
Nonlinear Differential Equations

1. The Situation: We’ve looked at linear systems - these are systems which have the form

dx1

dt
= Ax1 + Bx2 + C

dx2

dt
= Dx1 + Ex2 + F

with A,B,D,E constants and perhaps C,F function of t. We can solve these as we did in the
previous section.

A nonlinear system is a system which is not of this form. An couple of examples would be

Example 1:

dx1

dt
= 0.4x1 − 0.002x1x2

dx2

dt
= 0.3x2 − 0.001x1x2

Example 2:

dx1

dt
= x2

2
− x1x2 − x2

dx2

dt
= 2x2

1
+ x1x2 − 7x1

It is very difficult to solve nonlinear systems of differential equations and so we won’t (whew!),
but we will analyze them a little because they come up a lot in biology. Specifically we will
look at two things:

• Equilibrium (stability) points and phase plane diagrams.

• Relating x1 and x2.

2. Equilibrium (Stability) Points and Phase Plane Diagrams - Example 1

Suppose x1 represents the population of foxes and x2 represents the population of rabbits,
both after t weeks.

Question: Are any populations which are stable, meaning they don’t change over time,
meaning the derivatives are equal to 0?

Solution: If we set the derivatives in the system equal to 0:

0.4x1 − 0.002x1x2 = 0

0.3x2 − 0.001x1x2 = 0



The first is 0.002x1(200 − x2) = 0 so x1 = 0 or x2 = 200. If x1 = 0 then the second gives
0.3x2 = 0 and so x2 = 0 and so we have (0, 0). If x2 = 200 then the second gives 60−0.2x1 = 0
and so x1 = 300 and so we have (300, 200).

So the first correponds to a stable population of 0 foxes and 0 rabbits - boring! The second
corresponds to a stable population of 300 foxes and 200 rabbits - interesting! The nonzero pair
is the nontrivial equilibrium point. From here on out we’ll assume both x1 and x2 are positive!

Question: What happens near the equilibrium point?

Solution: Well what if x1 = 310 and x2 = 190? Are the populations increasing or decreasing?
We could simply plug these values of x1 and x2 into the system:

dx1

dt
= 0.4(310) − 0.002(310)(190) = 6.2

dx2

dt
= 0.3(190) − 0.001(310)(190) = −1.9

We see that the population of foxes is growing at 6.2 per week and the population of rabbits
is shrinking at 1.9 per week.

Instead of repeating this for lots of different combinations of x1 and x2 we can draw a picture,
called a phase plane diagram, to help us see. We know from precalculus that an expression
will change from positive to negative or negative to positive only when it equals zero.

So first look at where dx1

dt = 0 alone. This would be 0.4x1 − 0.002x1x2 = 0. Since x1 > 0

we divide it out and so x2 = 200. Then look at where dx2

dt = 0 alone. This would be
0.3x2 − 0.001x1x2 = 0. Since x2 > 0 we divide it out and so x1 = 300. So in the first quadrant
of the x1x2-plane draw the two lines x1 = 300 and x2 = 200. For good measure notice that
the point where they meet is the nontrivial equilibrium point we discovered earlier.

These lines are the places where the derivatives can change from being positive to negative or
vice versa.

x1-axis

x2 = 200

x2-axis x1 = 300

(300, 200)

URUL

LL LR

Then we test a point in each of the four regions around the equilibrium point. In the picture
we labelled these UR, UL, LL, LR (upper right, etc.)



We did (310, 190) which is in the LR region and found that x1 increases while x2 decreases.
This means we go right (x1 increases) and down (x2 decreases). To illustrate this we draw a
small arrow going down and right in the LR region.

We do this for the other three regions:

We do (310, 210) (UR)

dx1

dt
= 0.4(310) − 0.002(310)(210) = −6.2 Left and

dx2

dt
= 0.3(210) − 0.001(310)(210) = −2.1 down.

We do (290, 190) (LL)
dx1

dt
= 0.4(290) − 0.002(290)(190) = 5.8 Right and

dx2

dt
= 0.3(190) − 0.001(290)(190) = 1.9 up.

We do (290, 210) (UL)
dx1

dt
= 0.4(290) − 0.002(290)(210) = −5.8 Left and

dx2

dt
= 0.3(210) − 0.001(290)(210) = 2.1 up.

When all is said and done we have the following:

x1-axis

Foxes

x2 = 200

x2-axis

Rabbits

x1 = 300

The arrows indicate what populations do in each region. The arrow in the UR region indicates
that if both the populations of foxes is greater than 300 and the population of rabbits is greater
than 200 they will both tend to decrease. On the other hand the the arrow in the UL region
indicates that if the population of foxes is less than 300 and the population of rabbits is greater
than 200 then the number of foxes will decrease while the number of rabbits will increase. This
makes good sense if you consider it - fewer foxes mean less hunting of rabbits which means
more rabbits.



3. Equilibrium (Stability) Points and Phase Plane Diagrams - Example 2

Here is another example with a different picture. We’ll be brief so you see this can be done
efficiently.

dx1

dt
= x2

2
− x1x2 − x2

dx2

dt
= 2x2

1
+ x1x2 − 7x1

First we find the equilibrium solution by setting both to zero. The first gives x2(x2−x1−1) = 0
and ignoring x2 = 0 gives x2 −x1 − 1 = 0. The second gives x1(2x1 +x2 − 7) = 0 and ignoring
x1 = 0 gives 2x1 + x2 − 7 = 0. Solving these by substitution (or whatever) gives x1 = 2 and
x2 = 3. The equilibrium point is then (2, 3).

To draw the phase plane we notice that when we set dx1

dt = 0 we got the line x2 = x1 + 1 (this

is a line in the x1x2-plane) and when we set dx2

dt = 0 we got the line x2 = −2x1 + 7 (another
line). Let’s plot these along with the equlibrium point.

x1-axis

x2-axis

x2 = x1 + 1

x2 = −2x1 + 7

(2, 3)

Then we pick a sample point in each region:

Check (2, 4), above the equilibrium point

dx1

dt
= (4)2 − (2)(4) − (4) = + Right and

dx2

dt
= 2(2)2 + (2)(4) − 7(2) = + up.



Check (3, 3), to the right of the equilibrium point

dx1

dt
= (3)2 − (3)(3) − (3) = − Left and

dx2

dt
= 2(3)2 + (3)(3) − 7(3) = + up.

Check (2, 2), below the equilibrium point

dx1

dt
= (2)2 − (2)(2) − (2) = − Left and

dx2

dt
= 2(2)2 + (2)(2) − 7(2) = − down.

Check (1, 3), to the left of the equilibrium point

dx1

dt
= (3)2 − (1)(3) − (3) = + Right and

dx2

dt
= 2(1)2 + (1)(3) − 7(1) = − down.

So when all is said and done we have

x1-axis

x2-axis

x2 = x1 + 1

x2 = −2x1 + 7

So if this were a fox and rabbit problem we’d see that if there were x1 = 5 foxes and x2 = 3
rabbits (to the right of the equlibrium point) then the number of foxes would decrease while
the number of rabbits increased.



4. Relating x1 and x2: Even though we can’t solve the system we can do something. Consider
the first example. It might help you here to use x and y in place of x1 and x2 so we’ll do that.
First we factor a bit:

dx

dt
= 0.4x − 0.002xy = x(0.4 − 0.002y)

dy

dt
= 0.3y − 0.001xy = y(0.3 − 0.001x)

and then we pull a fancy trick. Since dy
dx = dy/dt

dx/dt (this is actually from the chain rule dy
dx

dx
dt = dy

dt

we have:
dy

dx
=

dy/dt

dx/dt
=

y(0.3 − 0.001x)

x(0.4 − 0.002y)

which is a separable differential equation! Wow! Let’s solve it. Keep in mind that both x and
y are positive.

dy

dx
=

y(0.3 − 0.001x)

x(0.4 − 0.002y)

0.4 − 0.002y

y
dy =

0.3 − 0.001x

x
dx

∫
0.4 − 0.002y

y
dy =

∫
0.3 − 0.001x

x
dx

∫
0.4

y
− 0.002 dy =

∫
0.3

x
− 0.001 dx

0.4 ln y − 0.002y = 0.3 ln x − 0.001x + C

If we go back to x1 and x2 we have

0.4 ln x2 − 0.002x2 = 0.3 ln x1 − 0.001x1 + C

Now then, solving for either variable is impossible but let’s appreciate what we’ve got. This
equation is an equation which relates the number of foxes to the number of rabbits even though
we can’t find either as a function of time.

If we’ve given a pair we can still find C as before. For example if x1 = 100 and x2 = 200 then

0.4 ln 200 − 0.002(200) = 0.3 ln 100 − 0.001(100) + C

and so
C = 0.4 ln 200 − 0.3 ln 100 − 0.3

and so
0.4 ln x2 − 0.002x2 = 0.3 ln x1 − 0.001x1 + 0.4 ln 200 − 0.3 ln 100 − 0.3



5. Summary:

(a) To find the equilibrium point and phase-plane diagram:

i. Set the derivatives equal to 0. Assume x1 and x2 are nonzero. Each will give you a
line.

ii. Solve them as a system, this will give you a point - the equilibrium point.

iii. Plot the lines and the point.

iv. Pick a point in each of the four regions and plug it into the system. This will give
you an arrow for each region.

v. Understand what you’ve got, especially in real-world problems!

(b) To find the relationship between x1 and x2:

i. Set dx2

dx1

equal to dx2/dt
dx1/dt . For our examples this will be separable.

ii. Separate and solve.

iii. Understand what you’ve got, especially in real-world problems!


