Calculus 131, section 10.1 Gauss-Jordan Algorithm

notes by Tim Pilachowski

In the Math 131 text, the description of the Gauss-Jordan method tries to get upper and lower triangles with entries equaling 0 first, then multiplying rows as needed to get diagonal entries equaling 1. The algorithm described below accomplishes these goals in the opposite order.

For an augmented matrix representing a system of n equations in n variables:

Identify the diagonal, cells [row 1, col 1], [row 2, col 2], ..., [row n, col n]. If any diagonal entry = 0,

interchange rows so that each diagonal entry $\neq 0$.

Goals: A) in diagonal, all entries = 1

B) in triangles both above and below the diagonal, all entries = 0.

Note: To make the process flow a little more smoothly, you may want to multiply rows by constants to clear decimals and fractions, and (if possible) interchange rows so that entry in [row 1, col 1] = 1.

Gauss-Jordan algorithm: Repeat for each column $\Phi = 1, 2, ..., n$.

subroutine A: If needed, multiply row Φ by reciprocal of entry in [row Φ , col Φ]. (Goal A) **subroutine B**: For all rows R_i above and below row Φ where [row i, col Φ] $\neq 0$,

do $R_i + (-1)$ [entry in row *i*, col Φ] times R_{Φ} . (Goal B)

(Row working on) + (-1) (number that's there now) (Row of diagonal under consideration)

Illustration:

 $\begin{cases} 3x + y + z = 6\\ x + y - z = 2 & \text{is written as a } 3 \times 4 \text{ augmented matrix} \begin{bmatrix} 3 & 1 & 1 & | & 6\\ 1 & 1 & -1 & | & 2\\ 2 & 1 & 2 & | & 6 \end{bmatrix}.$

Interchanging R_1 and R_2 makes [row 1, col 1] = 1. The Gauss-Jordan method becomes a tiny bit easier.

3	1	1	6		$R_2 \rightarrow R_1$	1	1	-1	2	
1	1	-1	2	\Rightarrow	$R_1 \rightarrow R_2$	3	1	1	6	
2	1	2	6		$R_2 \to R_1$ $R_1 \to R_2$	2	1	2	6	

 $\Phi = 1$, subroutine A: not needed, since entry in [row 1, col 1] = 1

 $\Phi = 1$, subroutine B: goal is to get 0s above and below diagonal entry.

 $i = 2, \Phi = 1$: entry in [row 2, col 1] = 3, do row operation $R_2 + (-1)(3)R_1$: -3 -3 -3 -3 -6 = 0

(working on Row 2) (number now in row 2, col 1)

(diagonal row 1, col 1 under consideration)

 $\Phi = 2$, subroutine A: entry in [row 2, col 2] = -2, multiply $-\frac{1}{2}R_2$

1	1	-1	2		1	1	-1	2
0	-2	4	0	$-\frac{1}{2}R_2 \rightarrow R_2$	0	1	-2	0
0	-1	4	2_	$-\frac{1}{2}R_2 \rightarrow R_2$	0	-1	4	2

 Φ = 2, subroutine B: goal is to get 0s above and below diagonal entry.

 $i = 1, \Phi = 2$: entry in [row 1, col 2] = 1, do row operation $R_1 + (-1)(1)R_2$: $\begin{array}{c|c} 0 & -1 & 2 & 0 \\\hline 1 & 0 & 1 & 2 \end{array}$ (working on Row 1) (number now in row 1, col 2) (diagonal row 2, col 2 under consideration)

 $i = 3, \Phi = 2$: entry in [row 3, col 2] = -1, do row operation $R_3 + (-1)(-1)R_2$: $\begin{array}{c|c} 0 & -1 & 4 & 2 \\ 0 & 1 & -2 & 0 \\ \hline 0 & 0 & 2 & 2 \end{array}$

$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -2 & 0 \\ 0 & -1 & 4 & 2 \end{bmatrix} \begin{bmatrix} R_1 + (-1)R_2 \to R_1 & 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 0 \\ R_3 + (1)R_2 \to R_3 & 0 & 0 & 2 & 2 \end{bmatrix}$$

 $\Phi = 3$, subroutine A: entry in [row 3, col 3] = 2, multiply $\frac{1}{2}R_3$

1	1	-1	2		1	0	1	2	
0	1	-2	0		0	1	-2	0	
0	-1	4	2_	$\frac{1}{2}R_3 \rightarrow R_3$	0	0	1	1	

 Φ = 3, subroutine B: goal is to get 0s above and below diagonal entry.

 $i = 1, \Phi = 3$: entry in [row 1, col 3] = 1, do row operation $R_1 + (-1)(1)R_3$: $\begin{array}{c|c} 1 & 0 & 1 & 2 \\ 0 & 0 & -1 & -1 \\ \hline 1 & 0 & 0 & 1 \end{array}$ (working on Row 1) (number now in row 1, col 3)

(diagonal row 3, col 3 under consideration)

 $i = 2, \Phi = 3$: entry in [row 2, col 3] = -2, do row operation $R_2 + (-1)(-2)R_3 : \frac{0}{2} = \frac{0}{2} = \frac{0}{2}$

 $\begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{R_1 + (-1)R_3 \to R_1} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$

The last column contains our answer: x = 1, y = 2, z = 1. Written in coordinate form our answer is (x, y, z) = (1, 2, 1).
> Note that our answer checks out. $\begin{cases}
> 3(1)+2+1=6 \\
> 1+2-1=2 \\
> 2(1)+2+2(1)=6
> \end{cases}$

A final matrix that looks like

[1	0	0	a
0	1	0	b
0	0	0	c

means there is no solution. See Lecture Example B and text Example 3. A final matrix that looks like

1	0	0	a
0	1	0	b
0	0	0	a b 0

Means that there are infinite solutions and that parameter(s) are needed. See Lecture Example C and text Example 4 and Example 5..