
 

Math 131 Exam 2 Sample 2   SOLUTIONS Fall 2010 
  

1. (a) The number of cows that can graze on a ranch is approximated by f(x, y) = 9x + 5y – 5, where x is 

the number of acres of grass and y the number of acres of alfalfa. First find f(40, 75), then write a 

sentence explaining what your result means. 

f(40, 75) = 9(40) + 5(75) – 5 = 360 + 375 – 5 = 730 

When a ranch has 40 acres of grass and 75 acres of alfalfa, then 730 cows can graze. 
 

1. (b) Find and categorize all relative maximum or minimum points of ( ) 2186, 22 −++−−= yxyxyxg . 

You must show appropriate work to justify your conclusion. 
 

62 +−= xg x , which equals 0 where x = 3. 82 +−= yg y , which equals 0 where x = 4. So there is only one 

possible relative maximum or minimum. Apply the second derivative test to determine which it is. 
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So ( ) ( )( ) 04022, 2 >=−−−=yxD  for all values of x and y, including x = 3 and y = 4. 

Since 02 <−=xxf  for all values of x and y, including x = 3 and y = 4, we conclude f(3, 4) is a maximum. 

Since there are no other possible extremes, this must be an absolute maximum.  
  

2. (a) Given ( ) yxzxyxzyxh ln,, 32 +−=  find ( )3,1,2−yh . 
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2. (b) For the unknown function m(x, y), the first partial derivative ( )xyxxmy −= 2
ln . Find yxm . 
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Note that the chain rule was needed for vx. There is no logarithm property which applies. 
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Note that the final answer is in simplest form—no further reduction of terms is possible.  
  

3. (a) Find the volume under the surface z = 6x
2
y and above the rectangle 0 ≤ x ≤ 4,  0 ≤ y ≤ 3. 
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alternate approach: 
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3. (b) The rate of change of the population of Binthar, Montana, is given by y
dt

dy
02.0= , where y is the 

population in thousands at time t, in years. Let t = 0 represent the year 2000, when the population was 

300,000. Find the population function. Also state whether the population is growing or declining. (Hint: 

If you recognize this one, you can write the function without solving the DE.) 

Exponential growth: tey 02.0300000= ; The population is rising. The DE is solved by separation of variables. 
  



 

4. (a) Use the first-order linear process to solve the differential equation xxy
dx

dy
coscos =+  with the 

initial value condition y(0) = 3. 

( ) ( ) xdxx
eexIxxP sincos

cos =∫=⇒=  

( ) [ ]

[ ] xxx

xx

xux

xxxxx

CeCeey

Ceye

Ceduedxxedxxduxu

dxxedxye
dx

d
xeyxe

dx

dy
e

sinsinsin

sinsin

sinsin

sinsinsinsinsin

1

coscossin

coscoscos

−− +=+=

+=

+==⇒==

=⇒=+

∫∫

∫∫

 

substitute initial condition values to find the value of C: 

CCCeCe =⇒+=+=+= − 21113 00sin , so the final answer is xey sin21 −+= . 

 

4. (b) A researcher finds that the rate of productivity of worker bees in a newly-established hive is related 

to the size of the colony by the differential equation ( )12 += xy
dx

dy
 with initial condition y(0) = 2. Solve 

to find an equation which represents the amount the worker bees produce as a function of colony size x. 
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5. (a) Let f(t) be the solution to ( ) 21,42 =+=′ ytyy . Use Euler’s method with n = 2 to estimate f(2). 
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5. (b) Given the system of linear differential equations, 21
1 23 xx
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found the necessary eigenvalues and eigenvectors to be 
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( ) ?2 =tx  

See Exam 2 Sample 1 Solutions for the student’s preliminary work. 
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The End 


