Calculus 131, section 8.4 Improper Integrals

notes prepared by Tim Pilachowski
We now get to do a more thorough examination of the concept of limits in mathematics. Non-technically, taking a limit is moving constantly toward something without ever getting there. Finding $\lim _{x \rightarrow \infty}$ is akin to walking toward the horizon: even though you keep moving, there is always more horizon off in the distance.
Here's another perspective: Consider decreasing your distance away from an object by half, then half again, then half again, etc. This is like being on a number line at 1 , and moving toward 0 .

First you'd go to $\frac{1}{2}$, then $\frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \ldots, \frac{1}{2^{100}}, \ldots, \frac{1}{2^{1000}}, \ldots, \frac{1}{2^{1,000,000}}, \ldots, \frac{1}{2^{1,000,000,000,000,000}}, \ldots$,
You'd be always getting closer to 0 , but never actually reaching 0 . In mathematical parlance this would be finding $\lim _{x \rightarrow 0}$.

You've already encountered limits in Calculus I. (In the Math 130-131 text, see section 3.1.)
The definition of the first derivative is a limit (chapter 3.4): $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
A definite integral is a limit applied to a Riemann sum (chapter 7.3):
$\lim _{\Delta x \rightarrow 0}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right] * \Delta x=\int_{a}^{b} f(x) d x$.
Two basic but very important principles will apply to the Examples below:: As a denominator $\rightarrow \infty$, a fraction $\rightarrow 0$, while any constants \rightarrow themselves.
Example A, part 1: Find the area under the curve $y=\frac{1}{x}$ for $1 \leq x \leq 5$. answer: $\ln 5$

Example A, part 2: Find the area under the curve $y=\frac{1}{x}$ for $1 \leq x \leq b$ for some positive number $b>1$. answer: $\ln b$

Example A, part 3: Find the area under the curve $y=\frac{1}{x}$ for $1 \leq x<\infty$. answer: The area under this curve cannot be assigned a number value.

Intuition is not enough, however. In other cases, what appears to be an "infinite" area actually converges to a particular limit.
Example B: Find the area under the curve $y=\frac{1}{x^{2}}$ for $1 \leq x<\infty$. answer: converges to 1

Example C. $\int_{3}^{\infty} \frac{x}{\sqrt{x^{2}-2}} d x$ answer: divergent

Example D. $\int_{3}^{\infty} \frac{x}{\left(x^{2}-2\right)^{2}} d x$ answer: converges to $\frac{1}{14}$

Example E. $\int_{0}^{\infty} x e^{-2 x} d x$ answer: converges to $\frac{1}{4}$

Examples F. Like previous experience with integration, you'll need to choose the best method.

1) $\int_{1}^{\infty} \frac{10}{x^{2}} d x$ answer: converges to 10
2) $\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x \quad$ answer: converges to 1
3) $\int_{e}^{\infty} \frac{\ln x}{x^{2}} d x$ answer: converges to $\frac{2}{e}$
