
Systems of Differential Equations - Better than the Book, I Hope

1. The Situation: We know that if a population grows by 40% per year that if x1 is the
population then dx1

dt
= 0.4x1. This is because the change (derivative) is 40% of the original.

So suppose there are two populations, x1 and x2. Suppose each year x1 grows by 10% of it’s
own population but suppose it also grows by 120% of x2’s population - perhaps x2 grows a lot
and most move to x1. Then we’d have dx1

dt
= 0.1x1 + 1.2x2. Suppose in addition x2 grows by

40% of x1’s population and by 30% of its own. Then we’d have dx2

dt
= 0.4x1 + 0.3x2.

Together we call this a system of differential equations:

dx1

dt
= 0.1x1 + 1.2x2

dx2

dt
= 0.4x1 + 0.3x2

A solution is a pair of functions x1 = ... and x2 = ..., both functions of time t, which satisfy
both. How on earth would we find this?

2. Harder Still: What if both populations are additionally affected by some outside influence.
For example perhaps x1 gains et new people each year from some third source and x2 gains 7
new people each year from some third source. Then we have

dx1

dt
= 0.1x1 + 1.2x2 + et

dx2

dt
= 0.4x1 + 0.3x2 + 7

How would we solve this?! We’ll see!

3. Theorem: There is a basic premise underlying this section which we will mention but not
prove. The proof requires some serious linear algebra.

Suppose M is a 2 × 2 matrix. Suppose λ1 is an eigenvalue with some eigenvector

[

a

b

]

and λ2

is an eigenvalue with some eigenvector

[

c

d

]

. Then it turns out that:

M =

[

a c

b d

] [

λ1 0
0 λ2

] [

a c

b d

]

−1

We’ll write

M = PDP−1 with P =

[

a b

c d

]

and D =

[

λ1 0
0 λ2

]

4. Example of Theorem: For example if we start with

M =

[

0.1 1.2
0.4 0.3

]

then we find the eigenvalues and eigenvectors we get (work omitted) λ1 = 0.9 with

[

3
2

]

and

λ2 = −0.5 with

[

−2
1

]

. Thus we can check that the following is in fact true - check it:

[

0.1 1.2
0.4 0.3

]

=

[

3 −2
2 1

] [

0.9 0
0 −0.5

] [

3 −2
2 1

]

−1



5. That’s Crazy Talk! Now What? Suppose we have a system of differential equations of
the form

dx1

dt
= m11x1 + m12x2 + q1(t)

dx2

dt
= m21x1 + m22x2 + q2(t)

We can rewrite this with matrices and vectors as
[

dx1

dt
dx2

dt

]

=

[

m11 m12

m21 m22

] [

x1

x2

]

+

[

q1(t)
q2(t)

]

Then we can define X =

[

x1

x2

]

, M =

[

m11 m12

m21 m22

]

and Q =

[

q1(t)
q2(t)

]

and then rewrite this

system as
dX

dt
= MX + Q

Now let’s play a bit. Define Y = P−1X so that X = PY . Since P is all constants we have
dX
dt

= P dY
dt

. Then we work with the equation above:

dX

dt
= MX + Q

P
dY

dt
= PDP−1X + Q

dY

dt
= DP−1X + P−1Q

dY

dt
= DY + P−1Q

In theory if we can solve dY
dt

= DY + P−1Q then we can find X = PY . In practice because D

is diagonal it turns out that solving this is often not hard at all (famous last words.)



6. May I See an Example? Consider for example:

dx1

dt
= 0.1x1 + 1.2x2 + et

dx2

dt
= 0.4x1 + 0.3x2 + 7

We have M =

[

0.1 1.2
0.4 0.3

]

.

The eigenstuff gives us D =

[

0.9 0
0 −0.5

]

and P =

[

3 −2
2 1

]

so P−1 = 1

7

[

1 2
−2 3

]

.

We have Q =

[

et

7

]

.

We will therefore solve

dY

dt
= DY + P−1Q

dY

dt
=

[

0.9 0
0 −0.5

]

Y +
1

7

[

1 2
−2 3

] [

et

7

]

[

dy1

dt
dy2

dt

]

=

[

0.9 0
0 −0.5

] [

y1

y2

]

+

[

1

7
et + 2

−
2

7
et + 3

]

[

dy1

dt
dy2

dt

]

=

[

0.9y1

−0.5y2

]

+

[

1

7
et + 2

−
2

7
et + 3

]

[

dy1

dt
dy2

dt

]

=

[

0.9y1 + 1

7
et + 2

−0.5y2 −
2

7
et + 3

]

which corresponds to the system

dy1

dt
= 0.9y1 +

1

7
et + 2

dy2

dt
= −0.5y2 −

2

7
et + 3

These are actually first-order linear if we view them as:

dy1

dt
− 0.9y1 =

1

7
et + 2

dy2

dt
+ 0.5y2 = −

2

7
et + 3

Remember: First order linear means of the following form where we’ve used t in place of x:

dy

dt
+ P (t)y = Q(t)



The first has s(t) = −0.9t and hence solution

y1 = e0.9t

∫
(

1

7
et + 2

)

e−0.9t dt

= e0.9t

∫

1

7
e0.1t + 2e−0.9t dt

= e0.9t

[

10

7
e0.1t

−

20

9
e−0.9t + C1

]

=
10

7
et

−

20

9
+ C1e

0.9t

The second has s(t) = 0.5t and hence solution

y2 = e−0.5t

∫
(

−

2

7
et + 3

)

e0.5t dt

= e−0.5t

∫
(

−

2

7
e1.5t + 3e0.5t

)

dt

= e−0.5t

[

−

4

21
e1.5t + 6e0.5t + C2

]

= −

4

21
et + 6 + C2e

−0.5t

So then in closing

[

x1

x2

]

= X

[

x1

x2

]

= PY

[

x1

x2

]

=

[

3 −2
2 1

]





10

7
et

−
20

9
+ C1e

0.9t

−
4

21
et + 6 + C2e

−0.5t





[

x1

x2

]

=





3
(

10

7
et

−
20

9
+ C1e

0.9t
)

− 2
(

−
4

21
et + 6 + C2e

−0.5t
)

2
(

10

7
et

−
20

9
+ C1e

0.9t
)

+
(

−
4

21
et + 6 + C2e

−0.5t
)





[

x1

x2

]

=





14

3
et + 3C1e

0.9t
− 2C2e

−0.5t
−

56

3

8

3
et + 2C1e

0.9t + C2e
−0.5t + 14

9





So when all is said and done:

x1 =
14

3
et + 3C1e

0.9t
− 2C2e

−0.5t
−

56

3

x2 =
8

3
et + 2C1e

0.9t + C2e
−0.5t +

14

9



7. Initial Values! Suppose in addition we know that x1(0) = 100 and x2(0) = 200 we can plug
these in and solve for both C1 and C2, giving us the specific solution.

100 =
14

3
+ 3C1 − 2C2 −

56

3

200 =
8

3
+ 2C1 + C2 +

14

9

which yields

C1 =
650

9
and C2 =

154

3

And so finally

x1 =
14

3
et + 3

(

650

9

)

e0.9t
− 2

(

154

3

)

e−0.5t
−

56

3

x2 =
8

3
et + 2

(

650

9

)

e0.9t +

(

154

3

)

e−0.5t +
14

9

8. Holy Macaroni! Okay, this was pretty rough but mostly because of the Q business. Without
that it’s actually really easy, for example if q1 = q2 = 0 it’s simple and if they’re constants it’s
still not so bad.

9. Bigger! What’s more, all of this is true with 3 × 3 matrices. What fun!

10. Summary: In summary the method is as follows:

(a) Let M be the matrix which corresponds to the coefficients of x1 and x2 in the system.

(b) Find the eigenvalues and eigenvectors and create the matrices D and P . Then find P−1.

(c) Solve the two equations forming dY
dt

= DY + P−1Q, these are (for us) separable or
first-order linear.

(d) Use X = PY to find X, thereby finding x1 and x2.



11. Here is another easier example so you can see that this isn’t always so bad!

Suppose

dx1

dt
= 0.6x1 + 0.8x2

dx2

dt
= 0.9x1

We have M =

[

0.6 0.8
0.9 0

]

.

The eigenstuff (work omitted) gives us D =

[

1.2 0
0 −0.6

]

and P =

[

4 2
3 −3

]

so P−1 =

−
1

18

[

−3 −2
−3 4

]

.

We have Q =

[

0
0

]

.

We will therefore solve

dY

dt
= DY + P−1Q

=

[

1.2 0
0 −0.6

]

Y −

1

18

[

−3 −2
−3 4

] [

0
0

]

=

[

1.2 0
0 −0.6

] [

y1

y2

]

=

[

1.2y1

−0.6y2

]

which corresponds to the system

dy1

dt
= 1.2y1

dy2

dt
= −0.6y2

These are separable. In fact these are of the form dy

dt
= ky and we know the solution is

y = Cekt. Thus we have solutions

y1 = C1e
1.2t

y2 = C2e
−0.6t

So then

X = PY =

[

4 2
3 −3

] [

C1e
1.2t

C2e
−0.6t

]

=

[

4C1e
1.2t + 2C2e

−0.6t

3C1e
1.2t

− 3C2e
−0.6t

]

So then the final solution is

x1 = 4C1e
1.2t + 2C2e

−0.6t

x2 = 3C1e
1.2t

− 3C2e
−0.6t


