Math 130 Exam 1 Sample 1 Solutions

1. (a) We rewrite with the same base:

$$
\begin{aligned}
25^{x+1} & =125^{2-x} \\
\left(5^{2}\right)^{x+1} & =\left(5^{3}\right)^{2-x} \\
5^{2 x+2} & =5^{6-3 x} \\
2 x+2 & =6-3 x \\
5 x & =4 \\
x & =4 / 5
\end{aligned}
$$

(b) We have:

$$
\begin{aligned}
\ln \sqrt{\frac{a b^{3}}{e^{2}}} & =\ln \left(\frac{a b^{3}}{e^{2}}\right)^{1 / 2} \\
& =\frac{1}{2} \ln \frac{a b^{3}}{e^{2}} \\
& =\frac{1}{2}\left[\ln a b^{3}-\ln e^{2}\right] \\
& =\frac{1}{2}\left[\ln a+\ln b^{3}-2\right] \\
& =\frac{1}{2}[\ln a+3 \ln b-2] \\
& =\frac{1}{2}[3+3(2)-2] \\
& =\frac{1}{2}[7] \\
& =7 / 2
\end{aligned}
$$

(c) We know that the population follows

$$
A=A_{0} e^{0.05 t}
$$

Quadrupling means we should have four times A_{0}. Thus we want to solve

$$
\begin{aligned}
A_{0} e^{0.05 t} & =4 A_{0} \\
e^{0.05 t} & =4 \\
0.05 t & =\ln 4 \\
t & =20 \ln 4 \approx 27.72 \text { years. }
\end{aligned}
$$

2. (a) We know we have

$$
N(t)=6 e^{k t}
$$

We know when $t=24$ we have $N(24)=3$ and so

$$
\begin{aligned}
6 e^{24 k} & =3 \\
e^{24 k} & =0.5 \\
24 k & =\ln 0.5 \\
k & =\frac{1}{24} \ln 0.5
\end{aligned}
$$

and so

$$
N(t)=6 e^{\left(\frac{1}{24} \ln 0.5\right) t}
$$

(b) We use the AROC formula:

$$
\begin{aligned}
\text { AROC } & =\frac{N(24)-N(0)}{24-0} \\
& =\frac{6 e^{\left(\frac{1}{24} \ln 0.5\right) 24}-6 e^{\left(\frac{1}{24} \ln 0.5\right) 0}}{24} \\
& =\frac{6 e^{\ln 0.5}-6 e^{0}}{24} \\
& =\frac{6(0.5)-6(1)}{24} \\
& =\frac{-3}{24} \\
& =-0.125 \approx-0.13
\end{aligned}
$$

The units is thousands of bacteria per hour.
(c) We want the time so that $N(t)=0.5$:

$$
\begin{aligned}
6 e^{\left(\frac{1}{24} \ln 0.5\right) t} & =0.5 \\
e^{\left(\frac{1}{24} \ln 0.5\right) t} & =1 / 12 \\
\left(\frac{1}{24} \ln 0.5\right) t & =\ln (1 / 12) \\
t \ln 0.5 & =24 \ln (1 / 12) \\
t & =\frac{24 \ln (1 / 12)}{\ln 0.5} \approx 86.04 \text { hours. }
\end{aligned}
$$

3. (a) The amplitude is 0.7 . The period is $2 \pi /(1 / 2)=4 \pi$. The phase shift (start of period) is $\pi / 6$. There is also a vertical shift up by 1.2 :

(b) The maximum wave height occurs one-quarter of the way through the period.

$$
t=\pi / 6+(1 / 4)(4 \pi)
$$

(c) The height is 1.9 .
4. (a) We have:

$$
\begin{aligned}
\lim _{x \rightarrow 7} \sqrt{\frac{x-1}{x^{2}+5}} & =\sqrt{\frac{7-1}{7^{2}+5}} \\
& =\sqrt{\frac{6}{54}} \\
& =\sqrt{\frac{1}{9}} \\
& =\frac{1}{3}
\end{aligned}
$$

(b) We have:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-7 x+10} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-5)} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{x-5} \\
& =\frac{2+2}{2-5} \\
& =-\frac{4}{3}
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}+x}{x^{2}-x+1} & =\lim _{x \rightarrow \infty} \frac{x^{3}+x}{x^{2}-x+1} \cdot \frac{1 / x^{3}}{1 / x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{1+1 / x^{2}}{1 / x-1 / x^{2}+1 / x^{3}}
\end{aligned}
$$

Since the numerator approaches 1 and the denominator approaches 0 we know the limit does not exist.
5. (a) We have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5(2+h)-5(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h} \\
& =\lim _{h \rightarrow 0} 5 \\
& =5
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3(x+h)\right]-\left[x^{2}-3 x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3 x-3 h-x^{2}+3 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-3 \\
& =2 x-3
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\text { Derivative } & =\lim _{h \rightarrow 0} \frac{4 /(x+h)-4 / x}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 /(x+h)-4 / x}{h} \cdot \frac{x(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{4 x-4(x+h)}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-4 h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-4}{x x+h} \\
& =\frac{-4}{x^{2}}
\end{aligned}
$$

