
Calculus 130, section 7.3 Area Under a Curve & Riemann Sums 
notes by Tim Pilachowski 
 

Consider the function f(x) = x on the interval [0, 10]. With the x-axis (the horizontal line y = 

0) and the vertical line x = 10, f forms a triangle. We could find the area of the triangle by 

counting squares. (There are 45 full squares and 10 half-squares for a total of 50.) of them.) 

An easier method would be to use knowledge of geometry to calculate the area of that 

triangle, which is also, by the way, the “area under the curve”. Putting the correct values into 

the formula bhA
2
1=  we get 

area of triangle = area under the curve = 501010
2
1 =∗∗ . 

This scenario is fairly easy, because the function f(x) = x is a line, and the “area under the curve” of f forms a 

well-known geometric shape. What happens when the curve is not linear but actually curves? Since there is no 

geometric formula for irregularly-shaped spaces, we’ll need a way to approximate the area under the curve. 
 

Suppose that we form a series of rectangles under f(x) = x on the interval [0, 10] and use 

those to approximate the area under the curve. If we draw in 10 rectangles of width = 1, and 

put the midpoint of the top of each rectangle on the line ( ) xxf = , the sum of the areas of the 

rectangles = approximation of the area under the curve = 

1(0.5) + 1(1.5) + 1(2.5) + 1(3.5) + 1(4.5) + 1(5.5) + 1(6.5) + 1(7.5) + 1(8.5) + 1(9.5) = 50. 

In more general terms, the interval [a, b] was split up into n subintervals, called partitions, of 

width x
n

ab
∆=

−
= . 

The height of each rectangle is a y-value, f(x) evaluated at the midpoint of the partition. 

Area under the curve ( ) ( ) ( ) ( ) xxfxxfxxfxxf n ∆∗+∆∗+∆∗+∆∗≅ K321  

 ( ) ( ) ( ) ( )[ ] ( ) xxfxxfxfxfxf
n

i

in ∆∗=∆∗+++= ∑
=1

321 K  

This formula is called a Riemann sum, and provides an approximation to the area under the curve for functions 

that are non-negative and continuous. In your homework exercises you will be asked to use this midpoint 

version of a Riemann sum, as well as left and right endpoints, along with the average of left and right endpoint 

sums. 
 

Example A: Approximate the area under the curve xy 2=  on the interval 2 ≤ x ≤ 7 using five partitions and 

left endpoint sum, right endpoint sum, average of left and right endpoint sums, and midpoint sum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Example A extended: Repeat the approximation process using 10 partitions (left endpoint sum, right endpoint 

sum, average of left and right endpoint sums, and midpoint sum). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The exact value for the area under the curve xy 2=  on the interval 2 ≤ x ≤ 7 is 







−
33 27

3

4
which is 

approximately 20.92244274. Just as increasing the number of partitions brought us closer to the true value for 

the area under the curve xy 2= , it is reasonable to suppose that, in general, for any function, increasing the 

number of partitions will provide an increasingly better approximation to the area under the curve. If we look at 

the limit of a Riemann sum as the number of partitions n approaches ∞ , we get a definite integral. 

Given a closed interval [a, b] and 
n

ab
x

−
=∆ , then ( ) ( )∫∑ =∆∗

=
∞→
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Example B: Find the exact values of ∫− −
5

5

225 dxx  and ∫ −
5

0

225 dxx  using formulas from geometry. 

 

 

 

 
 

 

Now comes an important question: Why would we be interested in the area under a curve? 

What is the connection between area under the curve and integration? 
 

Consider a velocity function v(t). When v(t) is constant, it is not difficult to see that the 

formula “distance = rate of speed ∗  time” is the area of the rectangle formed on the graph 

to the right, i.e. “distance = area under the curve v(t)”. 
 

When v(t) is changing, the area of the rectangles formed by our partitions gives us 

“average rate of speed on the partition ∗  time = area under the curve = distance”. 
 

We’ve already determined that “velocity = rate of change of distance = first derivative of distance”. 

This relationship turned backwards is “distance = antiderivative of velocity”. 

Substituting from the observations above we can conclude “area under the curve v(t)  = antiderivative of v(t) = 

integral of v(t)”.  

time 

v(t) 


