Calculus 130, section 3.1a Limits

notes prepared by Tim Pilachowski
We now move to an examination of the concept of limits in mathematics. Non-technically, taking a limit is moving constantly toward something without ever getting there. Finding $\lim _{x \rightarrow \infty}$ is akin to walking toward the horizon: even though you keep moving, there is always more horizon off in the distance.
Here's another perspective: Consider decreasing your distance away from an object by half, then half again, then half again, etc. This is like being on a number line at 1 , and moving toward 0 .

First you'd go to $\frac{1}{2}$, then $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots, \frac{1}{2^{100}}, \ldots, \frac{1}{2^{1000}}, \ldots, \frac{1}{2^{1,000,000}}, \ldots, \frac{1}{2^{1,000,000,000,000,000}}, \ldots$,
You'd be always getting closer to 0 , but never actually reaching 0 . In mathematical parlance this would be finding $\lim _{x \rightarrow 0^{+}}$, "the limit as x approaches 0 from the right".

You've already encountered limits, albeit in a more limited fashion, when you identified the asymptotes of rational function graphs in an Algebra II or PreCalculus class. Even though you may or may not have called it "taking a limit" at that time, the process was the same. We'll be a little more formal and rigorous in this class.

1) The notation $\lim _{x \rightarrow a^{+}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the right".
2) The notation $\lim _{x \rightarrow a^{-}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the left".
3) If there is some identifiable real number L such that $\lim _{x \rightarrow a^{+}} f(x)=L$ and also $\lim _{x \rightarrow a^{-}} f(x)=L$, then we will be able to write $\lim _{x \rightarrow a} f(x)=L$, which is read "the limit of $f(x)$ as x approaches a ". It is implicit in this statement that the limit is being taken as " x approaches a from either side".
Examples A: For the following functions, determine whether $\lim _{x \rightarrow 1} f(x)=L$ exists, and if so, the value of L.
a) $f(x)=x-1$

answers: $0,1, \mathrm{DNE}, 1$
b) $f(x)=e^{x-1}$

c) $f(x)=\ln (x-1)$

d) $f(x)=\cos (x-1)$

Of the examples above, the only one for which $x=1$ is not in the domain is $f(x)=\ln (x-1)$, so it is the only one for which $\lim _{x \rightarrow 1} f(x)=L$ does not exist.
A similar situation exists in the case of rational functions, for which the denominator $\neq 0$.
Examples B: For the following functions, determine whether $\lim _{x \rightarrow 1} f(x)=L$ exists, and if so, the value of L.
a) $f(x)=\frac{1}{x-1}$

b) $f(x)=\frac{x^{2}-1}{x-1}$
c) $f(x)=\frac{x-1}{x^{2}-1}$
d) $f(x)=\frac{x-1}{x^{2}+1}$
e) $f(x)=\frac{|x-1|}{x-1}$

answers: DNE, 2, $\frac{1}{2}, 0$, DNE

Be generally familiar with the properties of limits given in your text. Bottom lines:
The limit of a sum/difference/product is the sum/difference/product of the limits.
For the most part, the limit of a quotient is the quotient of the limits, except when the limit of the denominator $=$ 0 (as in examples B-a and B-c above).

Example B-d revisited: Use the properties of limits to find $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}+1}$. answer: 0

Examples C: Use the properties of limits to find a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$ and b) $\lim _{x \rightarrow 0} \frac{[1 /(x+1)]-1}{x}$. answers: $\frac{1}{2},-1$

