Math 131 Exam 1 Sample 2 Solution OUTLINE

- 1. (a) Draw a number line with marks at x = 1, 1.5, 2, 2.5, 3, 3.5, 4 and apply the rule.
 - (b) i. At R2 a cook makes \$15/hour.
 - ii. During W3 each restaurant hires 220 hours' worth of waitresses.
 - iii. If A is the first matrix and B is the second we'd do BA. This is because B has (restaurants \times employee type) and A has (employee type \times week). The result BA is then (restaurants \times week). The units are dollars/week. Consequently BA gives dollars/week for each restaurant for each week in a three-week period.
- 2. (a) Rewrite as $\int 4xe^{-x} dx$ and use IBP with u = 4x and $dv = e^{-x} dx$.
 - (b) Evaluate $\frac{1}{10-0} \int_0^{10} P e^{0.05x} dx$. The result will have a P in it. Set it equal to 5000 and solve for P to get $P = 2500/(e^{0.5} 1)$.
- 3. (a) First do $\int \frac{2x}{(x^2+1)^{3/2}} dx$ by substituting $u = x^2 + 1$, getting $-\frac{2}{\sqrt{x^2+1}} + C$. Rewrite $\int_2^\infty \frac{2x}{(x^2+1)^{3/2}} dx$ with a limit, put in the integral and then the *b* and take the limit as $b \to \infty$.
 - (b) This is awkwardly written. The matrices A and B themselves do not need to be square, for example if A is 3×5 and B is 5×3 then both AB and BA are permissible. The resulting AB and BA will be square though.
- 4. (a) Write is as a matrix and reduce:

$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 7 \end{bmatrix} \rightarrow \ldots \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

So x = -2 and y = -1.

(b) If
$$A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$
 then the solution is $\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 7 \end{bmatrix}$. Use the shortcut to get A^{-1} .

5. (a) We augment and reduce. It's pretty quick:

[1	-2	1	1	0	0		[1	0	0	1	2	-2.5
0	1	2	0	1	0	$\rightarrow \dots \rightarrow$	0	1	0	0	1	-1
0	0	2	0	0	1		0	0	1	0	0	0.5

So the inverse the 3×3 part on the right.

(b) We solve $(0.3 - \lambda)(0.3 - \lambda) - (0.5)(0.5) = 0$ to get $\lambda = -0.2, 0.8$. We use the positive one. We reduce

$$\begin{bmatrix} -0.5 & 0.5\\ 0.5 & -0.5 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix}$$

so that y is anything and x = y. To total 4000 then we need x = 2000 and y = 2000. The population is shrinking each year to 0.8 of its original size.