## 111, section 8.3 Variance and Standard Deviation

notes prepared by Tim Pilachowski
An expected value (mean, average) gives us what is called a "measure of central tendency", an idea of where the "middle" lies. However, a mean alone is insufficient for providing a good idea of the distribution of the data.

Examples A: The four histograms below represent four sets of data. a) Show that the expected value/mean equals 15 for each of them. b) We'll come back to this: variance and standard deviation.


$\sigma=$

| $x$ | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ |  |  |  |  |  |

$E(X)=\mu=$
$\operatorname{Var}(X)=$

$$
\sigma=
$$

| $x$ | 5 | 10 | 15 | 20 | 25 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $P(X=x)$ |  |  |  |  |  |

$E(X)=\mu=$
$\operatorname{Var}(X)=$

$\sigma=$

| $x$ | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ |  |  |  |  |  |

$E(X)=\mu=$
$\operatorname{Var}(X)=$

$$
\sigma=
$$

Enter two new, but related concepts: variance and standard deviation.
For a probability distribution with expected value $E(X)=\mu$,

$$
\operatorname{Var}(X)=\sigma^{2}=p_{1} *\left(x_{1}-\mu\right)^{2}+p_{2} *\left(x_{2}-\mu\right)^{2}+\ldots+p_{n} *\left(x_{n}-\mu\right)^{2}=\sum_{i=1}^{n} p_{i} *\left(x_{i}-\mu\right)^{2}
$$

Variance can be thought of as "sum of [ probability times (value minus mean) squared ]".

$$
\text { standard deviation of } X=\sigma=\sqrt{\operatorname{Var}(X)}
$$

Variance and standard deviation are both measures of how much the amounts ( $x_{i}$ ) vary (or deviate) from the mean $(E(X)=\mu)$.

Examples A revisited: b) Go back to the four sets of data in Example A and calculate the variance and standard deviation for each of them.
8.1-2 Example F revisited: Suppose we measure the heights of 25 people to the nearest inch.

| height (in.) | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | 0.2 | 0.28 | 0.24 | 0.16 | 0.04 | 0 | 0.08 |

Given a mean height of 65.88 in ., calculate the variance and standard deviation.
8.1-2 Example A-2 revisited: You toss a coin ten times. For random variable $X=$ number of heads in ten tosses of a coin, and given a mean of 5, calculate the variance and standard deviation.

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{1}{1024}$ | $\frac{5}{512}$ | $\frac{45}{1024}$ | $\frac{15}{128}$ | $\frac{105}{512}$ | $\frac{63}{256}$ | $\frac{105}{512}$ | $\frac{15}{128}$ | $\frac{45}{1024}$ | $\frac{5}{512}$ | $\frac{1}{1024}$ | total $=1$ |

8.1-2 Example B revisited: You roll two dice. For random variable $X=$ the sum of the two dice, and given a mean of 5, calculate the variance and standard deviation.

| $x$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{1}{36}$ | $\frac{1}{18}$ | $\frac{1}{12}$ | $\frac{1}{9}$ | $\frac{5}{36}$ | $\frac{1}{6}$ | $\frac{5}{36}$ | $\frac{1}{9}$ | $\frac{1}{12}$ | $\frac{1}{18}$ | $\frac{1}{36}$ | total $=1$ |

8.1-2 Example C revisited: You deal five cards from a standard deck of 52. For random variable $X=$ number of Aces, and given expected value $\approx 0.31463$, calculate the variance and standard deviation.

| $x$ | 0 | 1 | 2 | 3 | 4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x) \approx$ | 0.65884 | 0.29947 | 0.03993 | 0.00174 | 0.00002 | total $=1$ |

8.1-2 Example D revisited: Suppose that you pick three blocks without replacement from a box that contains 3 blue blocks and 2 yellow blocks. For $X=$ number of blue blocks drawn, and given expected value $=1.8$, calculate the variance and standard deviation.

| $x$ | 1 | 2 | 3 |  |
| :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{3}{10}$ | $\frac{3}{5}$ | $\frac{1}{10}$ | total $=1$ |

8.1-2 Example E revisited. Let $X=$ the number of days each ICU patient stays in intensive care.

$$
X=1,2,3,4,5, \ldots
$$

The probabilities would be developed based on relative frequencies-observations made from hospital and patient records. The histogram might look something like this.


For your general knowledge, this probability distribution is approximately exponential, with formula $f(x)=0.4 e$ $-0.4 x$. Calculus is needed to find the variance and standard deviation.
8.1-2 Example G revisited: A Math 220 class, taught in the Fall of 2010 at UMCP, had the following grade distribution. Define $X=$ grade points (GPs), where an A is 4 GPs, a B is 3 GPs, a C is 2 GPs, a D is 4 GPs , and an F or W is 0 GPs. Given expected value $\approx 2.893$, calculate the variance and standard deviation of grade point average for this class.


| $x$ | 4 | 3 | 2 | 1 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | 0.443 | 0.293 | 0.100 | 0.042 | 0.122 | total $=1$ |

8.2 Example H revisited: Insurance companies use actuarial data to set rates for policies. Collected data indicate that, on a $\$ 1000$ policy, an average of 1 in every 100 policy holders will file a $\$ 20,000$ claim. An average of 1 in every 200 policy holders will file a $\$ 50,000$ claim. An average of 1 in every 500 policy holders will file a $\$ 100,000$ claim. Given expected value $=350$, calculate the variance and standard deviation for the value of a policy to the company.

| $X=$ value of a policy | -19000 | -49000 | -99000 | 1000 |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $P(X=x)$ | 0.01 | 0.005 | 0.002 | 0.983 | total $=1$ |

8.2 Example J revisited: An airline prices 150 seats according to the following schema. Assuming the aircraft is sold out, and given expected value $=557.80$, calculate the variance and standard deviation of the value of a ticket to the airline.

| type | first class | unrestricted coach | restricted coach | frequent flyer |
| :---: | :---: | :---: | :---: | :---: |
| number | 20 | 45 | 81 | 4 |
| price | $\$ 1200$ | $\$ 750$ | $\$ 320$ | $\$ 0$ |

8.2 Example K revisited: Five coins are tossed. If 0 , 1 , or 2 heads come up, the player wins nothing. If 3 heads come up the player wins $\$ 2$. If 4 heads come up the player wins $\$ 5$, and if 5 heads come up the player wins $\$ 10$. Given mean $\approx 1.72$, calculate the variance and standard deviation for the value of winnings paid out by the house.

| no. of heads | 0 | 1 | 2 | 3 | 4 | 5 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X=$ winnings | 0 | 0 | 0 | 2 | 5 | 10 |  |
| $P(X=x)$ | $\frac{1}{32}$ | $\frac{5}{32}$ | $\frac{5}{16}$ | $\frac{5}{16}$ | $\frac{5}{32}$ | $\frac{1}{32}$ | total $=1$ |

