
Calculus 131, section 12.1 Sets 
notes by Tim Pilachowski 
 

We now move to a new chapter and a new topic—one which will clarify the ideas underlying probability. 
 

Definition: A set is  
 

 

The individual objects in a set are called 
 

 

Every set has three properties. 
 

1.  

2.  

3.  

 

Sets are usually represented by capital letters, such as A, B, C, etc. Notationally, a set is indicated using braces 

(squiggly brackets). The elements of a set can be defined as a descriptive sentence, list, or equation. 
 

A = the set containing the letters “x”, “ö”, “A”, and the integers “0”, “9”, “12” = {0, x, ö, 9, 12, A} 

B = the set of colors of lights in a standard traffic signal = {red, yellow, green} 

C = the set of “solutions to the equation x
2
 = 4” = {x| x

2
 = 4} read “the set of elements x such that 4

2
=x ”. 

C = {–2, 2}  This version is called set-builder notation. 
 

D = the set of positive even numbers = {2, 4, 6, 8, …} 

 

The symbol ∈  means “is an element of”. 
 

Examples A: Let A, B, C, and D be as defined above. 

 

The symbol ∉  means “is not an element of”: 
 

Examples A (continued): Let A, B, C, and D be as defined above. 

 

Two sets are called equal when they have exactly the same elements. When a set is defined by listing its 

elements the list may be in any order. 
 

Examples B: Let B = {red, yellow, green} 

 

If a set has no members, it is called the empty set or the null set, and is denoted either by empty braces, { }, or 

by the symbol ∅ . 

Important note:  

 

 

 
 

The cardinality of a set S, represented by n(S), is  
 

Examples C: 

 

 
 



One set S is a subset of another set T if every element found in set S is also in set T. Another way to say this is 

that there is nothing found in S which is not also found in T. 
 

Examples D: Let E = {4, 8, 12}, C = {x| x
2
 = 4} = {–2, 2}, and D = {2, 4, 6, 8, …}. 

 

 

 

 

 

Theorems about subsets: 

 

 

 

 

 

 

We’ll be considering three fundamental set operations. 
 

From two given sets A and B we can make a new set that consists of all the elements of A and all the elements 

of B. This new set is called the union of A and B and is represented by the symbol BA ∪ . (The union symbol is 

not the letter U.) 
 

Example E: Let Q = {a, b, c, d} and let R = {c, d, e}. 

 

 

 
 

The union of two sets is defined in symbols as follows: { }BxAxxBA ∈∈=∪ or    | . Note that this is a non-

exclusive use of the word “or”: the elements can be in A, or in B, or possibly in both. 
 

Other notes: 

 

 
 

From two given sets A and B we can make a new set that consists of all the elements that belong to both A and B 

at the same time. This new set is called the intersection of A and B and is represented by the symbol BA ∩ .  
 

Example E (continued): Let Q = {a, b, c, d} and let R = {c, d, e}. 

 

 

 
 

The intersection of two sets is defined in symbols as follows: { }BxAxxBA ∈∈=∩   and  | . 
 

Other notes: 

 

 
 

Two sets whose intersection is empty are called disjoint, i.e. two sets A and B are disjoint if and only if 

∅=∩ BA  . 
 

Before addressing the operation of complement, it is necessary to define a universal set, containing all the 

individual objects under consideration. For example, if the sets being studied consist of men, women, boys, and 

girls in a population, then the universal set is everyone in the population. In a primary school mathematics 

classroom, the universal set contains only positive numbers. In a typical algebra classroom, the universal set 

contains all real numbers, positive and negative, rational and irrational. The letter U (not the union symbol ∪ ) 

is used to denote the universal set for a given situation. 
 



The complement of a set A is the set of all elements in the universal set that are not members of A, and is 

represented by the symbol A′ . It is defined in symbols as follows: { }AxxA ∉=′ | . 
 

Example F. Let U = the set of positive whole numbers = {1, 2, 3, 4, … } and D = the set of positive even 

numbers = {2, 4, 6, 8, …}. 

 
 

Complement literally means “that which completes”, and if you combine a set with its complement, you get 

everything, i.e. the universe. 
 

Other notes: 

 

 

 
 

Venn diagrams provide a visual means of considering sets, even when the particular elements may not be 

known. In a Venn diagram a rectangle represents U, the universe set under consideration and circles within the 

rectangle represent sets within the universe. The operations above would be diagrammed as follows: 

    
    
 

   
   
 

Venn diagrams can also be used with three (or more) sets. 
 

Example G: Draw a Venn diagram to illustrate first ( ) CBA ∩∪  then ( ) CBA ′∩∪ . 

On your own: Use a Venn diagram to show that ( ) ( )CBACBA ∩∪≠∩∪ . 

 

 

 

 

 

 
 ( ) CBA ∩∪  ( ) CBA ′∩∪  ( )CBA ∩∪  

 

 



Examples H: Consider universe U = {a, b, c, d, e, f, g, h, i, j, k} and sets M = {a, b, c, d}, N = {b, c, d, e, f, g} 

and P = {g, h, i}. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example I: Among the 178 members of a freshman class at Matriarch University (U. Mama), 37 have academic 

scholarships, 55 are athletes, 62 live on campus, 14 are athletes who have an academic scholarship, 15 have an 

academic scholarship and live on campus, 21 have are athletes who live on campus, and 3 are athletes with academic 

scholarships who live on campus. Use a Venn diagram to answer the following questions: a) How many students are 

athletes who do not have an academic scholarship and who live off-campus? b) How many students are athletes with 

an academic scholarship, but who do not live on campus? c) How many students fit in none of the three categories? 

answers: a) 23,  b) 11,  c) 71 
 

Let U = the members of a freshman class at U. Mama, A = the set of 

students who have academic scholarships, B = the set of students who are 

athletes, and C = the set of students who live on campus. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

Some closing notes: The symbols ∩∪   and   for union and intersection are pretty much standard; other 

symbology is not. While some texts in set theory use our notation A′ for complement, others use A  or A
c
. 

While we’ll use n(A) for cardinality, others use A  or c(A). 
 

Important note: The ideas presented here about sets have parallels in the rest of the work done in chapter 12 on 

probability. 
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