## Calculus 130, section 5.1-5.2 Functions: Increasing, Decreasing, Extrema

notes by Tim Pilachowski

Reminder: You will not be able to use a graphing calculator on tests!

First, a quick scan of what we know so far.

The slope of a curve at a point = slope of line tangent to the curve at that point = (instantaneous) rate of change of the curve at that point = first derivative evaluated at that point: f'(x),  $\frac{dy}{dx}$  and  $D_x$ . To find the first derivative of a given function we have the power rule, constant multiple rule, sum rule, product rule, quotient rule and chain rule.

Chapter 5 applies all this in various circumstances, and explores the meaning of it all.



Example A. Consider the graph of  $y = x^2$  pictured to the left. Reading from left to right—

From "forever left"  $(-\infty)$  to x = 0, the curve is going down = graph is falling = the slope of the curve is negative.

The graph "bottoms out" at the vertex (0, 0) where the slope of the curve = 0. From x = 0 onward to "forever right" ( $\infty$ ) the curve is going up = the graph is rising = the slope of the curve is positive.

In technical terms, the function  $f(x) = x^2$  is *decreasing* on the interval

 $-\infty < x < 0$ , has a *minimum* at (0, 0), and is *increasing* on the interval  $0 < x < \infty$ . We can say that the *minimum* value of f is equal to 0 because there are no lower values in the range of f. In other words, the minimum here is an *absolute minimum*. The value x = 0 is a *critical number* because the graph has a horizontal tangent and therefore f'(0) = 0. The point (0, 0) is called a *critical point*.

Example B: Let's go back to  $f(x) = x^3 - 8x + 2$  and take a closer look at the curve, pictured to the left below.



interval(s) increasing:

interval(s) decreasing:

relative maximum:

relative minimum:

The function  $f(x) = x^3 - 8x + 2$  has no absolute maximum or minimum; the range is  $-\infty < x < \infty$ . Vocabulary to know: *relative extrema* (plural) and *relative extremum* (singular).

Example C: The function  $f(x) = \sqrt{25 - x^2}$  has a limited domain,  $-5 \le x \le 5$ , and range,  $0 \le y \le 5$ .



critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

The maximum value of the function is 5. The minimum value of the function is 0. Because the minimum occurs at the endpoints of the domain it is called an *endpoint extreme value* or *endpoint extremum*.

Example D: Consider the function  $f(x) = \frac{3x+1}{x-2}$ .

first derivative:

critical numbers:

critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

vertical asymptote:

horizontal asymptote:



Example E: Consider the function  $f(x) = 2x + \frac{2}{x} - 1 = 2x + 2x^{-1} - 1$ . first derivative:

critical numbers:

critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

vertical asymptote:

horizontal asymptote:

## Example F: Consider the function $f(x) = \frac{x^3}{e^x}$ .

first derivative:

critical numbers:

critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

vertical asymptote:

horizontal asymptote:

Example G: The concentration of a drug in the bloodstream *t* hours after injection into a muscle is given by  $c(t) = 9(e^{-0.3t} - e^{-3t})$  units. Find the time at which the concentration of the drug in the bloodstream is at its maximum.





Example H: Consider the function  $f(x) = \frac{10 \ln x}{x}$ .

first derivative:

critical numbers:

critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

vertical asymptote:

horizontal asymptote:

Example I: Consider the function  $f(x) = \frac{10 \sin x}{x}$ . first derivative:

critical numbers:

critical points:

interval(s) increasing:

interval(s) decreasing:

extrema (maximum or minimum):

vertical asymptote:

horizontal asymptote:

|       |          | _ | - | - |  |   |       |  |   |
|-------|----------|---|---|---|--|---|-------|--|---|
|       | 1        |   |   |   |  | - | <br>_ |  |   |
|       | $\vdash$ |   |   |   |  |   |       |  | L |
|       |          |   |   |   |  |   |       |  |   |
| <br>_ |          |   |   |   |  |   |       |  | ┝ |
| <br>1 |          |   |   |   |  |   |       |  | ╞ |
| <br>ſ |          |   |   |   |  |   |       |  | F |
|       |          |   |   |   |  |   |       |  |   |
|       |          |   |   |   |  |   |       |  |   |
|       |          |   |   |   |  |   |       |  | L |
|       |          |   |   |   |  |   |       |  | L |
|       |          |   |   |   |  |   |       |  |   |
|       |          |   |   |   |  |   |       |  |   |





Example J: Without knowing the function itself, describe the behavior of its graph only using information provided by its first derivative. The graph to the left is a graph of f'(x).

critical numbers:

Note that, since we don't have a formula for f, we cannot determine y-coordinates of the critical points.

| interval      | <i>x</i> < -4 | x = -4 | -4 < x < -2 |
|---------------|---------------|--------|-------------|
| value of $f'$ |               |        |             |

Since the first derivative (slope of f)...

| interval      | -4 < x < -2 | x = -2 | -2 < x < 3 |
|---------------|-------------|--------|------------|
| value of $f'$ |             |        |            |

Since the first derivative (slope of f) ...

| interval      | -2 < x < 3 | <i>x</i> = 3 | 3 < x |
|---------------|------------|--------------|-------|
| value of $f'$ |            |              |       |

Since the first derivative (slope of f) ...

interval(s) increasing:

interval(s) decreasing:

Putting all of the information above together, we can draw a preliminary sketch of the graph for *f*.



