Calculus 130, section 5.1-5.2 Functions: Increasing, Decreasing, Extrema

 notes by Tim Pilachowski
Reminder: You will not be able to use a graphing calculator on tests!

First, a quick scan of what we know so far.
The slope of a curve at a point
$=$ slope of line tangent to the curve at that point $=$ (instantaneous) rate of change of the curve at that point $=$ first derivative evaluated at that point: $f^{\prime}(x), \frac{d y}{d x}$ and D_{x}.

To find the first derivative of a given function we have the power rule, constant multiple rule, sum rule,
product rule, quotient rule and chain rule.
Chapter 5 applies all this in various circumstances, and explores the meaning of it all.
 Example A. Consider the graph of $y=x^{2}$ pictured to the left. Reading from left to right-

From "forever left" $(-\infty)$ to $x=0$, the curve is going down = graph is falling $=$ the slope of the curve is negative.

The graph "bottoms out" at the vertex $(0,0)$ where the slope of the curve $=0$.
From $x=0$ onward to "forever right" (∞) the curve is going up $=$ the graph is rising $=$ the slope of the curve is positive.
In technical terms, the function $f(x)=x^{2}$ is decreasing on the interval
$-\infty<x<0$, has a minimum at $(0,0)$, and is increasing on the interval $0<x<\infty$. We can say that the minimum value of f is equal to 0 because there are no lower values in the range of f. In other words, the minimum here is an absolute minimum. The value $x=0$ is a critical number because the graph has a horizontal tangent and therefore $f^{\prime}(0)=0$. The point $(0,0)$ is called a critical point.

Example B: Let's go back to $f(x)=x^{3}-8 x+2$ and take a closer look at the curve, pictured to the left below.

interval(s) increasing:
interval(s) decreasing:
relative maximum:
relative minimum:

The function $f(x)=x^{3}-8 x+2$ has no absolute maximum or minimum; the range is $-\infty<x<\infty$. Vocabulary to know: relative extrema (plural) and relative extremum (singular).

Example C: The function $f(x)=\sqrt{25-x^{2}}$ has a limited domain, $-5 \leq x \leq 5$, and range, $0 \leq y \leq 5$.
 first derivative:
critical numbers:
critical points:
interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):

The maximum value of the function is 5 . The minimum value of the function is 0 . Because the minimum occurs at the endpoints of the domain it is called an endpoint extreme value or endpoint extremum.

Example D: Consider the function $f(x)=\frac{3 x+1}{x-2}$.
first derivative:
critical numbers:
critical points:

interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):
vertical asymptote:
horizontal asymptote:

Example E: Consider the function $f(x)=2 x+\frac{2}{x}-1=2 x+2 x^{-1}-1$. first derivative:
critical numbers:
critical points:
interval(s) increasing:
interval(s) decreasing:

extrema (maximum or minimum):
vertical asymptote:
horizontal asymptote:

Example F: Consider the function $f(x)=\frac{x^{3}}{e^{x}}$.
first derivative:
critical numbers:
critical points:
interval(s) increasing:

			1						
	(

interval(s) decreasing:
extrema (maximum or minimum):
vertical asymptote:
horizontal asymptote:

Example G: The concentration of a drug in the bloodstream t hours after injection into a muscle is given by $c(t)=9\left(e^{-0.3 t}-e^{-3 t}\right)$ units. Find the time at which the concentration of the drug in the bloodstream is at its maximum.

Example H : Consider the function $f(x)=\frac{10 \ln x}{x}$. first derivative:
critical numbers:
critical points:
interval(s) increasing:

interval(s) decreasing:
extrema (maximum or minimum):
vertical asymptote:
horizontal asymptote:

Example I: Consider the function $f(x)=\frac{10 \sin x}{x}$. first derivative:
critical numbers:
critical points:
interval(s) increasing:

interval(s) decreasing:
extrema (maximum or minimum):
vertical asymptote:
horizontal asymptote:

Example J: Without knowing the function itself, describe the behavior of its graph only using information provided by its first derivative. The graph to the left is a graph of $f^{\prime}(x)$.
critical numbers:

interval	$x<-4$	$x=-4$	$-4<x<-2$
value of f^{\prime}			

Since the first derivative (slope of f)...

interval	$-4<x<-2$	$x=-2$	$-2<x<3$
value of f^{\prime}			

Since the first derivative (slope of f) ...

interval	$-2<x<3$	$x=3$	$3<x$
value of f^{\prime}			

Since the first derivative (slope of f) ...
interval(s) increasing:
interval(s) decreasing:

Putting all of the information above together, we can draw a preliminary sketch of the graph for f.

