Calculus 131, section 10.2-10.3a Addition and Subtraction of Matrices Scalar Multiplication of a Matrix

Notes by Tim Pilachowski
A matrix is numbers arranged in rows and columns.
Think "spreadsheet". A name from computer programming that may be familiar to you is "array". Back in the day when I was programming in COBOL we had to arrange our data in "fields". Essentially, a matrix is one method of organizing and arranging data.

Matrices are often/usually named by capital letters italicized. Some examples would be:

The size of a matrix is stated as "number of rows by number of columns". Matrix A is a 3 by 1 matrix. B is a 3×3 matrix. F is a 1 by 4 matrix. M is a 3×4 matrix.

A square matrix has the same number of rows and columns. The only square matrix above is B.
Matrix F is a row matrix (size $1 \times$ something); A is a column matrix (size something $\times 1$).
Two matrices are equal if and only if they are the same size and have matching corresponding row/column elements. For example:

Example A: Solve for the variables x and y.

$$
\left[\begin{array}{cc}
-2 & 7 \\
x-4 & -5
\end{array}\right]=\left[\begin{array}{cc}
2 y-1 & 7 \\
6 & -5
\end{array}\right]
$$

Adding and subtracting matrices is essentially combining like terms: corresponding row/column entries are added together.

Example B. The students in the four $02^{* *}$ discussion sections of the Fall 2011 Math 131 class had the following breakdown of majors and years.

$\mathbf{0 2 1 1}(\boldsymbol{M})$	FR	SO	JR	SR
BIO SCI	3	7	1	3
LTSC	0	5	0	1
OTHER	0	3	0	0

$\mathbf{0 2 2 1}(\boldsymbol{N})$	FR	SO	JR	SR
BIO SCI	3	11	0	0
LTSC	1	7	0	0
OTHER	0	1	0	0

0231 (\boldsymbol{P})	FR	SO	JR	SR
BIO SCI	2	6	2	0
LTSC	2	10	0	0
OTHER	0	0	1	0

$\mathbf{0 2 4 1}(\mathbf{Q})$	FR	SO	JR	SR
BIO SCI	5	3	0	0
LTSC	3	6	1	0
OTHER	0	2	3	0

Rewrite this data into matrices M, N, P and Q where the rows represent majors, columns represent years, and each matrix represents one section.
a) Find $R=M+N+P+Q$ and interpret what it tells us.
b) How many sophomore Biology Science majors are there in the $02^{* *}$ section of the Fall 2011 Math 131 class?
c) How many freshmen are there in the $02^{* *}$ section of the Fall 2011 Math 131 class?
d) How many Letters and Sciences majors are there in the $02^{* *}$ section of the Fall 2011 Math 131 class?

Semi-random notes on matrices:
Any matrices being added must be the same size.
Your text introduces the "additive inverse" of a matrix. I'll talk about this as part of subtraction later on. A "zero matrix" has elements that are all the number 0 .

Now we move over to the first topic in section 10.3.
Multiplying a matrix by a scalar (i.e. constant coefficient) is essentially distribution.
Example C:
Given $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2\end{array}\right]$, find $-2 B$.

Example C extended:
Given $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 3 & 0 & -3\end{array}\right]$, find $3 B-2 C$.
I recommend thinking of subtraction as "adding a negative". Do the scalar multiplication first to make sure that a "minus a negative" isn't missed.

