Calculus 131, section 10.2-10.3a Addition and Subtraction of Matrices Scalar Multiplication of a Matrix

Notes by Tim Pilachowski

A matrix is numbers arranged in rows and columns.

Think "spreadsheet". A name from computer programming that may be familiar to you is "array". Back in the day when I was programming in COBOL we had to arrange our data in "fields". Essentially, a matrix is one method of organizing and arranging data.

Matrices are often/usually named by capital letters italicized. Some examples would be:

The size of a matrix is stated as "number of rows by number of columns". Matrix A is a 3 by 1 matrix. B is a 3×3 matrix. F is a 1 by 4 matrix. M is a 3×4 matrix.

A square matrix has the same number of rows and columns. The only square matrix above is *B*.

Matrix F is a row matrix (size $1 \times$ something); A is a column matrix (size something $\times 1$).

Two matrices are equal if and only if they are the same size and have matching corresponding row/column elements. For example:

Example A: Solve for the variables *x* and *y*.

$$\begin{bmatrix} -2 & 7\\ x-4 & -5 \end{bmatrix} = \begin{bmatrix} 2y-1 & 7\\ 6 & -5 \end{bmatrix}$$

Adding and subtracting matrices is essentially combining like terms: corresponding row/column entries are added together.

Example B. The students in the four 02** discussion sections of the Fall 2011 Math 131 class had the following breakdown of majors and years.

		, ,							
0211 (M)	FR	SO	JR	SR	0221 (N)	FR	SO	JR	
BIO SCI	3	7	1	3	BIO SCI	3	11	0	
LTSC	0	5	0	1	LTSC	1	7	0	
OTHER	0	3	0	0	OTHER	0	1	0	
0231 (P)	FR	SO	JR	SR	0241 (Q)	FR	SO	JR	
BIO SCI	2	6	2	0	BIO SCI	5	3	0	
LTSC	2	10	0	0	LTSC	3	6	1	
OTHER	0	0	1	0	OTHER	0	2	3	

Rewrite this data into matrices M, N, P and Q where the rows represent majors, columns represent years, and each matrix represents one section.

a) Find R = M + N + P + Q and interpret what it tells us.

b) How many sophomore Biology Science majors are there in the 02** section of the Fall 2011 Math 131 class?

c) How many freshmen are there in the 02** section of the Fall 2011 Math 131 class?

d) How many Letters and Sciences majors are there in the 02** section of the Fall 2011 Math 131 class?

Semi-random notes on matrices:

Any matrices being added *must* be the same size.

Your text introduces the "additive inverse" of a matrix. I'll talk about this as part of subtraction later on. A "zero matrix" has elements that are all the number 0.

Now we move over to the first topic in section 10.3.

Multiplying a matrix by a scalar (i.e. constant coefficient) is essentially distribution. Example C:

Given $B = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix}$, find -2B.

Example C extended:

Given $B = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 3 & 0 & -3 \end{bmatrix}$, find 3B - 2C.

I recommend thinking of subtraction as "adding a negative". Do the scalar multiplication first to make sure that a "minus a negative" isn't missed.