Calculus 130, section 6.1 Absolute Maximum

notes by Tim Pilachowski
Section 6.1 is a more in-depth look at something already encountered: absolute maximum.
5.1-5.2 Example C revisited: The function $f(x)=\sqrt{25-x^{2}}$ has a limited domain, $[-5,5]$, and range, $[0,5]$.
 interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):
maximum value of the function:
minimum value of the function:
5.1-5.2 Example E revisited: $f(x)=2 x+\frac{2}{x}-1=2 x+2 x^{-1}-1$. interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):
maximum value of the function:
minimum value of the function:
5.1-5.2 Example F revisited: $f(x)=\frac{x^{3}}{e^{x}}$.
interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):
maximum value of the function:
minimum value of the function:

5.4 Example E revisited: $f(x)=5 x+e^{-2 x}$.
interval(s) increasing:
interval(s) decreasing:
extrema (maximum or minimum):
maximum value of the function:
minimum value of the function:

6.1 Example A: Determine the domain of $f(x)=\frac{x-1}{x^{2}+1}$ - and whether the function has an absolute minimum or maximum on its domain.
5.4 Example A revisited: $f(x)=x^{3}-3 x^{2}-9 x+1$.

Extreme Value Theorem: A function which is continuous on a closed interval [a, b] will have both an absolute maximum and an absolute minimum on the interval.
6.1 Example B: Determine whether the function $f(x)=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-3 x^{2}$ has an absolute minimum or maximum on the closed interval $[-3,3]$.
5.1-5.2 Example D revisited: $f(x)=\frac{3 x+1}{x-2}$.

6.1 Example C: Example B: Public health officials use rates of change to quantify the spread of an epidemic into an equation, which they then use to determine the most effective measures to counter it. A recent measles epidemic followed the equation $y=45 t^{2}-t^{3}$ where $y=$ the number of people infected and $t=$ time in days.
a) What is the domain of this function? Answer: $0 \leq t \leq 45$ days
b) How many people are infected after 5 days? Answer: 1000 people
c) What is the rate of spread after 5 days? Answer: 375 new cases per day
d) After how many days does the number of cases reach its maximum? Answer: 30 days
e) Use the above to sketch the graph of y.

