
Calculus 130, section 4.1  Techniques for Finding Derivatives 
notes by Tim Pilachowski 
 

We now take the ideas of section 3.4 (the slope of a curve at a point P = the slope of the tangent at point P = the 

value of the first derivative at point P) and develop some of the shortcuts. (Note that the derivative of a function 

is itself a function.) The process of finding a derivative is called differentiation. The first derivative of f has 

several notations: ( ) ( )[ ]xf
dx

d
,

dx

dy
,xf,f ′′  and ( )[ ]xfDx . (The last one is used in the text, so you need to be 

familiar with it, but we won’t be using it in lectures or on the Exam.) 

Examples A: Use the limit definition of the derivative to find the first derivative of ( ) 2xxm = , ( ) 3xxn = , 

( ) 1−= xxp  and ( ) 2
1

xxq = . 
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We can go through a similar process for any function of the form ( ) rxxf =  where r could be any number. 

Specifically, we’d find that ( ) 1−=′ rxrxf . Such a function is called a power function, and this property of 

derivatives is called the power rule. 
 



Example B: Given y  = x, find 
dx

dy
.   Answer: 1 

 

 

 

Note that the answer to Example B fits with what we already know about lines in slope-intercept form. 
 

Example C: Given f(x)  = 5, find ( )xf ′ .   Answer: 0 

 

 

Note that the answer to Example C fits with what we already know about constant functions and the slopes of 

horizontal lines. 

Example D: Given ( )
3

1

x
xf = , find ( )[ ]xf

dx

d
.   Answer: 
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Given a function ( )xfky ∗= , where k is a constant coefficient of a variable function, what would be its first 

derivative? Think in terms of what you know about transformations and what you’ve learned about slope of the 

tangent line. The constant will either stretch the graph (when 1>k ) or shrink the graph 

(when 1<k ). What effect will this stretch/shrink have on the slope of the tangent line? 

Will it stretch/shrink at the same rate as the curve? Consider the quadratics pictured to the 

left. For ( ) ( ) 11,2 == fxxf  and the slope of the tangent line = 2. For ( ) ( ) 21,2 2 == fxxf  

and the slope of the tangent line = 4. We might begin to suspect that as a function undergoes 

a stretch/shrink, the tangent line stretches/shrinks at the same rate. Indeed, we already know, 

from the properties of limits, that  
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which is to say that given a function ( )xfky ∗= , ( )xfk
dx

dy
′∗=  [constant-multiple rule]. 

 

Example E: Given ( ) 37xxf = , find the first derivative.   Answer: 21x
2
 

 

 

 

 
 

 

 

Can we do the same if we add two functions together? That is, Given  

( ) ( ) ( ) ( ) ( ) ( )xgxfxpxgxfxp ′+′=′+=   does  , ? Since 
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limlimlim , the answer is “Yes.” 

The derivative of a sum is the sum of the derivatives [sum rule]. Note that the constant-multiple rule and sum 

rule work together to give us the derivative of a subtraction, since ( ) ( ) ( ) ( )( )xgxfxgxf ∗−+=− 1 . 
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Example F: Given ( ) 283 +−= xxxf , find the first derivative.   Answer: 83
2
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Example G: Given ( )
2
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xxg −+−= , find the first derivative.  Answer: 
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Caution, Be careful, Warning, Warning! Danger, Will Robinson! There is no similar easy process for the 

derivative of a product, nor is there a similar easy process for the derivative of a quotient. We’ll need to work a 

good bit for those. 
 

Some final notions about derivatives and differentiability: 
 

In line with the concept of slope of the curve at a point being equal to the slope of the tangent line at that point, 

( ) 0>′ xf  implies that f is increasing. Likewise ( ) 0<′ xf  implies that f is decreasing. However, the implication 

does not go the other way. The fact that a function is increasing does not imply that ( ) 0>′ xf . The simplest 

example is 3xy = . Although 3
x  is increasing everywhere on its domain, its derivative is not always positive. 

The curve momentarily “levels out” precisely when x = 0, then continues upward. At this point ( ) 03 =x
dx

d
. A 

similar limitation exists for decreasing functions. 
 

Another important concept for differentiability of functions is the idea of being continuous. Specifically, the 

existence of a derivative at a point implies that the function is continuous at that point, i.e. its graph is not 

disconnected pieces. However, the implication does not go the other way. A function may be continuous, but 

may not be differentiable at all points. Two examples are shown below. On the left, ( ) 225 xxf −=  is defined 

and has values at 5  and  5 =−= xx , but the derivative is undefined since the tangent is a vertical line whose 

slope is undefined. On the right, ( ) 5+−= xxf  is defined and continuous for all real numbers, but the 

derivative does not exist at x = 0 because the tangent line on the left has a positive slope, while the tangent line 

on the right has a negative slope, i.e 
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