alcove xa is fundamental if every element of xI is σ-conjugate
under xI ∩ I to x.

Now let P = MN be a semistandard parabolic subgroup of G. There is then an
Iwahori decomposition I = INIMIN . We use the Iwahori subgroup IM of M(L) to

form the subgroup ΩM ⊂ W̃M ; note that the canonical surjective homomorphism

W̃M ³ ΛM restricts to an isomorphism ΩM
∼= ΛM . We compose this isomor-

phism with the canonical homomorphism ΛM → aM , obtaining a homomorphism
ΩM → aM ; for x ∈ ΩM we will denote by νx ∈ aM the image of x under this
homomorphism. Note that x 7→ νx is intrinsic to M and has nothing to do with P .

Definition 13.1.2. For x ∈ W̃M we say that xa is a fundamental P -alcove if it is
a P -alcove for which x ∈ ΩM , or, in other words, if xIMx−1 = IM , xINx−1 ⊂ IN ,
and x−1INx ⊂ IN .

Proposition 6.3.1 implies that any fundamental P -alcove is a fundamental alcove,
just as the terminology suggests. An obvious question (that we have not tried to
answer) is whether any fundamental alcove arises as a fundamental P -alcove for
some semistandard P .

The next result gives some insight into P -alcoves, although we will make only
incidental use of it. We write ρN ∈ a∗ for the half-sum of the elements in RN .

Proposition 13.1.3. Write ΩP for the set of x ∈ ΩM such that xa is a funda-
mental P -alcove.

(1) ΩP is a submonoid of ΩM .
(2) Let x, y ∈ ΩP . Then IxIyI = IxyI and `(x) + `(y) = `(xy). Here ` is the

usual length function on W̃ .
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(3) Let x ∈ ΩP . Then `(x) = 〈2ρN , νx〉.

Proof. (1) This is clear from the definitions.
(2) For the first statement just note that

xIy = (xINx−1)xy(y−1IMy)(y−1INy) ⊂ INxyIMIN ⊂ IxyI.

The second statement follows from the first (easy, and presumably well-known).
(3) Since both the left and right sides of the equality to be proved are additive

functions on the monoid ΩP , we may replace x by xm for any positive integer m.
Taking m to be the order of the image of x in WM , we are reduced to the case in
which x is a translation element lying in ΩP . Such an element is of the form εµ

for some cocharacter µ ∈ X∗(A) whose image is central in M and dominant with
respect to any Borel subgroup of P containing A. It is easy to see that νx is simply
the image of µ under the canonical inclusion of X∗(A) in a. Thus the equality to
be proved is a consequence of the equality `(εµ) = 〈2ρN , µ〉, which in turn follows

from the usual formula for the length of translation elements in W̃ , in view of the
fact that all roots of M vanish on µ. ¤

13.2. Levi subgroups adapted to I. Let M be a Levi subgroup of G containing

A. Once again we put IM = M(L)∩ I and form ΩM ⊂ W̃M relative to IM . We will
also make use of the homomorphism x 7→ νx from ΩM to aM that was explained in
the previous subsection.

We write P(M) for the set of parabolic subgroups of G having M as Levi com-

ponent. For P ∈ P(M) we define Ω≥0
M (respectively, Ω>0

M ) to be the set of elements
x ∈ ΩM such that 〈α, νx〉 ≥ 0 (respectively, 〈α, νx〉 > 0) for all α ∈ RN . It is clear

that most elements of Ω≥0
M lie in ΩP ; however, we are going to give a condition on

M which will guarantee that every element of Ω≥0
M lies in ΩP . (Compare this with

Remark 7.2.4, which shows that when P = MN is standard, an element ελw ∈ ΩM

lies in ΩP if and only if λ is G-dominant.)

As usual the group W̃M acts by affine linear transformations on both a and

its quotient a/aM , the natural surjection a ³ a/aM being W̃M -equivariant. The
subgroup ΩM then inherits an action on a and a/aM .

Definition 13.2.1. We say that M is adapted to I (respectively, weakly adapted
to I) if there exists λ ∈ a (respectively, in the closure of a) whose image in a/aM

is fixed by the action of ΩM .

For any such λ it is easy to see that xλ = λ + νx for all x ∈ ΩM .

Proposition 13.2.2. If M is adapted to I, then Ω≥0
M ⊂ ΩP , and consequently for

every x ∈ ΩM there exists P ∈ P(M) for which xa is a fundamental P -alcove.
Similarly, if M is weakly adapted to I, then Ω>0

M ⊂ ΩP .

Proof. We begin by proving the first statement. For α ∈ RN we must show that
xa ≥α a, which is to say that k(α, xa) ≥ k(α,a). For any λ ∈ a we have k(α, xa) =
dα(xλ)e and k(α,a) = dα(λ)e. Now pick λ as in the definition of being adapted to

I. Since x ∈ Ω≥0
M , we see from the equality xλ = λ + νx that α(xλ) ≥ α(λ); it is

then clear that dα(xλ)e ≥ dα(λ)e.
Now we prove the second statement. For α ∈ RN we now have

k(α,a) − 1 ≤ α(λ) < α(xλ) ≤ k(α, xa)

and hence k(α,a) ≤ k(α, xa), as desired. ¤
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Proposition 13.2.3. Let M be any Levi subgroup containing A. Then there exists
w ∈ W such that wM is adapted to I.

Proof. There exist fixed points of ΩM on a/aM lying on no affine root hyperplane
for M (for example, when M is simple, one can take the barycenter of the base

alcove for W̃M ). We choose such a fixed point λ and then choose λ ∈ a mapping to
λ. We are free to add any element of aM to λ, so we may assume that λ lies on no
affine root hyperplane for G. If λ happens to lie in a, then M is adapted to I. In
any case there exists a unique alcove x′a containing λ. The Levi subgroup is then
adapted to I ′ = x′Ix′−1. Taking w to be the inverse of the image of x′ in W , we
find that wM is adapted to I. ¤

Being adapted to I is quite a strong condition on M . It is important to realize
that standard Levi subgroups are often not adapted to our standard Iwahori sub-
group I, even though both notions of standard are tied to the same Borel subgroup.

Corollary 13.2.4. For every [b] ∈ B(G) there exists a semistandard representative

x ∈ W̃ of [b] such that xa is a fundamental alcove and hence IxI ⊂ [b].

Proof. This follows from the previous two propositions and Definition 7.2.3. ¤

13.3. Superset method. Let b ∈ G(L). The superset W̃ (b) associated to b is the

set of x ∈ W̃ such that IxI is contained in Iy−1IbIyI for some y ∈ W̃ . The reason

for the name superset is that the set of x ∈ W̃ such that Xx(b) 6= ∅ is contained in

W̃ (b). Indeed, if Xx(b) 6= ∅, then there exists g ∈ G(L) such that g−1bσ(g) ∈ IxI.

There also exists y ∈ W̃ such that g ∈ IyI, and then

IxI = Ig−1bσ(g)I ⊂ Iy−1IbIyI.

Proposition 13.3.1. Suppose that x0a is a fundamental alcove, and let b0 be any
element of Ix0I. Then

{x ∈ W̃ : Xx(b0) 6= ∅} = W̃ (b0).

Proof. We already know the inclusion ⊂. To establish ⊃ we consider x ∈ W̃ (b0)

and choose y ∈ W̃ such that IxI ⊂ Iy−1Ib0IyI. Then IxI meets y−1Ib0Iy, and
since (by our hypothesis on x0) every element of Ib0I has the form i−1b0σ(i) for
suitable i ∈ I, there is some element in IxI of the form ẏ−1i−1b0σ(i)ẏ, where ẏ is
a representative of y in the F -points of the normalizer of A in G. Since ẏ = σ(ẏ),
this shows that IxI meets [b0], as desired. ¤

Corollary 13.3.2. For every [b] ∈ B(G) there is a semistandard representative
b0 ∈ [b] for which the superset method applies, yielding

{x ∈ W̃ : Xx(b0) 6= ∅} = W̃ (b0).

Proof. Combine Corollary 13.2.4 with Proposition 13.3.1. ¤
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no. 298, 271–318.

[Re1] D. Reuman, Determining whether certain affine Deligne-Lusztig sets are non-empty,
Thesis Chicago 2002, math.NT/0211434.

[Re2] D. Reuman, Formulas for the dimensions of some affine Deligne-Lusztig varieties, Michi-
gan Math. J. 52 (2004), no. 2, 435–451.

[Ro] G. Rousseau, Euclidean buildings, preprint Nancy, 27 pp. In “Géométries à courbure
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