111, section 7.5 Conditional Probability

notes by Tim Pilachowski
In conditional probability an outcome or event B is dependent upon another outcome or event A. Formally, $P(B \mid A)=P(B$ given $A)=$ probability that B will happen given the prior condition that A has already happened.
7.1, $7.2 \& 7.4$ Example D revisited: Suppose that a box contains 3 blue blocks and 2 yellow blocks.

If we picked blocks and then put them back ("with replacement") the probability of picking a blue block would never change, it would always be the same. There would always be 3 blue blocks in the box, no matter what had been picked previously.

$$
P\left(B_{1}\right)=P\left(B_{2}\right)=P\left(B_{3}\right)=\frac{\text { number of ways } B_{i} \text { can happen }}{\text { number of possible outcomes }}=\frac{3}{5}
$$

The picks are independent, like two coins tossed or two dice rolled.
The tree diagram for randomly picking three blocks without replacement, would look like this:
Experiment: Pick three blocks
without replacement.

Let $B_{1}=$ blue on the first pick, $B_{2}=$ blue on the second pick, $B_{3}=$ blue on the third pick, $Y_{1}=$ yellow on the first pick, $Y_{2}=$ yellow on the second pick, $Y_{3}=$ yellow on the third pick. You can fill in the probabilities on the tree diagram above as we calculate them in class. Those marked with * below will be left for you to find on your own.
$P($ picking blue second given a blue was picked first $)=P\left(B_{2} \mid B_{1}\right)=$
$P\left(Y_{2} \mid B_{1}\right)=\quad P\left(B_{2} \mid Y_{1}\right)=\quad P\left(Y_{2} \mid Y_{1}\right)=$

* $P($ picking blue third given a blue was picked first and second $)=P\left(B_{3} \mid B_{1} \cap B_{2}\right)=$

$$
\begin{array}{lll}
P\left(Y_{3} \mid B_{1} \cap B_{2}\right)= & P\left(B_{3} \mid B_{1} \cap Y_{2}\right)= & * P\left(Y_{3} \mid B_{1} \cap Y_{2}\right)= \\
P\left(B_{3} \mid Y_{1} \cap B_{2}\right)= & * P\left(Y_{3} \mid Y_{1} \cap B_{2}\right)= & * P\left(B_{3} \mid Y_{1} \cap Y_{2}\right)= \\
* P\left(Y_{3} \mid Y_{1} \cap Y_{2}\right)= &
\end{array}
$$

In an "intersection", i.e. an "and" situation, moving left-to-right on the tree diagram, multiply probabilities.
$P($ blue first and blue second and yellow third $)=* P\left(B_{1} \cap B_{2} \cap B_{3}\right)=P\left(B_{1}\right) * P\left(B_{2} \mid B_{1}\right) * P\left(B_{3} \mid B_{1} \cap B_{2}\right)=$
$P\left(B_{1} \cap B_{2} \cap Y_{3}\right)=$

$$
P\left(B_{1} \cap Y_{2} \cap B_{3}\right)=
$$

* $P\left(B_{1} \cap Y_{2} \cap Y_{3}\right)=$
$P\left(Y_{1} \cap B_{2} \cap B_{3}\right)=$
* $P\left(Y_{1} \cap B_{2} \cap Y_{3}\right)=$
* $P\left(Y_{1} \cap Y_{2} \cap B_{3}\right)=$

In a "union", i.e. an "or" situation, moving up-and-down on the tree diagram, add probabilities.

* $P(3$ blue blocks $)=P\left(B_{1} \cap B_{2} \cap B_{3}\right)=$
$P(2$ blue blocks and 1 yellow block $)=$
* $P(1$ blue block and 2 yellow blocks $)=$
$* P(3$ yellow blocks $)=$
$P(S)=$
observations about Lecture 7.4 Example D compared to Lecture 7.5 Example D:

For Example D, we were easily able to count how many blocks were left. In other situations, we won't be able to count so easily. So we have a formal definition and formula.

Earlier, we used the multiplication principle.

$$
P(E) * P(F \mid E)=P(E \cap F)
$$

With algebraic manipulation, we get a formula for conditional probability.

$$
\begin{gathered}
P(F \mid E)=\frac{P(E \cap F)}{P(E)} \\
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{\text { number of eventsin }(E \cap F)}{\text { number of eventsin }(S)}}{\frac{\text { number of eventsin }(F)}{\text { number of eventsin }(S)}}=\frac{\text { number of events in }(E \cap F)}{\text { number of events in }(F)}
\end{gathered}
$$

In words, when we're considering only event F, the conditional probability is that portion/fraction that also includes event E ?

Example A: Given two events C and D in a sample space S, if we know that $P(C)=0.3$ and $P(D \mid C)=0.2$, then what is $P(C \cap D)$?

Example B: Given two events E and F in a sample space S, if we know that $P(E)=\frac{3}{4}, P(F)=\frac{1}{3}$ and $P(E \cap F)=\frac{1}{4}$, then a) what is $P(E \mid F) ?$ b) what is $P(F \mid E)$?
7.1, $7.2 \& 7.4$ Example D revisited: Suppose that a box contains 3 blue blocks and 2 yellow blocks.
$P\left(B_{2} \mid B_{1}\right)=$
$P\left(B_{2} \mid Y_{1}\right)=$

Notice the mathematical relationship. Formally, if two events E and F are independent then

$$
\text { (1) } P(E \mid F)=P(E) \text { and (2) } P(F \mid E)=P(F) \text {. }
$$

Using the multiplication principle, $P(E \cap F)=P(E) * P(F \mid E)$.Then, if the two events are independent,
(3) $P(E \cap F)=P(E) * P(F)$.

Any one of these three formulas is sufficient to prove or disprove independence of events.
Example A revisited: Given two events C and D in a sample space S, if we know that $P(C)=0.3, P(D)=0.4$, and $P(C \cup D)=0.64$, are events C and D independent?

Example B revisited: Given two events E and F in a sample space S, if we know that $P(E)=\frac{3}{4}, P(F)=\frac{1}{3}$ and $P(E \cap F)=\frac{1}{4}$, then are events E and F independent?

Example C: For two events G and H in a sample space S, we know that they are independent and that $P(G)=$ 0.7 and $P(H)=0.4$.
$P(G \cap H)=$
$P(G \mid H)=$
$P\left(H \mid G^{c}\right)=$
$P\left(H^{c} \mid G^{c}\right)=$

Example E: You toss two standard six-sided dice.

$$
S=\{
$$

$(1,1), \quad(2,1)$,
$(3,1)$,
$(4,1), \quad(5,1)$,
$(6,1)$,
$(1,2), \quad(2,2), \quad(3,2), \quad(4,2), \quad(5,2), \quad(6,2)$,
$(1,3), \quad(2,3), \quad(3,3), \quad(4,3), \quad(5,3), \quad(6,3)$,
$(1,4), \quad(2,4), \quad(3,4), \quad(4,4), \quad(5,4), \quad(6,4)$,
$(1,5), \quad(2,5), \quad(3,5), \quad(4,5), \quad(5,5), \quad(6,5)$,
$(1,6), \quad(2,6), \quad(3,6), \quad(4,6), \quad(5,6), \quad(6,6)\}$
$A=$ at least one of the dice is a $4 \quad P(A)=$
$B=$ the sum of the two dice is $9 \quad P(B)=$
$A \cap B=$
$P(A \cap B)=$
$A \mid B=$
$P(A \mid B)=$
$B \mid A=$
$P(B \mid A)=$

Are events A and B independent? How do you know?

Example F-1: You pick a card from a standard deck of 52. $n(S)=52$.
$S=\{$ A-S, A-H, A-D, A-C, K-S, K-H, K-D, K-C, Q-S, Q-H, Q-D, Q-C, ... , 2-S, 2-H, 2-D, 2-C \}.
$C=$ the card is an Ace $\quad P(C)=$
$D=$ the card is a Spade $\quad P(D)=$
$C \cap D=$
$P(C \cap D)=$
$C \mid D=$
$P(C \mid D)=$
$D \mid C=$
$P(D \mid C)=$

Are events C and D independent? How do you know?

Example F-2: You pick two cards from a standard deck of 52.
$n(S)=$
$E=$ at least one card is an Ace $\quad P(E)=$
$E^{c}=$
$P\left(E^{c}\right)=$
$F=$ picking a pair $\quad P(F)=$
$E \cap F=$
$P(E \cap F)=$

Are events E and F independent? How do you know?

Example F-2 revisited: You pick two cards from a standard deck of 52. $n(S)=C(52,2)$
$E=$ at least one card is an Ace, $F=$ picking a pair, $E \cap F=$ picking a pair of Aces

$$
\begin{aligned}
& P(\text { Ace on first pick })= \\
& P(\text { not-Ace on first pick })= \\
& P(\text { Ace } \mid \text { Ace })= \\
& P(\text { not-Ace } \mid \text { Ace })= \\
& P(\text { Ace } \mid \text { not-Ace })= \\
& P(\text { not-Ace } \mid \text { not-Ace })=
\end{aligned}
$$

$P($ two Aces $)=P(E \cap F)=$
$P($ Ace then not-Ace $)=$
$P($ not-Ace then Ace $)=$
$P($ neither card is an Ace $)=$
$P(E)=$
$P(F)=$

Example G: Silver Springs, Florida, has a snack bar and a gift shop. The management observes 100 visitors, and counts 55 who make a purchase in the gift shop (event G), 65 who eat in the snack bar (event H), and 40 who do both.
$G \mid H=$
$P(G \mid H)=$
interpretation of $G \mid H$:
$H \mid G=$
$P(H \mid G)=$

Example H: At Matriarch University (U. Mama), 35\% of the students have an academic scholarships. Of the students who have an academic scholarship, 80% live on campus.
$J=$ has an academic scholarship, $\quad K=$ lives on campus
verbal description, then event-probability notation:
$0.35=$
verbal description, then event-probability notation:
$0.80=$
$J \cap K=$
$P(J \cap K)=$?

Example I: Previous quality control tests indicate that 0.5% of the spark plugs produced in a factory are defective. A case contains 4 dozen spark plugs.
a) What is the probability that a single spark plug is not defective?
b) What is the probability that a customer receives a case with at least one defective spark plug?
c) What is the probability that a customer who opens cases at random will open four cases before finding one that has no defective spark plugs?

Example J: The Gallup organization conducted almost 150,000 interviews from January through May 2009.

	Democrat	Independent	Other	Republican
Female	21%	13%	4%	13%
Male	16%	17%	2%	14%

http://www.gallup.com/poll/120839/Women-Likely-Democrats-Regardless-Age.aspx
Results are based on telephone interviews with 149, 192 national adults, aged 18 and older, conducted Jan. 2-May 31, 2009, as part of Gallup Poll Daily tracking. Interviews are conducted with respondents on land-line telephones (for respondents with a land-line telephone) and cellular phones (for respondents who are cell-phone only). Categories are arranged in alphabetical order.

This table gives probabilities of intersections! $P($ Male \cap Independent $)=17 \% . \quad P($ Female \cap Other $)=4 \%$.
Let $A=$ member of the Democratic Party and $B=$ female gender.
$P(A)=$
$P(B)=\quad P\left(B^{c}\right)=$
$A \cap B=$
$P(A \cap B)=$
$A \cap B^{c}=$
$P\left(A \cap B^{c}\right)=$
$A \cup B=$
$P(A \cup B)=$
$A^{c} \cup B=$
$P\left(A^{c} \cup B\right)=$
$A \mid B=$
$P(A \mid B)=$
interpretation:
$B \mid A=$
$P(B \mid A)=$
interpretation:

Are A and B independent events? How do you know?

Example K: In early 2010, households were surveyed about health insurance coverage.

	Under 65 years	$18-64$ years	Under 18 years
Uninsured \%	17.5%	21.5%	7.4%
No. Uninsured (millions)	46.4	40.9	5.5
Public \%	21.2%	14.4%	38.4%
Private \%	62.7%	65.5%	55.5%

Data from Table 1, Table 2 and Table 3, Health Insurance Coverage: Early Release of Estimates From the National Health Interview Survey, January-March 2010 by Robin A. Cohen, Ph.D., and Michael E. Martinez, M.P.H., M.H.S.A., Division of Health Interview Statistics, National Center for Health Statistics. IMPORTANT: A footnote states, "A small number of persons were covered by both public and private plans and were included in both categories." As a result, note that the percents in each column add up to greater than 100%.

This table gives conditional probabilities! P (Uninsured $\mid 18-64$ years $)=21.5 \% . P($ Public \mid Under 65$)=21.2 \%$. Let $C=$ under 18 without health insurance, $D=$ under 18 having public health insurance and $E=$ under 18 having private health insurance.
$D \cap E=$
$P(D \cap E)=$?
interpretation:
$D \cup E=$
$P(D \cup E)=$
interpretation:

Let $F=$ person is under 18 years and $G=$ person is under 65 and lacks health insurance coverage.
$P(G)=$
interpretation:
$P(G \mid F)=$
interpretation:

Are events F and G independent? How do you know?
Note that $P(G \mid F)$ is not the same thing as $P(F \mid G)$!
interpretation of $P(G \mid F)$:
interpretation of $P(F \mid G)$:

Example L: U.S. Department of Labor employment reports place jobs into the five following categories:

Management, professional, and related occupations
Service occupations
Sales and office occupations
Natural resources, construction, and maintenance occupations
Production, transportation, and material moving occupations
(Mgt)
(Svc)
(SO)
(NCM)
(PTM)

In 2010, 39.3% of jobs were classified as Mgt, 14.5% were Svc, 23.2% were SO, 9.9% were NCM, and 13.1% were PTM. Among Mgt, 48.6% were held by male workers, and 51.4% were held by female workers. The other categories were: Svc, 50.6% male, 49.4% female; SO, 38.3% male, 61.7% female; NCM, 95.9% male, 4.1% female; PTM, 80.2% male, 19.8% female.
source: United States Department of Labor, Bureau of Labor Statistics report "Median weekly earnings of full-time wage and salary workers by detailed occupation and sex" covering the year 2010.
$\mathrm{ftp}: / / \mathrm{ftp} . \mathrm{bls} . g$ gov/pub/special.requests/lf/aat39.txt
a) Put this data into a tree diagram.
b) What is the probability that a U.S. worker during 2010 was a man working in a sales or office job?
c) What percent of the U.S. workforce during 2010 was female?

