Calculus 131, section 9.5 Double Integrals

notes by Tim Pilachowski
Example A: Evaluate $\int x^{2}+4 x y+y^{2}-12 y+2 d x$.
The principle here is the same as for finding a partial derivative with respect to x : all other variables are treated like constants. answer: $\frac{1}{3} x^{3}+2 x^{2} y+x y^{2}-12 x y+2 x+C$

Do-it-yourself example: $\int x^{2}+4 x y+y^{2}-12 y+2 d y=x^{2} y+2 x y^{2}+\frac{1}{3} y^{3}-6 y^{2}+2 y+C$
Example A extended: Evaluate $\int_{0}^{1} \int_{1}^{2} x^{2}+4 x y+y^{2}-12 y+2 d x d y$.
The principle here is the same as for finding a mixed partial (second) derivative with respect to x then with respect to y. answer: $\frac{5}{3}$

Do-it-yourself version: $\int_{1}^{2} \int_{0}^{1} x^{2}+4 x y+y^{2}-12 y+2 d y d x$ yields the same result.
Example B: Find the double integral $\iint_{R} x \sqrt{2 x^{2}+3 y} d y d x$ over the rectangular region $0 \leq x \leq 1,1 \leq y \leq 2$. This is really the same type of integral as in Example A extended. Be careful that you put the boundaries of integration into the correct integral. answer: $\frac{1}{45}\left(8^{5 / 2}-5^{5 / 2}-6^{5 / 2}+3^{5 / 2}\right) \approx 1.1672$

Two notes on Example B:

1) We could have switched this around to do the more involved integration by substitution ($d x$) first, as long as we kept the boundaries of integration straight.

$$
\int_{0}^{1} \int_{1}^{2} x\left(2 x^{2}+3 y\right)^{1 / 2} d y d x=\int_{1}^{2} \int_{0}^{1} x\left(2 x^{2}+3 y\right)^{1 / 2} d x d y
$$

However, it turns out to be a good bit harder if we do the switch. Rule of thumb: Do the easier integration first. 2) Integration by parts may show up in text exercises, but since it's an even more labor-intensive process than substitution, we won't have time to do an example in lecture.

Example C: Find the volume under the surface $z=\frac{1}{x y}$ and above the rectangle $1 \leq x \leq e, 1 \leq y \leq e^{2}$. answer: 2

This is really the same type of integral as in Example A extended and Example B. In other words, your exam could ask the same question in any one of these three ways.

Example D: Evaluate $\int_{0}^{1} \int_{-x}^{x^{2}} x^{2}+3 x y+2 y d y d x$. answer: $\frac{23}{120}$

Text practice exercise \#60 is much like example D, except that you have to work for the boundaries of integration. The given equations $y=x$ and $y=2 x$ will be the boundaries of the integration $d y$. The boundaries of the integration $d x$ will be the intersection of x and $2 x$ (you can figure this one out for yourself) and $x=1$ (the vertical line given to you).

New topic: Recall, for a two-dimensional function, average value for a curve $=\overline{f(x)}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
When we expand to three dimensions, we can find "average value for a surface above a rectangular region" by manipulating the formula above to find average value across both x - and y-directions, i.e. using a double integral.

$$
\overline{f(x, y)}=\frac{1}{b-a} * \frac{1}{d-c} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Note that the denominator of the fraction is the area of the given rectangular region which is below the surface (the function's graph). Your text expands this process to develop a formula $\overline{f(x, y)}=\frac{1}{A} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$ where A is the area of any shape region. In this class, we'll stick to "average value for a surface above a rectangular region".

Example E: Find the average value of $z=e^{2 x-3 y}$ over the region R, bounded by $0 \leq x \leq 1,0 \leq y \leq 2$. answer: $\frac{1}{12}\left(-e^{-4}+e^{-6}+e^{2}-1\right) \approx 0.5311$

Bonus Example: Find the volume under the surface $z=\frac{1}{x+y}$ and above the rectangle $1 \leq x \leq e, 1 \leq y \leq e$. Set up the necessary double integral: $\int_{1}^{e} \int_{1}^{e} \frac{1}{x+y} d x d y$.
Integrate with respect to x using substitution: $u=x+y, \quad d u=d x$.

$$
\int_{1}^{e} \int \frac{1}{u} d u d y=\int_{1}^{e} \ln u d y \Rightarrow \int_{1}^{e} \int_{1}^{e} \frac{1}{x+y} d x d y=\int_{1}^{e}[\ln (x+y)]_{1}^{e} d y=\int_{1}^{e}[\ln (e+y)-\ln (1+y)] d y
$$

(We won't ask you to do something like the rest of this example on an exam - it requires a clever use of integration by parts that you don't need to know, as well as a method called "partial fractions" that you also do not need to know.)

The next few lines apply integration by parts to a generic model, using c, which is then used below where " c " is replaced by e and 1 respectively.

Rewrite $\int \ln (c+y) d y=\int \ln (c+y) * 1 d y$,
then use integration by parts: $d v=1 d y, v=y, \quad u=\ln (c+y), \quad d u=\frac{1}{c+y} d y$.
So $\int \ln (c+y) d y=\ln (c+y) * y-\int \frac{y}{c+y} d y$
(Here's where we use the fact that $\frac{y}{c+y}=1-\frac{c}{c+y}$. This is the "partial fractions" part.)

$$
\begin{aligned}
\int \ln (c+y) d y & =y \ln (c+y)-\int 1-\frac{c}{c+y} d y \\
& =y \ln (c+y)-y+c \ln (c+y)
\end{aligned}
$$

Next we apply this result to our original integration.
$\int_{1}^{e} \ln (e+y)-\ln (1+y) d y=[y \ln (e+y)-y+e \ln (e+y)]_{1}^{e}-[y \ln (1+y)-y+1 \ln (1+y)]_{1}^{e}$
From here on out it's a lot of algebraic evaluation.
$\int_{1}^{e} \ln (e+y)-\ln (1+y) d y$
$=[e \ln (e+e)-e+e \ln (e+e)]-[1 \ln (e+1)-1+e \ln (e+1)]-[e \ln (1+e)-e+1 \ln (1+e)]+[1 \ln (1+1)-1+1 \ln (1+1)]$
$=[e \ln (2 e)-e+e \ln (2 e)]-[\ln (e+1)-1+e \ln (e+1)]-[e \ln (1+e)-e+\ln (1+e)]+[\ln (2)-1+\ln (2)]$ distributing the subtraction:
$=e \ln (2 e)-e+e \ln (2 e)-\ln (e+1)+1-e \ln (e+1)-e \ln (1+e)+e-\ln (1+e)+\ln (2)-1+\ln (2)$
using logarithm properties:
$=e \ln (2)+e \ln (e)-e+e \ln (2)+e \ln (e)-\ln (e+1)+1-e \ln (e+1)-e \ln (1+e)+e-\ln (1+e)+\ln (2)-1+\ln (2)$
$=e \ln (2)+e \quad-e+e \ln (2)+e \quad-\ln (e+1)+1-e \ln (e+1)-e \ln (1+e)+e-\ln (1+e)+\ln (2)-1+\ln (2)$
using commutativity of addition then combining like terms:
$=e-e+e+e+e \ln (2)+e \ln (2)-e \ln (e+1)-e \ln (1+e)-\ln (e+1)-\ln (1+e)+\ln (2)+\ln (2)+1-1$
$=2 e+2 e \ln (2)-2 e \ln (e+1)-2 \ln (e+1)+2 \ln (2)$

