Calculus 131, section 11.2 1st Order Linear Differential Equations

notes prepared by Tim Pilachowski
Recall the clue telling you that you have a separable differential equation (DE): Separable DEs will generally have one of two forms.

$$
\frac{d y}{d x}=f(x) g(y) \Rightarrow \int \frac{1}{g(y)} d y=\int f(x) d x \quad \frac{d y}{d x}=\frac{f(x)}{g(y)} \Rightarrow \int g(y) d y=\int f(x) d x
$$

When a DE is not separable, we'll need another method. Today we'll develop one for linear first-order differential equations. These are of the form $\frac{d y}{d x}+P(x) * y=Q(x)$. "First-order" means y^{\prime} not $y^{\prime \prime}, y^{\prime \prime \prime}$, etc. "Linear" means y, not y^{2}, y^{3}, etc.
Before we get back to this model, we need some preliminaries.
Example A: Solve $(\cos t) y^{\prime}-(\sin t) y=t+20$. answer: $y=\frac{t^{2}}{2 \cos t}+\frac{20 t}{\cos t}+\frac{C}{\cos t}=\frac{t^{2}+40 t+C}{2 \cos t}$
Note the position of " $+C$ " in this and other answers!

Example B: Solve $e^{10 t} y^{\prime}+10 e^{10 t} y=t+20$. answer: $y=e^{-10 t}\left(\frac{1}{2} t^{2}+20 t+C\right)$
This example will be particularly helpful in learning the process for solving linear first-order DEs.

Theory: Consider the DE $t y^{\prime}=t^{2}+3 y, \quad t>0$. As it is, we cannot rearrange to look like $f y^{\prime}+f^{\prime} y=\ldots$ The coefficient of y is not the derivative of the coefficient of y^{\prime}. However, all is not lost. Recall the general form first-order linear DE: $\frac{d y}{d x}+P(x) * y=Q(x)$. To solve this type of DE we'll do some clever things. First we'll find $\int P(x) d x$, i.e. an anti-derivative of $P(x)$, the coefficient of y in the first order linear DE.
Next, we'll form the integrating factor $e^{\int P(x) d x}$ and multiply both sides of the DE as follows.

$$
\begin{aligned}
\left(e^{\int P(x) d x}\right) y^{\prime}+\left(e^{\int P(x) d x}\right) a(t) y & =\left(e^{\int P(x) d x}\right) Q(x) \\
f \quad g^{\prime}+\quad & = \\
f^{\prime} \frac{d}{d x}[f * g] & = \\
\frac{d}{d x}\left[e^{\int P(x) d x} y\right] & =\left(e^{\int P(x) d x}\right) Q(x) \\
\int \frac{d}{d t}\left[e^{\int P(x) d x} y\right] d x & =\int\left(e^{\int P(x) d x}\right) Q(x) d x \\
e^{\int P(x) d x} y & =\int\left(e^{\int P(x) d x}\right) Q(x) d x
\end{aligned}
$$

The right-hand side may simplify nicely so we can integrate, or we can use substitution or integration by parts.
Example C: Solve $x \frac{d y}{d x}=x^{2}+3 y, \quad x>0$. answer: $y=-x^{2}+C x^{3}, \quad x>0$

1) Rewrite in standard form.

2a) Find $\int P(x) d x$.

2b) Find the integrating factor.
3) Multiply by the integrating factor and integrate both sides.

Example C extended: Given the initial condition $y(1)=2$, find the particular solution. answer: $y=3 x^{3}-x^{2}$

Note that since $\int P(x) d x$ can be any anti-derivative, we might as well pick the simplest one.
In using this process, it will be important to correctly identify $P(x)$, and also to correctly construct the integrating factor $I(x)=e^{\int P(x) d x}$. It is called an integrating factor because it transforms the left-hand side into a form that can be integrated because it is the result of differentiating by the Product Rule.

Example D: Solve $\frac{d y}{d x}+2 x y=6 x^{3}$. answer: $y=3 x^{2}-3+C e^{-x^{2}}$

Examples E: $x \frac{d y}{d t}=x^{2}+y^{2}$ is not linear (because of the y^{2}), and $x \frac{d^{2} y}{d x^{2}}=x^{2}+y$ is not first-order (because it has $\left.\frac{d^{2} y}{d x^{2}}\right)!$

Example F: An anti-coagulant is introduced intravenously at a rate of 0.5 mg per hour. On a continuous basis 2% of the drug in the bloodstream is absorbed into the body. a) Set up and solve a differential equation that is satisfied by $y(t)$, the amount of anti-coagulant the bloodstream of the patient. b) Determine the equilibrium amount of the anti-coagulant in the bloodstream of the patient. answer: $y=25+C e^{-0.02 t}, 25 \mathrm{mg}$

