1. (a) The number of cows that can graze on a ranch is approximated by $f(x, y)=9 x+5 y-5$, where x is the number of acres of grass and y the number of acres of alfalfa. First find $f(40,75)$, then write a sentence explaining what your result means.
$f(40,75)=9(40)+5(75)-5=360+375-5=730$
When a ranch has 40 acres of grass and 75 acres of alfalfa, then 730 cows can graze.
2. (b) Find and categorize all relative maximum or minimum points of $g(x, y)=-x^{2}-y^{2}+6 x+8 y-21$.

You must show appropriate work to justify your conclusion.
$g_{x}=-2 x+6$, which equals 0 where $x=3$. $g_{y}=-2 y+8$, which equals 0 where $x=4$. So there is only one possible relative maximum or minimum. Apply the second derivative test to determine which it is.
$g_{x x}=\frac{\partial}{\partial x}(-2 x+6)=-2, \quad g_{y y}=\frac{\partial}{\partial y}(-2 y+8)=-2, \quad g_{x y}=\frac{\partial}{\partial y}(-2 x+6)=0$
So $D(x, y)=(-2)(-2)-0^{2}=4>0$ for all values of x and y, including $x=3$ and $y=4$.
Since $f_{x x}=-2<0$ for all values of x and y, including $x=3$ and $y=4$, we conclude $f(3,4)$ is a maximum.
Since there are no other possible extremes, this must be an absolute maximum.
2. (a) Given $h(x, y, z)=x^{2} y-x^{3} z+x \ln y$ find $h_{y}(-2,1,3)$.

$$
\begin{aligned}
& h_{y}=x^{2} * \frac{\partial}{\partial y}(y)-x^{3} z * \frac{\partial}{\partial y}(1)+x * \frac{\partial}{\partial y}(\ln y)=x^{2} * 1-x^{3} z * 0+x * \frac{1}{y}=x^{2}+\frac{x}{y} \\
& h_{y}(-2,1,3)=(-2)^{2}+\frac{-2}{1}=4-2=2
\end{aligned}
$$

2. (b) For the unknown function $m(x, y)$, the first partial derivative $m_{y}=x \ln \left(x^{2}-x y\right)$. Find $m_{y x}$. $m_{y x}=\frac{\partial}{\partial x}\left(h_{y}\right)=\frac{\partial}{\partial x}\left[x \ln \left(x^{2}-x y\right)\right]$, which requires use of the product rule.
Let $u=x$ and $v=\ln \left(x^{2}-x y\right)$. Then $u_{x}=1$ and $v_{x}=\frac{1}{x^{2}-x y} *(2 x-y)=\frac{2 x-y}{x(x-y)}$.
Note that the chain rule was needed for v_{x}. There is $\underline{n \boldsymbol{O}}$ logarithm property which applies.
So $m_{y x}=u * v_{x}+u_{x} * v=x * \frac{2 x-y}{x(x-y)}+1 * \ln \left(x^{2}-x y\right)=\frac{2 x-y}{x-y}+\ln \left(x^{2}-x y\right)$.
Note that the final answer is in simplest form-no further reduction of terms is possible.
3. (a) Find the volume under the surface $z=6 x^{2} y$ and above the rectangle $0 \leq x \leq 4,0 \leq y \leq 3$.
$\left.\int_{0}^{4} \int_{0}^{3} 6 x^{2} y d y d x=\int_{0}^{4}\left[6 x^{2} * \frac{1}{2} y^{2}\right]\right]_{0}^{3} d x=\int_{0}^{4}\left[3 x^{2} * 3^{2}-0\right] d x=\int_{0}^{4} 27 x^{2} d x=\left[9 x^{3}\right]_{0}^{4}=9\left(4^{3}\right)-0=576$
alternate approach:
$\int_{0}^{3} \int_{0}^{4} 6 x^{2} y d x d y=\int_{0}^{3}\left[2 x^{3} * y\right]_{0}^{4} d y=\int_{0}^{3}\left[2\left(4^{3}\right) * y-0\right] d x=\int_{0}^{3} 128 y d y=\left[64 y^{2}\right]_{0}^{3}=64\left(3^{2}\right)-0=576$
4. (b) The rate of change of the population of Binthar, Montana, is given by $\frac{d y}{d t}=0.02 y$, where y is the population in thousands at time t, in years. Let $t=0$ represent the year 2000, when the population was 300,000 . Find the population function. Also state whether the population is growing or declining. (Hint: If you recognize this one, you can write the function without solving the DE.)
Exponential growth: $y=300000 e^{0.02 t}$; The population is rising. The DE is solved by separation of variables.
5. (a) Use the first-order linear process to solve the differential equation $\frac{d y}{d x}+y \cos x=\cos x$ with the initial value condition $y(0)=3$.
$P(x)=\cos x \Rightarrow I(x)=e^{\int \cos x d x}=e^{\sin x}$
$e^{\sin x} \frac{d y}{d x}+\left(e^{\sin x} \cos x\right) y=e^{\sin x} \cos x \Rightarrow \int \frac{d}{d x}\left[e^{\sin x} y\right] d x=\int e^{\sin x} \cos x d x$
$u=\sin x \quad d u=\cos x d x \Rightarrow \int e^{\sin x} \cos x d x=\int e^{u} d u=e^{\sin x}+C$

$$
\begin{aligned}
e^{\sin x} y & =e^{\sin x}+C \\
y & =e^{-\sin x}\left[e^{\sin x}+C\right]=1+C e^{-\sin x}
\end{aligned}
$$

substitute initial condition values to find the value of C : $3=1+C e^{-\sin 0}=1+C e^{0}=1+C \Rightarrow 2=C$, so the final answer is $y=1+2 e^{-\sin x}$.
4. (b) A researcher finds that the rate of productivity of worker bees in a newly-established hive is related to the size of the colony by the differential equation $\frac{d y}{d x}=y\left(x^{2}+1\right)$ with initial condition $y(0)=2$. Solve to find an equation which represents the amount the worker bees produce as a function of colony size x. method: separation of variables $\frac{1}{y} \frac{d y}{d x}=x^{2}+1 \Rightarrow \int \frac{1}{y} d y=\int x^{2}+1 d x \Rightarrow \ln |y|=\frac{1}{3} x^{3}+x+C$

$$
\Rightarrow y=e^{\frac{1}{3} x^{3}+x+C}=C e^{\frac{1}{3} x^{3}+x} \Rightarrow 2=C e^{\frac{1}{3}\left(0^{3}\right)+0} \Rightarrow 2=C \Rightarrow y=2 e^{\frac{1}{3} x^{3}+x}
$$

5. (a) Let $f(t)$ be the solution to $y^{\prime}=y^{2}+4 t, \quad y(1)=2$. Use Euler's method with $n=2$ to estimate $f(2)$.

$$
\begin{aligned}
h & =\frac{2-1}{2}=\frac{1}{2}, \quad t_{0}=1, \quad y_{0}=2, \quad y^{\prime}=g(1,2)=2^{2}+4(1)=8 \\
& \Rightarrow t_{1}=\frac{3}{2}, \quad y_{1}=2+8\left(\frac{1}{2}\right)=6, \quad y^{\prime}=g\left(\frac{3}{2}, 6\right)=6^{2}+4\left(\frac{3}{2}\right)=42 \\
& \Rightarrow t_{2}=2, \quad f(2) \cong y_{2}=6+42\left(\frac{1}{2}\right)=27
\end{aligned}
$$

5. (b) Given the system of linear differential equations, $\frac{d x_{1}}{d t}=3 x_{1}-2 x_{2}$ and $\frac{d x_{2}}{d t}=x_{1}+e^{t}$, a student has found the necessary eigenvalues and eigenvectors to be $\lambda_{1}=1 \Rightarrow\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda_{1}=2 \Rightarrow\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and has derived $\frac{d y_{1}}{d t}-y_{1}=2 e^{t}$ and $\frac{d y_{2}}{d t}-2 y_{2}=-e^{t}$. Finish the solution process to answer $x_{1}(t)=$? and $x_{2}(t)=$?
See Exam 2 Sample 1 Solutions for the student's preliminary work.

$$
\begin{aligned}
& \frac{d y_{1}}{d t}-y_{1}=2 e^{t} \Rightarrow I(t)=e^{\int-1 d t}=e^{-t} \Rightarrow e^{-t} \frac{d y_{1}}{d t}-y_{1} e^{-t}=2 e^{t} * e^{-t} \Rightarrow e^{-t} y_{1}=2 t+C_{1} \\
& \quad \Rightarrow y_{1}=2 t e^{t}+C_{1} e^{t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y_{2}}{d t}-2 y_{2}=-e^{t} \Rightarrow I(t)=e^{\int-2 d t}=-e^{-2 t} \Rightarrow e^{-2 t} \frac{d y_{2}}{d t}-2 y_{2} e^{-2 t}=-e^{t} * e^{-2 t} \Rightarrow e^{-2 t} y_{2}=e^{-t}+C_{2} \\
& \Rightarrow y_{2}=e^{t}+C_{2} e^{2 t}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=P Y=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
2 t e^{t}+C_{1} e^{t} \\
e^{t}+C_{2} e^{2 t}
\end{array}\right]=\Rightarrow \begin{gathered}
x_{1}=2 t e^{t}+C_{1} e^{t}+2 e^{t}+2 C_{2} e^{2 t} \\
\text { or } e^{t}\left(2 t+C_{1}+2\right)+2 C_{2} e^{2 t} \\
x_{2}=2 t e^{t}+C_{1} e^{t}+e^{t}+C_{2} e^{2 t} \\
\text { or }
\end{gathered} e^{t}\left(2 t+C_{1}+1\right)+C_{2} e^{2 t}
$$

