Math 130 Exam 3 Sample 2 Solutions

1. First we take the derivative and clean it up:

$$
\begin{aligned}
f(x) & =(x-3)(x-1)^{3} \\
f^{\prime}(x) & =(1)(x-1)^{3}+(x-3) 3(x-1)^{2} \\
f^{\prime}(x) & =(x-1)^{2}[(x-1)+3(x-3)] \\
f^{\prime}(x) & =(x-1)^{2}(4 x-10)
\end{aligned}
$$

This function is never undefined and equals 0 when $x=1$ and $x=5 / 2$. We test these and the endpoints:

$$
\begin{aligned}
f(1) & =(-2)(0)^{3}=0 \\
f(5 / 2) & =(-1 / 2)(3 / 2)^{3}=-27 / 16 \\
f(-2) & =(-5)(-3)^{3}=135 \\
f(3) & =(0)(2)^{3}=0
\end{aligned}
$$

The maximum is then 135 and the minimum is $-27 / 16$.
2. The perimeter of the rectangle is $2 x+2 y$, however $y=\frac{3}{x}$ and so the perimeter is $P(x)=$ $2 x+2\left(\frac{3}{x}\right)=2 x+\frac{6}{x}$. This is valid for $x>0$ (the first quadrant).
We have $P^{\prime}(x)=2-\frac{6}{x^{2}}$ which is undefined at $x=0$ (but this is not in the interval $x>0$) so we set it equal to 0 :

$$
\begin{aligned}
2-\frac{6}{x^{2}} & =0 \\
2 x^{2}-6 & =0 \\
x^{2} & =3 \\
x & = \pm \sqrt{3}
\end{aligned}
$$

We throw out $-\sqrt{3}$ because it's not in the interval. Thus we have $x=\sqrt{3}$.
To see that it's a minimum note that a number line sketch for $P^{\prime}(x)$ shows us:

From which we see that $P(x)$ is at its lowest point at $x=\sqrt{3}$.
3. (a) We differentiate implicitly:

$$
\begin{aligned}
x^{2} y^{2}-\frac{x}{y} & =3 x \\
\frac{d}{d x}\left[x^{2} y^{2}-\frac{x}{y}\right] & =\frac{d}{d x}[3 x] \\
2 x y^{2}+x^{2} 2 y \frac{d y}{d x}-\frac{1(y)-x(d y / d x)}{y^{2}} & =3 \\
2 x y^{2}+2 x^{2} y \frac{d y}{d x}-\frac{1}{y}+\frac{x}{y^{2}} \frac{d y}{d x} & =3 \\
\frac{d y}{d x}\left[2 x^{2} y+\frac{x}{y^{2}}\right] & =3-2 x y^{2}+\frac{1}{y} \\
\frac{d y}{d x} & =\frac{3-2 x y^{2}+1 / y}{2 x^{2} y+x / y^{2}}
\end{aligned}
$$

At $(2,-1)$ this slope is

$$
\frac{d y}{d x}=\frac{3-2(2)(-1)^{2}+1 /(-1)}{2(2)^{2}(-1)+2 /(-1)^{2}}=\frac{-2}{-6}=\frac{1}{3}
$$

So the line has equation $y-(-1)=\frac{1}{3}(x-2)$.
(b) We are given $\frac{d A}{d t}=5$ and we want $\frac{d r}{d t}$. This means we need an equation relating A and r. The area of a circle is $A=\pi r^{2}$, this does the job. We implicitly differentiate with respect to t and get

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

Now then, when $A=100$ we have $100=\pi r^{2}$ and so $r=\frac{10}{\sqrt{\pi}}$ and so we plug $\frac{d A}{d t}$ and r into our equation:

$$
\begin{aligned}
\frac{d A}{d t} & =2 \pi r \frac{d r}{d t} \\
5 & =2 \pi\left(\frac{10}{\sqrt{\pi}}\right) \frac{d r}{d t} \\
5 & =20 \sqrt{\pi} \cdot \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{1}{4 \sqrt{\pi}}
\end{aligned}
$$

The units are inches per year.
4. (a) $\int \frac{1}{x}-2 x+3 d x=\ln |x|-x^{2}+3 x+C$
(b) $\int x(x+2)(5 x-1) d x=\int x^{3}+9 x^{2}-2 x d x=\frac{1}{4} x^{4}+3 x^{3}-x^{2}+C$
(c) $\int \frac{x^{2} e^{x}-3 x+x^{5}}{x^{2}} d x=\int \frac{x^{2} e^{x}}{x^{2}}-\frac{3 x}{x^{2}}+\frac{x^{5}}{x^{2}} d x=\int e^{x}-\frac{3}{x}+x^{3} d x=e^{x}-3 \ln |x|+\frac{1}{4} x^{4}+C$
(d) $\int 2^{5 x} d x=\frac{1}{5 \ln 2} \cdot 2^{5 x}+C$
5. (a) We let

$$
\begin{aligned}
u & =1+4 \cos x \\
\frac{d u}{d x} & =-4 \sin x \\
d u & =-4 \sin x d x \\
-\frac{1}{4} d u & =\sin x d x
\end{aligned}
$$

So then
$\int \sin x e^{(1+4 \cos x)} d x=\int e^{u}\left(-\frac{1}{4} d u\right)=\int-\frac{1}{4} e^{u} d u=-\frac{1}{4} e^{u}+C=-\frac{1}{4} e^{(1+4 \cos x)}+C$
(b) We let

$$
\begin{aligned}
u & =4 x-8 \\
\frac{d u}{d x} & =4 \\
d u & =4 d x \\
\frac{1}{4} d u & =d x
\end{aligned}
$$

Note we also need $x=\frac{u+8}{4}$ here. So then

$$
\begin{aligned}
\int \frac{x^{2}}{4 x-8} d x & =\int \frac{((u+8) / 4)^{2}}{u} \frac{1}{4} d u \\
& =\int \frac{1}{64} \cdot \frac{u^{2}+16 u+64}{u} d u \\
& =\int \frac{1}{64}\left[u+16+\frac{64}{u}\right] d u \\
& =\frac{1}{64}\left[\frac{1}{2} u^{2}+16 u+64 \ln |u|\right]+C \\
& =\frac{1}{64}\left[\frac{1}{2}(4 x-8)^{2}+16(4 x-8)+64 \ln |4 x-8|\right]+C
\end{aligned}
$$

(c) Since the rate $D^{\prime}(t)$ is given we have $D^{\prime}(t)=4 t+5$. We find the antiderivative

$$
D(t)=\int D^{\prime}(t) d t=\int 4 t+5 d t=2 t^{2}+5 t+C
$$

Thus $D(t)=2 t^{2}+5 t+C$. Now then we know $D(12)=100$ and so

$$
\begin{aligned}
2(12)^{2}+5(12)+C & =100 \\
288+60+C & =100 \\
C & =-248
\end{aligned}
$$

Thus

$$
D(t)=2 t^{2}+5 t-248
$$

Then after two years there are $D(24)=2(24)^{2}+5(24)-248$ people with the disease.

