
Calculus 131, section 8.2 Integration by Parts 
notes by Tim Pilachowski 
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giving us integration by parts. We can also perform integration by parts with a definite integral: 
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The trick is in choosing u and dv well: we want the resulting integral to be no more (and hopefully less) 

intimidating than the original. 
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Example E: Evaluate ∫ dxex
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Example F: Evaluate ∫ dxex
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To summarize the integration we have so far: 

If an antiderivative method works, go for it. 

If you can identify the product of two functions where one is the derivative of the other, then use substitution. 

Otherwise, try integration by parts, in which 

 dv is the most complicated function that can be integrated— vdv =∫  

 u can be differentiated 

 ∫ duv  can be done 

 .∫∫ −= duvuvdvu  


