
Calculus 130, section 4.4-4.5 Derivatives of Exponential & Logarithm Functions 
notes by Tim Pilachowski 
 

You’ll need everything we covered in sections 2.1 – 2.3, especially exponential and logarithm properties. 

Functions with the basic form xby = are actually a family of functions. Consider 

the functions xxxxx yyyyy 1.1,2,3,5,10 =====  pictured in the graph to 

the right. Note first the similarities: 10
=b  for all values of 0≠b , so (0, 1) makes 

a good reference point. Each of the basic exponential functions has a horizontal 
asymptote y = 0. The graphs also have similar shape—the major difference is slope 

of the curve at specific values of x. Note that at x = 0 slope of xy 10=  is steepest; 

slope of xy 1.1=  is most shallow. Our determination of first derivative will have 

to reflect this. 

Recall that our limit definition for the first derivative, ( )
( ) ( )
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lim ,  is akin to considering a 

series of secant lines where the second point comes ever closer to a fixed point (x, f(x)). 
 

First, consider xy 5=  at x = 0 where y = 1. The slope of the secant line connecting (0, 1) to another point on the 

curve is given by the formula 
hh
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. As our second point approaches (0, 1), the slope of the 

secant line approaches the slope of the tangent line, i.e slope of the tangent =
h
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. The table below 

provides results from successively smaller values of h.  
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1 1 5 4 4 

1 0.1 1.174618943 0.174618943 1.746189431 

1 0.01 1.016224591 0.016224591 1.622459127 

1 0.001 1.001610734 0.001610734 1.610733753 

1 0.0001 1.000160957 0.000160957 1.609567434 

1 0.00001 1.000016095 0.000016095 1.609450864 

1 0.000001 1.000001609 0.000001609 1.609439208 

1 0.0000001 1.000000161 0.000000161 1.609438043 

1 0.00000001 1.000000016 0.000000016 1.609437916 

The slope of the tangent to xy 5=  at x = 0, and therefore the first derivative of xy 5=  at x = 0, is 

approximately 1.61. This is an estimate and is not exact–with some higher-powered mathematics, we would 

identify the exact expression of the first derivative of xy 5=  at x = 0 as ln (5). 
 

Next we move to an arbitrary point ( )xx 5,  on the graph of xy 5= . The slope of the secant line connecting 

( )xx 5,  to another point on the curve is given by the formula 
h
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, which can be simplified using the 

properties of exponents: 
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. As our second point approaches ( )xx 5, , the 

slope of the secant line approaches the slope of the tangent line, i.e slope of the tangent = 

( ) ( ) ( ) ( ) ( ) xxxxxx
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If we rigorously followed a similar process for a generic function xby = , we would get ( ) xbby ∗=′ ln . 

When considering the natural exponential function ( ) xexf = , this gives us ( ) ( ) xx eeexf =∗=′ ln ! In short, 

the natural exponential function, xey = , is special because, unlike other functions, it is its own derivative. This 

property makes it not only very interesting, but also very useful. 
 

Example A: Find the first derivative of ( )
xe

x
xf

3

=  and solve ( ) 0=′ xf .   Answers: 
xe

xx 323 −
;  x = 0, 3 

 
 
 
 
 
 
 

 

Example B: Given ( ) xxexh −=
2

, find the first derivative.   Answer: ( )12
2

−






 − xe xx  

 
 
 
 
 
 
 

 

Example C: Let ( ) .22 tt eetg −+=  Determine where the graph of g has horizontal tangents.   Answer: t = 0 

 
 
 
 
 
 
 
 
 

 
Example D: The accumulated amount of an investment of $100 with 5% annual interest compounded continuously 

for t years is given by the formula t
eA

05.0100= . Find and interpret the first derivative.   Answer: t
e

05.05  
 
 
 
 
 
 
 
 
 

From Examples C and D we can make a generic observation: Given an exponential growth/decay function 

kxCey = , the derivative will be kyCekkeCy kxkx =∗=∗=′ . 
 

Warning! Danger! Be careful! This observation applies only to basic exponential growth and decay! It will not 
apply to other functions involving exponentials. 
 



Example E: The exponential growth model kxCey =  applied to populations of people or animals has a serious 

flaw: In the real world the number that can survive is limited by the amount of space and the number of 
resources available. A logistic growth curve is more appropriate for long-term applications. 

The population of deer in a wildlife preserve is modeled by ( )
te

tP
1.053

200
−+

= . a) What was the number of deer 

at the beginning? b) What is the theoretical “upper limit” according to this model? c) How quickly is the 

population growing after 10 years?   Answers: 25 deer; 66-67 deer; 
( )
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Example F: Given ( ) xxf π= , find ( )xf ′ .   Answer: ( ) xππ ∗ln  

 
 
 
 
 
 

 

 

The natural logarithm function, ( )xy ln= , is the inverse of the natural 

exponential function, xey = . By finding the first derivative, we can 

determine that the slope of xey =  is 1 at the point (0, 1), i.e. 

( ) 1
0

=
=x

e
dx

d x . By symmetry, the slope of ( )xy ln=  should also be 1 at 

the point (1, 0), i.e. ( ) 1
1

ln =
=x

x
dx

d
. Also recall that ( )xy ln=  is 

increasing over its entire domain The formula we use for the derivative of 
ln(x) must meet these conditions. 
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Finding a derivative formula for ln(x) is actually quite simple. First note that since xe
x

=
ln , then 

( ) ( ) 1ln == x
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 for all x in the domain 

of ln(x). In other words, all of the necessary conditions listed above have been met. 
 

Also note that, since the domain of f(x) = ln x is (0, ∞), the domain of ( )
x

xf
1

=′  

is also (0, ∞). What if we were to consider ( ) xxg ln=  which has a domain 

( ) ( )∞∪∞−= ,00, . Using symmetry of the graph of g across the y-axis, we 

could show that it is also true that ( )
x

xg
1

=′  for all values of x in the domain 

( ) ( )∞∪∞− ,00, . 

Example G: Given  ( ) xxxh ln3
∗=  find the first derivative. 

Answers: ( )xx ln312
+  

 
 
 
 
 
 
 
 

Example H: Given  ( )
x
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=  find the first derivative.   Answer: 
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Example I: Given  ( )
3

ln

x

x
xg =  find the first derivative.   Answer: 
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Carefully note the placement of coefficients when finding derivatives. 



 constant multiple rule chain rule 

 ( ) ( )xkxm ln=  ( ) ( )xkxn ln=  

 
 
 
 
 
 
 
 
 
 

Example J: Give ( ) ( )3log xxh π= , find the first derivative.   Answer: 
( ) x

1
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3
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π
 

 
 
 
 
 
 
 
 
 
 
 
 
 
When using the chain rule, it is extremely important to correctly identify the “outside” and “inside” functions. Check 
that your composition is set up correctly. 

Example K: Give ( ) [ ]5log xxh π= , find the first derivative.   Answer: 
( )
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