Calculus 131, section 10.1 Gauss-Jordan Algorithm

notes by Tim Pilachowski
In the Math 131 text, the description of the Gauss-Jordan method tries to get upper and lower triangles with entries equaling 0 first, then multiplying rows as needed to get diagonal entries equaling 1 . The algorithm described below accomplishes these goals in the opposite order.

For an augmented matrix representing a system of n equations in n variables:
Identify the diagonal, cells [row 1, col 1], [row 2, col 2], .., [row $n, \operatorname{col} n]$. If any diagonal entry $=0$, interchange rows so that each diagonal entry $\neq 0$.
Goals: A) in diagonal, all entries $=1$
B) in triangles both above and below the diagonal, all entries $=0$.

Note: To make the process flow a little more smoothly, you may want to multiply rows by constants to clear decimals and fractions, and (if possible) interchange rows so that entry in [row 1, col 1] $=1$.

Gauss-Jordan algorithm: Repeat for each column $\Phi=1,2, \ldots, n$. subroutine A: If needed, multiply row Φ by reciprocal of entry in [row $\Phi, \operatorname{col} \Phi$]. (Goal A)
subroutine B: For all rows R_{i} above and below row Φ where [row i, $\left.\operatorname{col} \Phi\right] \neq 0$, do $R_{i}+(-1)$ [entry in row i, col Φ] times R_{Φ}.
(Row working on) $+(-1)$ (number that's there now) (Row of diagonal under consideration)

Illustration:
$\left\{\begin{aligned} 3 x+y+z & =6 \\ x+y-z & =2 \\ 2 x+y+2 z & =6\end{aligned}\right.$ is written as a 3×4 augmented matrix $\left[\begin{array}{ccc|c}3 & 1 & 1 & 6 \\ 1 & 1 & -1 & 2 \\ 2 & 1 & 2 & 6\end{array}\right]$.
Interchanging R_{1} and R_{2} makes [row 1, col 1] =1. The Gauss-Jordan method becomes a tiny bit easier.
\(\left[\begin{array}{ccc|c}3 \& 1 \& 1 \& 6

1 \& 1 \& -1 \& 2

2 \& 1 \& 2 \& 6\end{array}\right] \Rightarrow\)| $R_{2} \rightarrow R_{1}$ |
| :--- |\(\left[\begin{array}{ccc|c}1 \& 1 \& -1 \& 2

R_{1} \rightarrow R_{2} \& 3 \& 1 \& 1\end{array}\right) 6\)
$\Phi=1$, subroutine A: not needed, since entry in $[$ row 1, col 1$]=1$
$\Phi=1$, subroutine B: goal is to get 0 s above and below diagonal entry.

(diagonal row 1, col 1 under consideration)
$i=3, \Phi=1$: entry in $\left[\right.$ row 3, col 1] $=2$, do row operation $R_{3}+(-1)(2) R_{1}: \begin{array}{cc:c:c}2 & 1 & 2 & 6 \\ -2 & -2 & 2 & -4 \\ \hline 0 & -1 & 4 & 2\end{array}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
3 & 1 & 1 & 6 \\
2 & 1 & 2 & 6
\end{array}\right] \begin{aligned}
& R_{2}+(-3) R_{1} \rightarrow R_{2}+(-2) R_{1} \rightarrow R_{3} \\
& \left.\left.R_{3}+\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
0 & -2 & 4 & 0 \\
0 & -1 & 4 & 2
\end{array}\right]\right]\left[\begin{array}{cc}
\\
0
\end{array}\right]
\end{aligned}
$$

$\Phi=2$, subroutine A: entry in [row 2, col 2] $=-2$, multiply $-\frac{1}{2} R_{2}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
0 & -2 & 4 & 0 \\
0 & -1 & 4 & 2
\end{array}\right]-\frac{1}{2} R_{2} \rightarrow R_{2}\left[\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
0 & 1 & -2 & 0 \\
0 & -1 & 4 & 2
\end{array}\right]
$$

$\Phi=2$, subroutine B: goal is to get 0 s above and below diagonal entry.

(diagonal row 2, col 2 under consideration)
$i=3, \Phi=2$: entry in $\left[\right.$ row 3, col 2] $=-1$, do row operation $R_{3}+(-1)(-1) R_{2}: \begin{array}{ccc:c}0 & -1 & 4 & 2 \\ 0 & 1 & -2 & 0 \\ \hline 0 & 0 & 2 & 2\end{array}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
0 & 1 & -2 & 0 \\
0 & -1 & 4 & 2
\end{array}\right] R_{1}+(-1) R_{2} \rightarrow R_{1}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 0 \\
R_{3}+(1) R_{2} \rightarrow R_{3}
\end{array}\right]
$$

$\Phi=3$, subroutine A: entry in $[$ row $3, \operatorname{col} 3]=2$, multiply $\frac{1}{2} R_{3}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 2 \\
0 & 1 & -2 & 0 \\
0 & -1 & 4 & 2
\end{array}\right]_{\frac{1}{2}} R_{3} \rightarrow R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$\Phi=3$, subroutine B: goal is to get 0 s above and below diagonal entry.

(diagonal row 3, col 3 under consideration)

$i=2, \Phi=3$: entry in [row 2, col 3] $=-2$, do row operation $R_{2}+(-1)(-2) R_{3}:$| 0 | 1 | -2 | 0 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 2 |
| 0 | 1 | 0 | 2 |

$$
\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \begin{aligned}
& R_{1}+(-1) R_{3} \rightarrow R_{1} \\
& R_{2}+(2) R_{3} \rightarrow R_{2}
\end{aligned}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

The last column contains our answer: $x=1, y=2, z=1$.
Written in coordinate form our answer is $(x, y, z)=(1,2,1)$.

Note that our answer checks out.

$$
\left\{\begin{array}{r}
3(1)+2+1=6 \\
1+2-1=2 \\
2(1)+2+2(1)=6
\end{array}\right.
$$

A final matrix that looks like
$\left[\begin{array}{lll|l}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 0 & c\end{array}\right]$
means there is no solution.
See Lecture Example B and text Example 3.

A final matrix that looks like
$\left[\begin{array}{lll|l}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 0 & 0\end{array}\right]$
Means that there are infinite solutions and that parameter(s) are needed.
See Lecture Example C and text Example 4 and Example 5..

