Systems of Differential Equations - Better than the Book, I Hope

1. The Situation: We know that if a population grows by 40% per year that if x_{1} is the population then $\frac{d x_{1}}{d t}=0.4 x_{1}$. This is because the change (derivative) is 40% of the original.
So suppose there are two populations, x_{1} and x_{2}. Suppose each year x_{1} grows by 10% of it's own population but suppose it also grows by 120% of x_{2} 's population - perhaps x_{2} grows a lot and most move to x_{1}. Then we'd have $\frac{d x_{1}}{d t}=0.1 x_{1}+1.2 x_{2}$. Suppose in addition x_{2} grows by 40% of x_{1} 's population and by 30% of its own. Then we'd have $\frac{d x_{2}}{d t}=0.4 x_{1}+0.3 x_{2}$.
Together we call this a system of differential equations:

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =0.1 x_{1}+1.2 x_{2} \\
\frac{d x_{2}}{d t} & =0.4 x_{1}+0.3 x_{2}
\end{aligned}
$$

A solution is a pair of functions $x_{1}=\ldots$ and $x_{2}=\ldots$, both functions of time t, which satisfy both. How on earth would we find this?
2. Harder Still: What if both populations are additionally affected by some outside influence. For example perhaps x_{1} gains e^{t} new people each year from some third source and x_{2} gains 7 new people each year from some third source. Then we have

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =0.1 x_{1}+1.2 x_{2}+e^{t} \\
\frac{d x_{2}}{d t} & =0.4 x_{1}+0.3 x_{2}+7
\end{aligned}
$$

How would we solve this?! We'll see!
3. Theorem: There is a basic premise underlying this section which we will mention but not prove. The proof requires some serious linear algebra.
Suppose M is a 2×2 matrix. Suppose λ_{1} is an eigenvalue with some eigenvector $\left[\begin{array}{l}a \\ b\end{array}\right]$ and λ_{2} is an eigenvalue with some eigenvector $\left[\begin{array}{l}c \\ d\end{array}\right]$. Then it turns out that:

$$
M=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]^{-1}
$$

We'll write

$$
M=P D P^{-1} \quad \text { with } P=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \text { and } D=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

4. Example of Theorem: For example if we start with

$$
M=\left[\begin{array}{ll}
0.1 & 1.2 \\
0.4 & 0.3
\end{array}\right]
$$

then we find the eigenvalues and eigenvectors we get (work omitted) $\lambda_{1}=0.9$ with $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\lambda_{2}=-0.5$ with $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. Thus we can check that the following is in fact true - check it:

$$
\left[\begin{array}{ll}
0.1 & 1.2 \\
0.4 & 0.3
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
0.9 & 0 \\
0 & -0.5
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]^{-1}
$$

5. That's Crazy Talk! Now What? Suppose we have a system of differential equations of the form

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=m_{11} x_{1}+m_{12} x_{2}+q_{1}(t) \\
& \frac{d x_{2}}{d t}=m_{21} x_{1}+m_{22} x_{2}+q_{2}(t)
\end{aligned}
$$

We can rewrite this with matrices and vectors as

$$
\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]
$$

Then we can define $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], M=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$ and $Q=\left[\begin{array}{l}q_{1}(t) \\ q_{2}(t)\end{array}\right]$ and then rewrite this system as

$$
\frac{d X}{d t}=M X+Q
$$

Now let's play a bit. Define $Y=P^{-1} X$ so that $X=P Y$. Since P is all constants we have $\frac{d X}{d t}=P \frac{d Y}{d t}$. Then we work with the equation above:

$$
\begin{aligned}
\frac{d X}{d t} & =M X+Q \\
P \frac{d Y}{d t} & =P D P^{-1} X+Q \\
\frac{d Y}{d t} & =D P^{-1} X+P^{-1} Q \\
\frac{d Y}{d t} & =D Y+P^{-1} Q
\end{aligned}
$$

In theory if we can solve $\frac{d Y}{d t}=D Y+P^{-1} Q$ then we can find $X=P Y$. In practice because D is diagonal it turns out that solving this is often not hard at all (famous last words.)
6. May I See an Example? Consider for example:

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =0.1 x_{1}+1.2 x_{2}+e^{t} \\
\frac{d x_{2}}{d t} & =0.4 x_{1}+0.3 x_{2}+7
\end{aligned}
$$

We have $M=\left[\begin{array}{ll}0.1 & 1.2 \\ 0.4 & 0.3\end{array}\right]$.
The eigenstuff gives us $D=\left[\begin{array}{cc}0.9 & 0 \\ 0 & -0.5\end{array}\right]$ and $P=\left[\begin{array}{cc}3 & -2 \\ 2 & 1\end{array}\right]$ so $P^{-1}=\frac{1}{7}\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right]$.
We have $Q=\left[\begin{array}{c}e^{t} \\ 7\end{array}\right]$.
We will therefore solve

$$
\left.\left.\begin{array}{rl}
\frac{d Y}{d t} & =D Y+P^{-1} Q \\
\frac{d Y}{d t} & =\left[\begin{array}{cc}
0.9 & 0 \\
0 & -0.5
\end{array}\right] Y+\frac{1}{7}\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{c}
e^{t} \\
7
\end{array}\right] \\
{\left[\begin{array}{l}
\frac{d y_{1}}{d t} \\
\frac{d y_{2}}{d t}
\end{array}\right]} & =\left[\begin{array}{cc}
0.9 & 0 \\
0 & -0.5
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{7} e^{t}+2 \\
-\frac{2}{7} e^{t}+3
\end{array}\right] \\
{\left[\frac{d y_{1}}{d t}\right.} \\
\frac{d y_{2}}{d t}
\end{array}\right]=\left[\begin{array}{c}
0.9 y_{1} \\
-0.5 y_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{7} e^{t}+2 \\
-\frac{2}{7} e^{t}+3
\end{array}\right] \quad \begin{array}{l}
\frac{d y_{1}}{d t} \\
\frac{d y_{2}}{d t}
\end{array}\right]=\left[\begin{array}{c}
0.9 y_{1}+\frac{1}{7} e^{t}+2 \\
-0.5 y_{2}-\frac{2}{7} e^{t}+3
\end{array}\right] \quad \text {. }
$$

which corresponds to the system

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =0.9 y_{1}+\frac{1}{7} e^{t}+2 \\
\frac{d y_{2}}{d t} & =-0.5 y_{2}-\frac{2}{7} e^{t}+3
\end{aligned}
$$

These are actually first-order linear if we view them as:

$$
\begin{aligned}
\frac{d y_{1}}{d t}-0.9 y_{1} & =\frac{1}{7} e^{t}+2 \\
\frac{d y_{2}}{d t}+0.5 y_{2} & =-\frac{2}{7} e^{t}+3
\end{aligned}
$$

Remember: First order linear means of the following form where we've used t in place of x :

$$
\frac{d y}{d t}+P(t) y=Q(t)
$$

The first has $s(t)=-0.9 t$ and hence solution

$$
\begin{aligned}
y_{1} & =e^{0.9 t} \int\left(\frac{1}{7} e^{t}+2\right) e^{-0.9 t} d t \\
& =e^{0.9 t} \int \frac{1}{7} e^{0.1 t}+2 e^{-0.9 t} d t \\
& =e^{0.9 t}\left[\frac{10}{7} e^{0.1 t}-\frac{20}{9} e^{-0.9 t}+C_{1}\right] \\
& =\frac{10}{7} e^{t}-\frac{20}{9}+C_{1} e^{0.9 t}
\end{aligned}
$$

The second has $s(t)=0.5 t$ and hence solution

$$
\begin{aligned}
y_{2} & =e^{-0.5 t} \int\left(-\frac{2}{7} e^{t}+3\right) e^{0.5 t} d t \\
& =e^{-0.5 t} \int\left(-\frac{2}{7} e^{1.5 t}+3 e^{0.5 t}\right) d t \\
& =e^{-0.5 t}\left[-\frac{4}{21} e^{1.5 t}+6 e^{0.5 t}+C_{2}\right] \\
& =-\frac{4}{21} e^{t}+6+C_{2} e^{-0.5 t}
\end{aligned}
$$

So then in closing

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=X} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=P Y} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{10}{7} e^{t}-\frac{20}{9}+C_{1} e^{0.9 t} \\
-\frac{4}{21} e^{t}+6+C_{2} e^{-0.5 t}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3\left(\frac{10}{7} e^{t}-\frac{20}{9}+C_{1} e^{0.9 t}\right)-2\left(-\frac{4}{21} e^{t}+6+C_{2} e^{-0.5 t}\right) \\
2\left(\frac{10}{7} e^{t}-\frac{20}{9}+C_{1} e^{0.9 t}\right)+\left(-\frac{4}{21} e^{t}+6+C_{2} e^{-0.5 t}\right)
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{14}{3} e^{t}+3 C_{1} e^{0.9 t}-2 C_{2} e^{-0.5 t}-\frac{56}{3} \\
\frac{8}{3} e^{t}+2 C_{1} e^{0.9 t}+C_{2} e^{-0.5 t}+\frac{14}{9}
\end{array}\right]}
\end{aligned}
$$

So when all is said and done:

$$
\begin{aligned}
& x_{1}=\frac{14}{3} e^{t}+3 C_{1} e^{0.9 t}-2 C_{2} e^{-0.5 t}-\frac{56}{3} \\
& x_{2}=\frac{8}{3} e^{t}+2 C_{1} e^{0.9 t}+C_{2} e^{-0.5 t}+\frac{14}{9}
\end{aligned}
$$

7. Initial Values! Suppose in addition we know that $x_{1}(0)=100$ and $x_{2}(0)=200$ we can plug these in and solve for both C_{1} and C_{2}, giving us the specific solution.

$$
\begin{aligned}
& 100=\frac{14}{3}+3 C_{1}-2 C_{2}-\frac{56}{3} \\
& 200=\frac{8}{3}+2 C_{1}+C_{2}+\frac{14}{9}
\end{aligned}
$$

which yields

$$
C_{1}=\frac{650}{9} \quad \text { and } \quad C_{2}=\frac{154}{3}
$$

And so finally

$$
\begin{aligned}
& x_{1}=\frac{14}{3} e^{t}+3\left(\frac{650}{9}\right) e^{0.9 t}-2\left(\frac{154}{3}\right) e^{-0.5 t}-\frac{56}{3} \\
& x_{2}=\frac{8}{3} e^{t}+2\left(\frac{650}{9}\right) e^{0.9 t}+\left(\frac{154}{3}\right) e^{-0.5 t}+\frac{14}{9}
\end{aligned}
$$

8. Holy Macaroni! Okay, this was pretty rough but mostly because of the Q business. Without that it's actually really easy, for example if $q_{1}=q_{2}=0$ it's simple and if they're constants it's still not so bad.
9. Bigger! What's more, all of this is true with 3×3 matrices. What fun!
10. Summary: In summary the method is as follows:
(a) Let M be the matrix which corresponds to the coefficients of x_{1} and x_{2} in the system.
(b) Find the eigenvalues and eigenvectors and create the matrices D and P. Then find P^{-1}.
(c) Solve the two equations forming $\frac{d Y}{d t}=D Y+P^{-1} Q$, these are (for us) separable or first-order linear.
(d) Use $X=P Y$ to find X, thereby finding x_{1} and x_{2}.
11. Here is another easier example so you can see that this isn't always so bad!

Suppose

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =0.6 x_{1}+0.8 x_{2} \\
\frac{d x_{2}}{d t} & =0.9 x_{1}
\end{aligned}
$$

We have $M=\left[\begin{array}{cc}0.6 & 0.8 \\ 0.9 & 0\end{array}\right]$.
The eigenstuff (work omitted) gives us $D=\left[\begin{array}{cc}1.2 & 0 \\ 0 & -0.6\end{array}\right]$ and $P=\left[\begin{array}{cc}4 & 2 \\ 3 & -3\end{array}\right]$ so $P^{-1}=$ $-\frac{1}{18}\left[\begin{array}{cc}-3 & -2 \\ -3 & 4\end{array}\right]$.
We have $Q=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
We will therefore solve

$$
\begin{aligned}
\frac{d Y}{d t} & =D Y+P^{-1} Q \\
& =\left[\begin{array}{cc}
1.2 & 0 \\
0 & -0.6
\end{array}\right] Y-\frac{1}{18}\left[\begin{array}{cc}
-3 & -2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1.2 & 0 \\
0 & -0.6
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
1.2 y_{1} \\
-0.6 y_{2}
\end{array}\right]
\end{aligned}
$$

which corresponds to the system

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=1.2 y_{1} \\
& \frac{d y_{2}}{d t}=-0.6 y_{2}
\end{aligned}
$$

These are separable. In fact these are of the form $\frac{d y}{d t}=k y$ and we know the solution is $y=C e^{k t}$. Thus we have solutions

$$
\begin{aligned}
& y_{1}=C_{1} e^{1.2 t} \\
& y_{2}=C_{2} e^{-0.6 t}
\end{aligned}
$$

So then

$$
X=P Y=\left[\begin{array}{cc}
4 & 2 \\
3 & -3
\end{array}\right]\left[\begin{array}{c}
C_{1} e^{1.2 t} \\
C_{2} e^{-0.6 t}
\end{array}\right]=\left[\begin{array}{c}
4 C_{1} e^{1.2 t}+2 C_{2} e^{-0.6 t} \\
3 C_{1} e^{1.2 t}-3 C_{2} e^{-0.6 t}
\end{array}\right]
$$

So then the final solution is

$$
\begin{aligned}
& x_{1}=4 C_{1} e^{1.2 t}+2 C_{2} e^{-0.6 t} \\
& x_{2}=3 C_{1} e^{1.2 t}-3 C_{2} e^{-0.6 t}
\end{aligned}
$$

