Calculus 130, section 3.1b Limits, section 3.2 Continuity

notes prepared by Tim Pilachowski

1) The notation $\lim _{x \rightarrow a^{+}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the right".
2) The notation $\lim _{x \rightarrow a^{-}} f(x)$ is read "the limit of $f(x)$ as x approaches a from the left".
3) If there is some identifiable real number L such that $\lim _{x \rightarrow a^{+}} f(x)=L$ and also $\lim _{x \rightarrow a^{-}} f(x)=L$, then we will be able to write $\lim _{x \rightarrow a} f(x)=L$, which is read "the limit of $f(x)$ as x approaches a ". It is implicit in this statement that the limit is being taken as " x approaches a from either side".

In some of the examples done last time, we had $\lim _{x \rightarrow a} f(x)=\infty$. Now we turn to consideration of $\lim _{x \rightarrow \infty} f(x)$. (This is the concept underlying the determination of horizontal and slant asymptotes for rational and exponential functions.)

Examples D: For the following functions, determine whether $\lim _{x \rightarrow \infty} f(x)=L$ exists, and if so, the value of L.
a) $f(x)=3$
b) $f(x)=\frac{3 x^{2}-1}{2}$
c) $f(x)=\frac{3 x^{2}-1}{2 x-1}$
d) $f(x)=\frac{3 x^{2}-1}{2 x^{2}-1}$
e) $f(x)=\frac{3 x^{2}-1}{2 x^{3}-1}$
answers: $3, \infty, \infty, \frac{3}{2}, 0$

Examples E: For the following functions, determine whether $\lim _{x \rightarrow \infty} f(x)=L$ exists, and if so, the value of L.
a) $f(x)=\ln (x-1)$
b) $f(x)=e^{x-1}$
c) $f(x)=e^{1-x}$
d) $f(x)=\frac{3}{2+e^{-x}}$
e) $f(x)=\cos (x-1)$
answers: $\infty, \infty, 0, \frac{3}{2}$, DNE

A pair of basic but very important principles are illustrated in the Examples above: As a denominator $\rightarrow \infty$, a fraction $\rightarrow 0$, while any constants \rightarrow themselves.
With respect to power functions, for any real number $n>0, \lim _{x \rightarrow \infty} x^{n}=\infty$ and $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$.
With respect to exponential functions, for any real number $k>0, \lim _{x \rightarrow \infty} b^{k x}=\infty$ and $\lim _{x \rightarrow \infty} \frac{1}{b^{k x}}=0$.
Finally, for a given constant $a, \lim _{x \rightarrow \infty} a=a$.

Here begins section 3.2
An extension of limits is the concept of continuity of a function. Specifically, a function is continuous at a value $x=c$ if and only if

1) $f(c)$ is defined
2) $\lim _{x \rightarrow c} f(x)$ exists
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

If a function is not continuous at $x=c$, then it is discontinuous.
Examples A revisited: Determine whether the following functions are continuous at $x=1$. Explain why.

c) $f(x)=\ln (x-1)$

d) $f(x)=\cos (x-1)$

answers: yes, yes, no, yes

Examples B revisited: Determine whether the following functions are continuous at $x=1$. Explain why.
a) $f(x)=\frac{1}{x-1}$
b) $f(x)=\frac{x^{2}-1}{x-1}$
c) $f(x)=\frac{x-1}{x^{2}-1}$
d) $f(x)=\frac{x-1}{x^{2}+1}$
e) $f(x)=\frac{|x-1|}{x-1}$

answers: no, no, no, yes, no

Definition: A function is continuous on an open interval (a, b) [i.e. $a<x<b$] if it is continuous at every x-value in that interval.

Examples B again: Determine all open intervals on which each of the following functions is continuous.
a) $f(x)=\frac{1}{x-1}$
b) $f(x)=\frac{x^{2}-1}{x-1}$
c) $f(x)=\frac{x-1}{x^{2}-1}$
d) $f(x)=\frac{x-1}{x^{2}+1}$
e) $f(x)=\frac{|x-1|}{x-1}$

answers: $(-\infty, 1) \&(1, \infty),(-\infty, 1) \&(1, \infty),(-\infty,-1),(-1,1) \&(1, \infty),(-\infty, \infty),(-\infty, 1) \&(1, \infty)$

Examples F: Determine all intervals on which each of the following functions is continuous.
a) $f(x)=\sqrt{x-1}$
b) $f(x)=\sqrt{9-x^{2}}$

Neither of these functions satisfies the definition of "continuous" at their endpoints: for a) at (1,0), and for b) at $(-3,0)$ and $(3,0)$. Is there a way that we can think about continuity so that we can include such endpoints?

Definition: A function is continuous on a closed interval [a, b] if and only if
1) it is continuous on (a, b)
2) it is continuous from the right at $x=a$, i.e. $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
3) it is continuous from the left at $x=b$, i.e. $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Examples F: Determine all intervals on which each of the following functions is continuous.
a) $f(x)=\sqrt{x-1}$
b) $f(x)=\sqrt{9-x^{2}}$
answers: $[1, \infty),[-3,3]$

