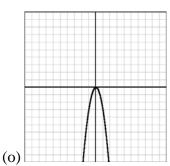
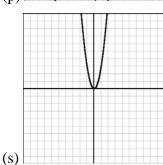

Math 113 worksheet 3.1a Functions and Graphs DUE _____


- 1. Sketch the graph of a function f which meets the following five conditions: f(-6) = 0, f(0) = 5, f(4) = -3, f increases over the intervals $(-\infty, 2)$ and $(4, \infty)$, f decreases over the interval (2, 4).
- 2. (a) Write the equation of a quadratic function whose vertex is (-2, 4) and whose graph opens upward.
 - (b) Write the equation of a quadratic function whose vertex is (-2, 4) and whose graph opens downward.
 - (c) Which of the two functions above has a maximum value, and what is that maximum value?
- 3. For each of the following functions, first state the domain and then determine (algebraically—you must show your work to receive full credit) whether the function is even, odd, or neither.
- (a) $f(x) = \sqrt{16 x}$ (b) $f(x) = \sqrt{16 x^2}$ (c) $f(x) = \frac{x}{|x|}$ (d) $f(x) = x^3 x$ (e) $f(x) = x^3 x^2$

- 4. Sketch the graphs of functions 3a), 3b) and 3c). Find and label all intercepts. Hint: Do a table of values based on your domain work above.
- 5. Match each function (a through h) with the correct graph (m through t). State how you know your choice is correct.
- (a) $y = (x-2)^2 + 4$ (b) $y = -(x+2)^2 4$ (c) $y = (x-2)^2 4$ (d) $y = -(x+2)^2 + 4$ (e) $y = 3x^2$ (g) $y = \frac{1}{3}x^2$ (h) $y = -\frac{1}{3}x^2$



(n)

(p)

