Math 130 Exam 1 Sample 2 Solutions

1. (a) We have

$$
\begin{aligned}
16^{3-x} & =32^{x} \\
\left(2^{4}\right)^{3-x} & =\left(2^{5}\right)^{x} \\
2^{12-4 x} & =2^{5 x} \\
12-4 x & =5 x \\
9 x & =12 \\
x & =4 / 3
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\log \sqrt{600} & =\log 600^{1 / 2} \\
& =\frac{1}{2} \log 600 \\
& =\frac{1}{2}(\log 2+\log 3+\log 100) \\
& =\frac{1}{2}(a+b+2)
\end{aligned}
$$

(c) The AROC is

$$
\begin{aligned}
\mathrm{AROC} & =\frac{f(5)-f(3)}{5-3} \\
& =\frac{\left(5^{2}+2^{5}\right)-\left(3^{2}+2^{3}\right)}{2} \\
& =\frac{57-17}{2} \\
& =20
\end{aligned}
$$

2. (a) We know that when $t=12$ we have $A=2 A_{0}$ so

$$
\begin{aligned}
A_{0} e^{k(12)} & =2 A_{0} \\
e^{12 k} & =2 \\
12 k & =\ln 2 \\
k & =\frac{1}{12} \ln 2
\end{aligned}
$$

I'm going to approximate this as $k=0.0578$ for the remaining problems.
(b) Since we know $A=300 e^{0.0578 t}$ we have after five years $A=300 e^{0.0578(5)} \approx 401$ monkeys.
(c) We need

$$
\begin{aligned}
300 e^{0.0578 t} & =1000 \\
e^{0.0578 t} & =10 / 3 \\
0.0578 t & =\ln (10 / 3) \\
t & =\frac{\ln (10 / 3)}{0.0578} \approx 20.83 \text { years }
\end{aligned}
$$

3. (a) This is easiest if we factor out the 160π first to get

$$
p(t)=115+25 \sin 160 \pi\left(t-\frac{10}{160 \pi}\right)
$$

Then we have:

- The phase shift (start of the period) is at $\frac{10}{160 \pi}=\frac{1}{16 \pi}$.
- The period length is $\frac{2 \pi}{160 \pi}=\frac{1}{80}$.
- The amplitude is 25 .
- There is a vertical shift of 115 .

(b) The minimum pressure occurs three-fourths of the way through the period, so at

$$
\frac{1}{16 \pi}+\frac{3}{4} \cdot \frac{1}{80} \text { minutes. }
$$

(c) This pressure is 90 mmHg .
4. (a) We have the following table:

x	-0.1	-0.01	0	0.01	0.1
$\left(e^{2 x}-1\right) / x$	1.8127	1.9801	$\ddot{\sim}$	2.0201	2.2140

It looks like $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=2$.
(b) We have:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+x}{x^{2}-x} & =\lim _{x \rightarrow 0} \frac{x(x+1)}{x(x-1)} \\
& =\lim _{x \rightarrow 0} \frac{x+1}{x-1} \\
& =\frac{1}{-1} \\
& =-1
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{\frac{x^{2}+x}{4 x^{2}-x+1}} & =\lim _{x \rightarrow \infty} \sqrt{\frac{x^{2}+x}{4 x^{2}-x+1} \cdot \frac{1 / x^{2}}{1 / x^{2}}} \\
& =\lim _{x \rightarrow \infty} \sqrt{\frac{1+1 / x}{4-1 / x+1 / x^{2}}} \\
& =\sqrt{\frac{1+0}{4-0+0}} \\
& =\frac{1}{2}
\end{aligned}
$$

5. (a) We would have $f^{\prime}(3)=1.4$ because $f^{\prime}(3)$ is the slope of the tangent line and the tangent line is $y=1.4 x+4$ which has slope 1.4 .
(b) We have:

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[5(2+h)-(2+h)^{2}\right]-\left[5(2)-2^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{10+5 h-\left(4+4 h+h^{2}\right)-6}{h} \\
& =\lim _{h \rightarrow 0} \frac{h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 1-h \\
& =1
\end{aligned}
$$

(c) We have a point, that's $(3, g(3))=(3, \sqrt{7})$. We just need the slope. The slope is

$$
\begin{aligned}
g^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2(3+h)+1}-\sqrt{7}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2 h+7}-\sqrt{7}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2 h+7}-\sqrt{7}}{h} \cdot \frac{\sqrt{2 h+7}+\sqrt{7}}{\sqrt{2 h+7}+\sqrt{7}} \\
& =\lim _{h \rightarrow 0} \frac{2 h+7-7}{h(\sqrt{2 h+7}+\sqrt{7})} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2 h+7}+\sqrt{7})} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{2 h+7}+\sqrt{7}} \\
& =\frac{2}{2 \sqrt{7}} \\
& =\frac{1}{\sqrt{7}}
\end{aligned}
$$

Thus the equation is

$$
y-\sqrt{7}=\frac{1}{\sqrt{7}}(x-3)
$$

