Calculus 130, section 7.5 Integrals of Trigonometric Functions

notes by Tim Pilachowski
Example A: Find $\int \sin t d t$. answer: $-\cos t+C$

Example A extended: Find the area under the curve $y=\sin t$ from $t=0$ to $t=\frac{3 \pi}{2}$. answer: 3

Example B: Evaluate $\int \cos \left(9 t+\frac{\pi}{2}\right) d t$. answer: $\frac{1}{9} \sin \left(9 t+\frac{\pi}{2}\right)+C$

Example C: Determine $\int \tan ^{2} t d t$. answer: $\tan t-t+C$

In Lecture 7.2, when we introduced integration by substitution, we had some general forms of integrals to look for,

$$
\int u^{n} d u, \quad \int e^{u} d u, \quad \int \frac{1}{u} d u, \quad \int \ln (x) * \frac{1}{x} d x=\int u d u
$$

along with some hints: When using substitution in an integral involving polynomials, it is usually most productive to let $u=$ the function with the higher exponent. When using substitution in an integral involving \ln (a function), it is usually most productive to let $u=\ln$ (a function). When using substitution in an integral involving $e^{\text {(exponent function) }}$, it is usually most productive to let $u=$ (exponent function).

In general, look for an "inside" function whose derivative appears as a factor elsewhere in the integral.
Example D: $\int x^{2} \cos \left(x^{3}\right) d x$. answer: $\frac{1}{3} \sin \left(x^{3}\right)+C$

Example E: $\int(2 x-1) \sec ^{2}\left(x^{2}-x+1\right) d x$. answer: $\tan \left(x^{2}-x+1\right)+C$

Example F: $\int \sin ^{2}(4 x) \cos (4 x) d x$. answer: $\frac{1}{12} \sin ^{3}(4 x)+C$

Example G: $\int \tan x d x$. answer: $-\ln |\cos x|+C=\ln |\sec x|+C$

Example H: $\int e^{x} \sec ^{2}\left(e^{x}+1\right) d x$. answer: $\tan \left(e^{x}+1\right)+C$

