Calculus 131, section 11.3 Euler's Method

notes prepared by Tim Pilachowski
In sections 11.1 and 11.2, we solved separable and first-order liner differential equations. But what can we do when the DE doesn't fall into either of these categories? That is, can we find a solution for a differential equation $\frac{d y}{d x}=g(x, y)$? The answer is "Yes, with conditions" and we'll do so by sketching a polygonal approximation using the information at hand. We'll begin with a specific initial value and follow a particular path-one that values of $\frac{d y}{d x}$ lead us to.

Example A: Given a differential $y^{\prime}=3 t-2 y+1$ and an initial value $y(0)=1$, sketch an approximate solution y.

Example A extended: Given a differential $y^{\prime}=3 t-2 y+1$ and an initial value $y(0)=1$, sketch an approximate solution y, this time using $h=\Delta t=1 / 2=0.5$.

polygonal approximation when $h=1 / 2$ (actual graph pictured in Example A above)

The process used in Example A is the basis for Euler's Method, named after Leonhard Euler. We begin with a differential equation $y^{\prime}=g(x, y)$ and an interval $a \leq x \leq b$. The interval is divided up into n sub-intervals, each of width $\Delta t=x=\frac{b-a}{n}$. Initial values $x_{0}=a$ and y_{0} are given. Then comes a series of calculations.

$$
x_{i}=x_{i-1}+h \quad y_{i+1}=y_{i}+g\left(x_{i}, y_{i}\right) * h
$$

Example B: Given $y^{\prime}=-x^{2}(y-1)$ and $y(0)=2$, use Euler's method with $n=6$ to estimate $y(3)$.

	$y_{3}=\frac{15}{8}-\frac{7}{8} * \frac{1}{2}=\frac{23}{16}$	$y^{\prime}\left(\frac{3}{2}, \frac{23}{8}\right)=-\left(\frac{3}{2}\right)^{2}\left(\frac{23}{16}-1\right)=-\frac{63}{64}$
	$y_{4}=\frac{23}{16}-\frac{63}{64} * \frac{1}{2}=\frac{121}{128}$	$y^{\prime}\left(2, \frac{121}{128}\right)=-(2)^{2}\left(\frac{121}{128}-1\right)=\frac{7}{32}$
	$y_{5}=\frac{121}{128}+\frac{7}{32} * \frac{1}{2}=\frac{135}{128}$	$y^{\prime}\left(\frac{5}{2}, \frac{135}{128}\right)=-\left(\frac{5}{2}\right)^{2}\left(\frac{135}{128}-1\right)=-\frac{175}{512}$
	$y_{6}=\frac{135}{128}-\frac{175}{512} * \frac{1}{2}=\frac{905}{1024}$	$($ not needed $)$

answer: $y(3) \approx y_{6}=\frac{905}{1024}=0.8837890625$
Note 1: If you solve this one for practice, separation of variables is the most efficient method. You should get $y=1+e^{-x^{3} / 3}$. When $x=3, y=1+e^{-9} \approx 1.00012341$.
Note 2: Euler's method is an approximation process which has its own inherent error. I used fractions to minimize error due to rounding. In actual practice, decimals to a prescribed accuracy would be used. (You could set up a spreadsheet.)
Note 3: As the number of sub-intervals, n, becomes large, the compounded errors also increase. If we take Example B and increase the number of intervals to 12, we get an approximate value of 1, which is the value of the horizontal asymptote. The lesson: The value of n can be too small, or too large, so we shoot for "just right".

x	y estimated	y^{\prime} calculation
0	2	0
0.25	2	-0.0625
0.5	1.984375	-0.24609375
0.75	1.922851563	-0.519104004
1	1.793075562	-0.793075562
1.25	1.594806671	-0.929385424
1.5	1.362460315	-0.815535709
1.75	1.158576388	-0.485640188
2	1.037166341	-0.148665364
2.25	1	0
2.5	1	0
2.75	1	0
3	1	0

