Calculus 131, section 10.4 Matrix Inverses

Notes by Tim Pilachowski
Vocabulary from 10.2: A matrix with the same number of rows as columns is a square matrix, for example

$$
B=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & -1 \\
2 & -3 & 2
\end{array}\right] \text { is a } 3 \times 3 \text { square matrix and } C=\left[\begin{array}{cc}
3 & -1 \\
1 & -2
\end{array}\right] \text { is a } 2 \times 2 \text { square matrix. }
$$

Now a new definition: The identity matrix I_{n} is a square matrix such that, for any $n \times n$ square matrix A, it will be true that $A I=I A=A$.
An identity matrix will necessarily be a square matrix. Why? Recall $N P$ vs. $P N$ from Lecture 10.3. For nonsquare matrices, $A I$ would be a different size than $I A$, so they could not be equal.
Our goal now is to find, if possible, a multiplicative inverse matrix A^{-1} such that, for an $n \times n$ square matrix A, it will be true that $A A^{-1}=A^{-1} A=I_{n}$. Note: Not all square matrices have an inverse!
An identity matrix I_{n} will necessarily have diagonal entries $=1$ and upper and lower triangle entries $=0$. (Sound familiar?)

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Example A:
Given $B=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & -1 \\ 2 & -3 & 2\end{array}\right]$, find B^{-1} (if possible). answer: $B^{-1}=\left[\begin{array}{ccc}-\frac{1}{3} & \frac{4}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3}\end{array}\right]$
I'll leave it to you to check that check that $B B^{-1}=I_{3}$, as practice in matrix times matrix multiplication.

Example B: Given $C=\left[\begin{array}{cc}6 & 2 \\ 12 & 4\end{array}\right]$, find C^{-1} (if possible). answer: C has no inverse.

Your text derives a formula for the inverse of a 2×2 square matrix: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
I usually don't recommend memorizing this, because it can go wrong so very easily.
Note, however, that it does tell us which 2×2 matrices don't have an inverse. When $a d-b c=0$, the matrix does not have an inverse. The formula $a d-b c$ is called the determinant of the 2×2 matrix A.

Theory for solving matrix equations: $A X=B \Rightarrow A^{-1} A X=A^{-1} B \Rightarrow I X=A^{-1} B \Rightarrow X=A^{-1} B$. (See your text for the detailed explanation.) Note that it must be $X=A^{-1} B$. Don't do $B A^{-1}$, which is not the same thing at all: matrix times matrix multiplication is not commutative!

Example C: Solve the system of equations $\left\{\begin{array}{c}2 x+3 y=5 \\ 3 x-y=-5\end{array}\right.$ using the inverse of a matrix.
answer: $x=-\frac{10}{11}, y=\frac{25}{11}$

