Math 113 Chapter 2.7 Examples and Extra Notes

Inverse of a function

You can tell whether on not a function has an inverse by applying the "horizontal line test" to the graph: If any horizontal line passes through only one point of the curve, then the function has an inverse.

Given a function f and its inverse, f^{-1} , the following will always be true:

1. If f(a) = b, then $f^{-1}(b) = a$. (This fact and the statement in point #2 below is actually the same information.)

- 2. If (a, b) is a point on the graph of f, then (b, a) will be on the graph of f^{-1} . You can use this fact to use a graph to sketch its inverse: locate two or three points on the graph of f, swap coordinates, plot the new points, connect the dots, and you have the graph of f^{-1} . (See example below.)
- 3. The graph of f and the graph of f^{-1} are symmetric with respect to the line y = x.
- 4. The domain of f = the range of f^{-1} , and the range of f = the domain of f^{-1} .
- 5. $f \circ f^{-1} = x$ and $f^{-1} \circ f = x$. To show that two functions are inverses, you must do *both* compositions.

Inverse example

 $f(x) = x^2 + 4$, $x \ge 0$, passes the horizontal line test (but only because the domain is restricted) so it has an inverse. Using #1 and #2 from above, since the points (0, 4) and (2, 8) are on the graph of *f*, then (4, 0) and (8, 2) will be on the graph of $f^{-1}(x)$.

The graph of f^{-1} has been added in the second picture to the left. Item #3 above is verified, since the two graphs are symmetric across the line y = x.

The domain of *f* has been restricted to $[0, \infty)$. From the graph we can tell that its range is $[4, \infty)$. Likewise, using the graph of f^{-1} we can see that its domain is $[4, \infty)$, while its range is $[0, \infty)$. That is, the domain of f^{-1} the range of f^{-1} , and the range of f^{-1} the domain of f^{-1} (#4 above).

Using what we know about transformations of graphs, it appears that the equation of f^{-1} is $f^{-1}(x) = \sqrt{x-4}$. We can verify this using item #5:

$$f \circ f^{-1} = f\left(\sqrt{x-4}\right) = \left(\sqrt{x-4}\right)^2 + 4 = x - 4 + 4 = x \qquad f^{-1} \circ f = f^{-1}\left(x^2 + 4\right) = \sqrt{\left(x^2 + 4\right) - 4} = \sqrt{x^2} = |x| = x$$

Important note: Because the domain of *f*, and therefore $f^{-1} \circ f$, is restricted to positive numbers, and absolute value of a positive number is the number itself, for *these two functions* the composition $f \circ f^{-1}$ will *always* equal *x*.