Calculus 130, section 3.1b Limits, section 3.2 Continuity

notes prepared by Tim Pilachowski

1) The notation $\lim_{x \to a^+} f(x)$ is read "the limit of f(x) as x approaches a from the right".

2) The notation $\lim_{x \to a^-} f(x)$ is read "the limit of f(x) as x approaches a from the left".

3) If there is some identifiable real number *L* such that $\lim_{x \to a^+} f(x) = L$ and also $\lim_{x \to a^-} f(x) = L$, then we will be able to write $\lim_{x \to a} f(x) = L$, which is read "the limit of f(x) as *x* approaches *a*". It is implicit in this statement

that the limit is being taken as "x approaches a from either side".

In some of the examples done last time, we had $\lim_{x \to a} f(x) = \infty$. Now we turn to consideration of $\lim_{x \to \infty} f(x)$. (This is the concept underlying the determination of horizontal and slant asymptotes for rational and exponential functions.)

Examples D: For the following functions, determine whether $\lim_{x\to\infty} f(x) = L$ exists, and if so, the value of *L*.

a)
$$f(x) = 3$$
 b) $f(x) = \frac{3x^2 - 1}{2}$ c) $f(x) = \frac{3x^2 - 1}{2x - 1}$ d) $f(x) = \frac{3x^2 - 1}{2x^2 - 1}$ e) $f(x) = \frac{3x^2 - 1}{2x^3 - 1}$

answers: 3, ∞ , ∞ , $\frac{3}{2}$, 0

Examples E: For the following functions, determine whether $\lim_{x\to\infty} f(x) = L$ exists, and if so, the value of *L*.

a) $f(x) = \ln(x-1)$ b) $f(x) = e^{x-1}$ c) $f(x) = e^{1-x}$ d) $f(x) = \frac{3}{2+e^{-x}}$ e) $f(x) = \cos(x-1)$

answers: ∞ , ∞ , 0, $\frac{3}{2}$, DNE

A pair of basic but very important principles are illustrated in the Examples above: As a denominator $\rightarrow \infty$, a fraction $\rightarrow 0$, while any constants \rightarrow themselves.

With respect to power functions, for any real number n > 0, $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to \infty} \frac{1}{x^n} = 0$. With respect to exponential functions, for any real number k > 0, $\lim_{x \to \infty} b^{kx} = \infty$ and $\lim_{x \to \infty} \frac{1}{b^{kx}} = 0$. Finally, for a given constant a, $\lim_{x \to \infty} a = a$. Here begins section 3.2

An extension of limits is the concept of **continuity of a function**. Specifically, a function is continuous at a value x = c if and only if

1)
$$f(c)$$
 is defined 2) $\lim_{x \to c} f(x)$ exists 3) $\lim_{x \to c} f(x) = f(c)$.

If a function is not continuous at x = c, then it is **discontinuous**.

Examples A revisited: Determine whether the following functions are continuous at x = 1. Explain why.

Examples B revisited: Determine whether the following functions are continuous at x = 1. Explain why.

answers: no, no, no, yes, no

Definition: A function is **continuous on an open interval** (a, b) [i.e. a < x < b] if it is continuous at every *x*-value in that interval.

Examples B again: Determine all open intervals on which each of the following functions is continuous.

Examples F: Determine all intervals on which each of the following functions is continuous.

Neither of these functions satisfies the definition of "continuous" at their endpoints: for a) at (1, 0), and for b) at (-3, 0) and (3, 0). Is there a way that we can think about continuity so that we can include such endpoints?

Definition: A function is continuous on a closed interval [a, b] if and only if

- 1) it is continuous on (a, b)
- 2) it is continuous from the right at x = a, i.e. $\lim_{x \to a^+} f(x) = f(a)$
- 3) it is continuous from the left at x = b, i.e. $\lim_{x \to b^{-}} f(x) = f(b)$

Examples F: Determine all intervals on which each of the following functions is continuous.

a)
$$f(x) = \sqrt{x-1}$$

b) $f(x) = \sqrt{9-x^2}$

answers: $[1, \infty), [-3, 3]$