Math 113 Chapter 2.7 Examples and Extra Notes

Inverse of a function

You can tell whether on not a function has an inverse by applying the "horizontal line test" to the graph: If any horizontal line passes through only one point of the curve, then the function has an inverse.

$y=\sqrt{x}$
passes the horizontal line test has an inverse

$y=-x^{2}+8$
doesn't pass the horizontal line test doesn't have an inverse

$y=-x^{2}+8, x \geq 0$
passes the horizontal line test only because domain is restricted has an inverse

Given a function f and its inverse, f^{-1}, the following will always be true:

1. If $f(a)=b$, then $f^{-1}(b)=a$. (This fact and the statement in point \#2 below is actually the same information.)
2. If (a, b) is a point on the graph of f, then (b, a) will be on the graph of f^{-1}. You can use this fact to use a graph to sketch its inverse: locate two or three points on the graph of f, swap coordinates, plot the new points, connect the dots, and you have the graph of f^{-1}. (See example below.)
3. The graph of f and the graph of f^{-1} are symmetric with respect to the line $y=x$.
4. The domain of $f=$ the range of f^{-1}, and the range of $f=$ the domain of f^{-1}.
5. $f \circ f^{-1}=x$ and $f^{-1} \circ f=x$. To show that two functions are inverses, you must do both compositions.

Inverse example

$f(x)=x^{2}+4, x \geq 0$, passes the horizontal line test (but only because the domain is restricted) so it has an inverse. Using \#1 and \#2 from above, since the points $(0,4)$ and $(2,8)$ are on the graph of f, then $(4,0)$ and $(8,2)$ will be on the graph of $f^{-1}(x)$.

The graph of f^{-1} has been added in the second picture to the left. Item \#3 above is verified, since the two graphs are symmetric across the line $y=x$.

The domain of f has been restricted to $[0, \infty)$. From the graph we can tell that its range is $[4, \infty)$. Likewise, using the graph of f^{-1} we can see that its domain is $[4, \infty)$, while its range is $[0, \infty)$. That is, the domain of $f=$ the range of f^{-1}, and the range of $f=$ the domain of f^{-1} (\#4 above).

Using what we know about transformations of graphs, it appears that the equation of f^{-1} is $f^{-1}(x)=\sqrt{x-4}$. We can verify this using item \#5:
$f \circ f^{-1}=f(\sqrt{x-4})=(\sqrt{x-4})^{2}+4=x-4+4=x \quad \quad f^{-1} \circ f=f^{-1}\left(x^{2}+4\right)=\sqrt{\left(x^{2}+4\right)-4}=\sqrt{x^{2}}=|x|=x$
Important note: Because the domain of f, and therefore $f^{-1} \circ f$, is restricted to positive numbers, and absolute value of a positive number is the number itself, for these two functions the composition $f \circ f^{-1}$ will always equal x.

