
Calculus 131, section 13.2 Continuous Random Variables, E(x) & Var(x) 
notes prepared by Tim Pilachowski 
 

Recall from section 12.4, for discrete random variables: 
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If we apply the same underlying concept to continuous random variables, we get analogous integrals. Given a 

random variable X with a probability density function f(x) on an interval a ≤ x ≤ b: 
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The text verifies the second, easier, computational formula for Var(x), so I won’t repeat that proof here. 

As before, standard deviation of x ( )xVar== σ . 
 

Example A: Find the expected value and variance for the uniform probability density function 

( ) 100,
10

1
≤≤= xxf .   answers: 5, 
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Example B: Find the expected value and variance for the probability density function ( ) 21,22 ≤≤−= xxxf . 

I’ll leave it to you to verify that f is a probability density function.   answers: 
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Example C: The monthly demand for a product (continuous random variable X) has a probability density 

function ( ) ( ) 60,6
36

1 2 ≤≤−= xxxxf . Find expected monthly demand and the probability that the random 

variable is within 1 standard deviation of the mean.    answers: 3, ≈ 0.6261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example D: For a particular machine, its useful lifetime is modeled by ( ) tetf 1.01.0 −= , 0 ≤ t ≤ ∞. Find the 

expected number of years that the machine will last, along with the standard deviation.       answers: 10, 10 

 


