Math 131 Exam 1 Sample 2 Solution OUTLINE

1. (a) Draw a number line with marks at $x=1,1.5,2,2.5,3,3.5,4$ and apply the rule.
(b) i. At R2 a cook makes $\$ 15 /$ hour.
ii. During W3 each restaurant hires 220 hours' worth of waitresses.
iii. If A is the first matrix and B is the second we'd do $B A$. This is because B has (restaurants \times employee type) and A has (employee type \times week). The result $B A$ is then (restaurants \times week). The units are dollars/week. Consequently $B A$ gives dollars/week for each restaurant for each week in a three-week period.
2. (a) Rewrite as $\int 4 x e^{-x} d x$ and use IBP with $u=4 x$ and $d v=e^{-x} d x$.
(b) Evaluate $\frac{1}{10-0} \int_{0}^{10} P e^{0.05 x} d x$. The result will have a P in it. Set it equal to 5000 and solve for P to get $P=2500 /\left(e^{0.5}-1\right)$.
3. (a) First do $\int \frac{2 x}{\left(x^{2}+1\right)^{3 / 2}} d x$ by substituting $u=x^{2}+1$, getting $-\frac{2}{\sqrt{x^{2}+1}}+C$. Rewrite $\int_{2}^{\infty} \frac{2 x}{\left(x^{2}+1\right)^{3 / 2}} d x$ with a limit, put in the integral and then the b and take the limit as $b \rightarrow \infty$.
(b) This is awkwardly written. The matrices A and B themselves do not need to be square, for example if A is 3×5 and B is 5×3 then both $A B$ and $B A$ are permissible. The resulting $A B$ and $B A$ will be square though.
4. (a) Write is as a matrix and reduce:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & -1 & 7
\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]
$$

So $x=-2$ and $y=-1$.
(b) If $A=\left[\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right]$ then the solution is $\left[\begin{array}{l}x \\ y\end{array}\right]=A^{-1}\left[\begin{array}{l}1 \\ 7\end{array}\right]$. Use the shortcut to get A^{-1}.
5. (a) We augment and reduce. It's pretty quick:

$$
\left[\begin{array}{cccccc}
1 & -2 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & -2.5 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0.5
\end{array}\right]
$$

So the inverse the 3×3 part on the right.
(b) We solve $(0.3-\lambda)(0.3-\lambda)-(0.5)(0.5)=0$ to get $\lambda=-0.2,0.8$. We use the positive one. We reduce

$$
\left[\begin{array}{cc}
-0.5 & 0.5 \\
0.5 & -0.5
\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]
$$

so that y is anything and $x=y$. To total 4000 then we need $x=2000$ and $y=2000$. The population is shrinking each year to 0.8 of its original size.

