Calculus 131, section 10.3 Multiplication of Matrices

Notes by Tim Pilachowski
Adding and subtracting matrices (section 10.2) is essentially combining like terms. Multiplying a matrix by a scalar (i.e. constant coefficient) is essentially distribution.
Example A:
Given $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2\end{array}\right]$, find $-2 B$. answer: $\left[\begin{array}{ccc}-6 & -2 & -2 \\ -2 & -2 & 2 \\ -4 & -2 & -4\end{array}\right]$

Example A extended:
Given $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -2 & 1 \\ 3 & 0 & -3\end{array}\right]$, find $3 B-2 C . \quad$ do-it-yourself answer: $\left[\begin{array}{ccc}11 & -1 & 7 \\ 3 & 7 & -5 \\ 0 & 3 & 12\end{array}\right]$

Matrix times matrix multiplication is a lot trickier.
Example B-1. I went to a sale at a clothing store and bought 5 pairs of socks, 3 shirts, and 2 pairs of pants. The socks were $\$ 1$ each pair, the shirts were $\$ 4$ each, and the pairs of pants were $\$ 6$ each. How much did I spend? answer: \$29

Example B-1 revisited: I went to a sale at a clothing store and bought 5 pairs of socks, 3 shirts, and 2 pairs of pants. The socks were $\$ 1$ each pair, the shirts were $\$ 4$ each, and the pairs of pants were $\$ 6$ each. Set up and use matrices to answer the question, "How much did I spend?"

Notes on matrix times matrix multiplication:

Example B-2: I went to a sale at a clothing store and bought 5 pairs of socks, 3 shirts, and 2 pairs of pants. My brother went to the same sale, and got 7 pairs of socks and 8 shirts. The socks were $\$ 1$ each pair, the shirts were $\$ 4$ each, and the pairs of pants were $\$ 6$ each. The regular (non-sale) prices would have been $\$ 2, \$ 7$ and $\$ 10$ each respectively. Set up a matrix multiplication and explain what each [row, col] entry in the answer represents.
answer: $N P=\left[\begin{array}{ll}29 & 51 \\ 39 & 70\end{array}\right]$

Notes on this matrix multiplication:

Interpretation of this matrix multiplication:

Theory 1: Is matrix times matrix multiplication commutative, i.e. does $N P=P N$?

Do-it-yourself practice:
$P N=\left[\begin{array}{ccc}19 & 19 & 2 \\ 69 & 68 & 8 \\ 100 & 98 & 12\end{array}\right]$

Theory 2: In applications, we have to choose our matrix multiplication carefully. How would we know whether to do $N P$ or $P N$, when both were possible?

