
Calculus 131, section 9.3 Maxima & Minima of Multivariable Functions 
notes by Tim Pilachowski, Fall 2010 
 
 

A quick note to start: If you’re at all unsure about the material from 9.1 and 9.2, now is the time to go back to 

review it, and get some help if necessary. You’ll need all of it for this topic. Just like we had a first-derivative 

test and a second-derivative test to maxima and minima of functions of one variable, we’ll use versions of first 

partial and second partial derivatives to determine maxima and minima of functions of more than one variable. 
 

The first derivative test for functions of more than one variable looks very much like the first derivative test we 

have already used. If f(x, y) has a relative maximum or minimum at values (x, y) = (a, b) then all partial 

derivatives will equal 0 at that point. That is, 
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Example A: Find the possible values of x, y, and z at which ( ) 9642, 32 +−++= yxyxyxf  has a relative 

maximum or minimum.   answers: (–2, –1); (–2, 1) 

 

 

 

 

 

 

 

 

 

 
 

Example B: Find the possible values of x and y at which ( ) 2 2
, 4 12f x y x xy y y= + + −  has a relative maximum 

or minimum.   Answer: (4, –2); z = 12 

 

 

 

 

 

 

 

 

 

 
 

Notice that the example above asked for possible values. The first derivative test by itself is inconclusive. The 

second derivative test for functions of more than one variable is a good bit more complicated than the one used 

for functions of one variable. We’ll apply it only to functions of two variables. 
 

First calculate ( )2yxyyxx fffD −∗= . Then, given values (x, y) = (a, b) which represent a possible extremum: 

1. If D(a, b) > 0 and ( ) 0, <baf xx  then f(a, b) is a relative maximum. 

2. If D(a, b) > 0 and ( ) 0, >baf xx  then f(a, b) is a relative minimum. 

3. If D(a, b) < 0 then f(a, b) is neither a relative maximum nor a minimum. This is called a saddle point because 

of the shape. 

4. If ( ) 0, =baD  then the test is inconclusive—we don’t know what’s happening at (a, b). 

Remember that a second derivative is NOT a multiplication, but IS the derivative of a derivative. 
 



Example C (Example I from 9.1 revisited): The 3-D graph of the function ( ) 229, yxyxf −−=  shows a 

relative maximum. We’ll use the tests above to determine the location and verify that it is a maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example D: Use first and second derivative tests to determine points where ( ) 1693, 23 +−−+= yxyxyxf  

has relative extrema.   Answers: (–1, 3, –2) saddle point; (1, 3, –14) relative minimum. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Example E: Use first and second derivative tests to determine points where ( ) 422, 22 +−−−−= yxyxxyyxf  

has relative extrema.   Answer: (–2, –2, 8) relative maximum 

 


