111, section 8.2 Expected Value

notes prepared by Tim Pilachowski
Do you remember how to calculate an average? The word "average", however, has connotations outside of a strict mathematical definition, so mathematicians and statisticians have a different name: the mean.
8.1 Example F revisited: Suppose we measure the heights of 25 people to the nearest inch and get the following results:

height (in.)	64	65	66	67	68	69	70
frequency	5	7	6	4	1	0	2

What is the mean height? answer: 65.88 in.
first method:
second method:

third method:

In the mathematics of probability, the formula "sum of (value times probability)" is called "expected value" as well as "mean".
For a discrete random variable X we will calculate the expected value or mean using the following formula:

$$
E(X)=x_{1} * p_{1}+x_{2} * p_{2}+x_{3} * p_{3}+\ldots+x_{n} * p_{n}=\sum_{i=1}^{n} x_{i} * p_{i}
$$

where x_{i} is an amount and $f\left(x_{i}\right)$ is its probability.
Example A fourth method: We measure the heights of 25 people to the nearest inch with the following results:

height (in.)	64	65	66	67	68	69	70
frequency	5	7	6	4	1	0	2
probability							

What is the expected value, $E(X)$, for height?
8.1 Example A-2 revisited: You toss a coin ten times. What is the expected value for random variable $X=$ number of heads in ten tosses of a coin?

x	0	1	2	3	4	5	6	7	8	9	10	
$P(X=x)$												total $=1$

answer: 5
8.1 Example B revisited: You roll two dice. What is the expected value for random variable $X=$ the sum of the two dice?

x	2	3	4	5	6	7	8	9	10	11	12	
$P(X=x)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$	total $=1$

8.1 Example C revisited: You deal five cards from a standard deck of 52. What is the expected value for random variable $X=$ number of Aces?

x	0	1	2	3	4	
$P(X=x)$						total $=1$

answer: 0.31463
8.1 Example D revisited: Suppose that you pick three blocks without replacement from a box that contains 3 blue blocks and 2 yellow blocks. What is the expected value for $X=$ number of blue blocks drawn?

x	1	2	3	
$P(X=x)$	$\frac{3}{10}$	$\frac{3}{5}$	$\frac{1}{10}$	total $=1$

answer: 1.8
8.1 Example E revisited. Let $X=$ the number of days each ICU patient stays in intensive care.

$$
X=1,2,3,4,5, \ldots
$$

The probabilities would be developed based on relative frequencies-observations made from hospital and patient records. The histogram might look something like this.

For your general knowledge, this probability distribution is approximately exponential, with formula $f(x)=0.4 e$ ${ }^{-0.4 x}$. Calculus would be needed to find the value of this expected value sum.
8.1 Example G revisited: A Math 220 class, taught in the Fall of 2010 at UMCP, had the following grade distribution. Define $X=$ grade points (GPs), where an A is 4 GPs, a B is 3 GPs, a C is 2 GPs, a D is 4 GPs, and an F or W is 0 GPs. What is the grade point average (expected value) for this class?

x	4	3	2	1	0	
$P(X=x)$	0.443	0.293	0.100	0.042	0.122	total $=1$

answer: 2.893

Example H: Insurance companies use actuarial data to set rates for policies. Collected data indicate that, on a $\$ 1000$ policy, an average of 1 in every 100 policy holders will file a $\$ 20,000$ claim. An average of 1 in every 200 policy holders will file a $\$ 50,000$ claim. An average of 1 in every 500 policy holders will file a $\$ 100,000$ claim. What is the expected value of a policy to the company?

$X=$ value of a policy					
$P(X=x)$					total $=1$

answer: \$350

Example I: In 1953, French economist Maurice Allais studied how people assess risk by giving them two decisions to make.

1) Choose between $A=\{100 \%$ chance of getting $\$ 1$ million $\}$ and $B=\{10 \%$ chance of getting $\$ 2.5$ million, 89% chance of getting $\$ 1$ million, 1% chance of getting nothing \}.
2) Choose between $\mathrm{A}=\{11 \%$ chance of getting $\$ 1$ million, 89% chance of getting nothing $\}$ and $B=\{10 \%$ chance of getting $\$ 2.5$ million, 90% chance of getting nothing $\}$.
Allais found that most people chose A for decision 1) and B for decision 2). Use expected value to determine whether these choices are supported by the numbers.
answers: 1) \$1 million, $\$ 1.14$ million; 2) $\$ 110,000, \$ 250,000$

Example J: An airline prices 150 seats according to the following schema. If the aircraft is sold out, what is the expected value to the airline of a ticket?

type	first class	unrestricted coach	restricted coach	frequent flyer
number	20	45	81	4
price	$\$ 1200$	$\$ 750$	$\$ 320$	$\$ 0$

answer: \$557.80

Example K: Five coins are tossed. If 0,1 , or 2 heads come up, the player wins nothing. If 3 heads come up the player wins $\$ 2$. If 4 heads come up the player wins $\$ 5$, and if 5 heads come up the player wins $\$ 10$.
a) What fee charged to the player would mean the house breaks even? b) If the house charges $\$ 2$ to play and 1000 people play, estimate the house profit.

no. of heads	0	1	2	3	4	5	
$X=$ winnings							
$P(X=x)$							total $=1$

answers: $\approx \$ 1.72, \$ 281.50$

