Calculus 130, section 4.2 Derivatives of Products and Quotients

notes by Tim Pilachowski
In section 4.1 we found one formula for finding a derivative: the power rule. Everything else was extensions or applications of the same thing. Now we present two new rules for finding derivatives-these are ones you'll need to memorize.

The first is the product rule: $\frac{d}{d x}[u(x) * v(x)]=u(x) * v^{\prime}(x)+v(x) * u^{\prime}(x)=u v^{\prime}+v u^{\prime}$. The text does a derivation at the beginning of the chapter. I'll leave it to you to look over that work.
Example A: Given $m(x)=\left(4 x^{2}-1\right)\left(3+x^{3}\right)$, find m^{\prime}. answer: $m^{\prime}(x)=20 x^{4}-3 x^{2}+24 x$.) method 1: multiplying out
method 2: product rule

Example B: Given $n(x)=\left(5 x^{4}-1\right)^{2}$, find $n^{\prime}(x)$. answer: $n^{\prime}=200 x^{7}-40 x^{3}$ method 1: multiplying out
method 2: product rule

Example C. Given $f(x)=\left(2 x^{4}-x^{2}+1\right)\left(\frac{3}{x^{4}}-\frac{1}{x^{2}}-1\right)$, find $\frac{d f}{d x}$.
Multiplying this out would be time-intensive and fraught with possible error. The product rule provides an easier and more reliable method.
answer: $f^{\prime}=\left(2 x^{4}-x^{2}+1\right)\left(-\frac{12}{x^{5}}+\frac{2}{x^{3}}\right)+\left(\frac{3}{x^{4}}-\frac{1}{x^{2}}-1\right)\left(8 x^{3}-2 x\right)$

Example D illustrates successive applications of the product rule, with small numbers to be less confusing (hopefully). Example D. Given the polynomial $f(x)=(x+3)\left(x^{2}+1\right)\left(x^{3}-1\right)$, find the first derivative. answer: $f^{\prime}=(x+3)\left[\left(x^{2}-1\right)\left(3 x^{2}\right)+\left(x^{3}-1\right)(2 x)\right]+\left(x^{2}+1\right)\left(x^{3}-1\right)$

Example E: Given $y=(2 x+1)(\sqrt{x}-1)$ solve $\frac{d y}{d x}=0$. answer: no solution

Now we move to the quotient rule.
$\frac{d}{d x}\left[\frac{u(x)}{v(x)}\right]=\frac{v(x) * u^{\prime}(x)-u(x) * v^{\prime}(x)}{[v(x)]^{2}}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
Example F: Given $f(x)=\frac{\sqrt[3]{x}}{x^{2}}$, find $f^{\prime}(x)$. answer: $f^{\prime}(x)=-\frac{5}{3 x^{8 / 3}}$ method 1: simplifying first
method 2: quotient rule

Example G: Given $h(x)=\frac{3 x+1}{x-2}$ find h^{\prime}. answer: $h^{\prime}=\frac{-7}{(x-2)^{2}}$

Example H: Find the two x-values where $f(x)=\frac{3 x+5}{2 x^{2}+x-3}$ has a horizontal tangent. answers: $x=-\frac{7}{3},-1$

Example I: Given the rational function $f(x)=\frac{(x+3)\left(x^{2}+1\right)}{\left(x^{3}-1\right)}$, find $\frac{d}{d x}[f(x)]$.
answer: $f^{\prime}=\frac{\left(x^{3}-1\right) *\left[(x+3)(2 x)+\left(x^{2}+1\right)\right]-\left[(x+3)\left(x^{2}-1\right)\right] *\left(3 x^{2}\right)}{\left(x^{3}-1\right)^{2}}$

Examples J: Given the functions $y=\frac{x^{5}}{5}, y=\frac{5}{x^{5}}$ and $y=\frac{1}{5 x^{5}}$ find the three first derivatives. answers: $x^{4},-\frac{25}{x^{6}},-\frac{1}{x^{6}}$

Example K: Average cost ($A C$) can be thought about as total cost divided by the number of items produced, or $A C=\frac{C(x)}{x}$. A small lampshade manufacturer has determined that the cost to produce x lampshades is $C(x)=\frac{1}{8} x^{2}+4 x+200$. Use the quotient rule to determine the x-value for which $A C^{\prime}=0$.
Answer: $x=40$ If we don't get to this one during Lecture, do it yourself for practice using the quotient rule.

